forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserving.py
134 lines (115 loc) · 5.03 KB
/
serving.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Examples of SavedModel export for tf-serving."""
from absl import app
from absl import flags
import tensorflow as tf
from official.nlp.bert import bert_models
from official.nlp.bert import configs
flags.DEFINE_integer(
"sequence_length", None, "Sequence length to parse the tf.Example. If "
"sequence_length > 0, add a signature for serialized "
"tf.Example and define the parsing specification by the "
"sequence_length.")
flags.DEFINE_string("bert_config_file", None,
"Bert configuration file to define core bert layers.")
flags.DEFINE_string("model_checkpoint_path", None,
"File path to TF model checkpoint.")
flags.DEFINE_string("export_path", None,
"Destination folder to export the serving SavedModel.")
FLAGS = flags.FLAGS
class BertServing(tf.keras.Model):
"""Bert transformer encoder model for serving."""
def __init__(self, bert_config, name_to_features=None, name="serving_model"):
super(BertServing, self).__init__(name=name)
self.encoder = bert_models.get_transformer_encoder(
bert_config, sequence_length=None)
self.name_to_features = name_to_features
def call(self, inputs):
input_word_ids = inputs["input_ids"]
input_mask = inputs["input_mask"]
input_type_ids = inputs["segment_ids"]
encoder_outputs, _ = self.encoder(
[input_word_ids, input_mask, input_type_ids])
return encoder_outputs
def serve_body(self, input_ids, input_mask=None, segment_ids=None):
if segment_ids is None:
# Requires CLS token is the first token of inputs.
segment_ids = tf.zeros_like(input_ids)
if input_mask is None:
# The mask has 1 for real tokens and 0 for padding tokens.
input_mask = tf.where(
tf.equal(input_ids, 0), tf.zeros_like(input_ids),
tf.ones_like(input_ids))
inputs = dict(
input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids)
return self.call(inputs)
@tf.function
def serve(self, input_ids, input_mask=None, segment_ids=None):
outputs = self.serve_body(input_ids, input_mask, segment_ids)
# Returns a dictionary to control SignatureDef output signature.
return {"outputs": outputs[-1]}
@tf.function
def serve_examples(self, inputs):
features = tf.io.parse_example(inputs, self.name_to_features)
for key in list(features.keys()):
t = features[key]
if t.dtype == tf.int64:
t = tf.cast(t, tf.int32)
features[key] = t
return self.serve(
features["input_ids"],
input_mask=features["input_mask"] if "input_mask" in features else None,
segment_ids=features["segment_ids"]
if "segment_ids" in features else None)
@classmethod
def export(cls, model, export_dir):
if not isinstance(model, cls):
raise ValueError("Invalid model instance: %s, it should be a %s" %
(model, cls))
signatures = {
"serving_default":
model.serve.get_concrete_function(
input_ids=tf.TensorSpec(
shape=[None, None], dtype=tf.int32, name="inputs")),
}
if model.name_to_features:
signatures[
"serving_examples"] = model.serve_examples.get_concrete_function(
tf.TensorSpec(shape=[None], dtype=tf.string, name="examples"))
tf.saved_model.save(model, export_dir=export_dir, signatures=signatures)
def main(_):
sequence_length = FLAGS.sequence_length
if sequence_length is not None and sequence_length > 0:
name_to_features = {
"input_ids": tf.io.FixedLenFeature([sequence_length], tf.int64),
"input_mask": tf.io.FixedLenFeature([sequence_length], tf.int64),
"segment_ids": tf.io.FixedLenFeature([sequence_length], tf.int64),
}
else:
name_to_features = None
bert_config = configs.BertConfig.from_json_file(FLAGS.bert_config_file)
serving_model = BertServing(
bert_config=bert_config, name_to_features=name_to_features)
checkpoint = tf.train.Checkpoint(model=serving_model.encoder)
checkpoint.restore(FLAGS.model_checkpoint_path
).assert_existing_objects_matched().run_restore_ops()
BertServing.export(serving_model, FLAGS.export_path)
if __name__ == "__main__":
flags.mark_flag_as_required("bert_config_file")
flags.mark_flag_as_required("model_checkpoint_path")
flags.mark_flag_as_required("export_path")
app.run(main)