forked from onnx/onnx-tensorrt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathShapeTensor.hpp
155 lines (117 loc) · 5.59 KB
/
ShapeTensor.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
/*
* Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#pragma once
#include <NvInfer.h>
#include <cassert>
#include <iosfwd>
#include <vector>
namespace onnx2trt
{
class IImporterContext;
class TensorOrWeights;
//! Represents a 0D or 1D tensor of int64_t.
//! Unlike TensorRT, ShapeTensor allows empty tensors.
class ShapeTensor
{
public:
//! Create undefined ShapeTensor.
ShapeTensor() = default;
//! Create ShapeTensor with known rank and size, but unknown values.
//! If rank_ is 0, the size_t must be 1.
ShapeTensor(int rank_, int32_t size_);
//! Create ShapeTensor with known rank and values.
ShapeTensor(int rank_, std::vector<int64_t>&& values_);
//! Create ShapeTensor representing value of TensorOrWeights.
ShapeTensor(TensorOrWeights& t);
//! Number of dimensions (0 or 1), or -1 if undefined ShapeTensor.
int8_t rank{-1};
//! Number of values in the shape tensor, or -1 if undefined ShapeTensor.
int32_t size{-1};
//! Values of shape tensor if they are known, otherwise empty.
std::vector<int64_t> values;
//! True if values of the shape tensor are known.
bool valuesKnown() const
{
return values.size() == static_cast<size_t>(size);
}
//! True if values of the shape tensor are known to be equal to given value.
bool isAll(int64_t value) const;
//! Get TensorRT tensor representation.
nvinfer1::ITensor& tensor(IImporterContext* ctx) const;
//! Set TensorRT tensor representation to layer->getOutput(0).
//! Asserts that dimensions of the tensor agree with current rank and size.
//! This is a low-level routine for use by min, max, mul, sub, etc.
void assign(const nvinfer1::ILayer* layer);
private:
//! Cached TensorRT representation, or null if not yet created.
mutable nvinfer1::ITensor* mTensor{nullptr};
};
std::ostream& operator<<(std::ostream& stream, const ShapeTensor& x);
//! Create 1D ShapeTensor of length n filled with value.
ShapeTensor fillShapeVector(int32_t n, int64_t value);
//! Create 1D ShapeTensor of length 1 containing given value.
inline ShapeTensor shapeVector(int64_t value)
{
return fillShapeVector(1, value);
}
//! Create 1D ShapeTensor with [0,n)
ShapeTensor iotaShapeVector(int32_t n);
//! Create ShapeTensor filled with value that has same shape as exemplar.
ShapeTensor similar(const ShapeTensor& exemplar, int64_t value);
//! Elementwise addition
ShapeTensor add(IImporterContext* ctx, const ShapeTensor& x, const ShapeTensor& y);
//! Elementwise subtraction
ShapeTensor sub(IImporterContext* ctx, const ShapeTensor& x, const ShapeTensor& y);
//! Elementwise multiplication
ShapeTensor mul(IImporterContext* ctx, const ShapeTensor& x, const ShapeTensor& y);
//! Elementwise min
ShapeTensor min(IImporterContext* ctx, const ShapeTensor& x, const ShapeTensor& y);
//! Elementwise max
ShapeTensor max(IImporterContext* ctx, const ShapeTensor& x, const ShapeTensor& y);
//! Elementwise floor division
ShapeTensor floorDiv(IImporterContext* ctx, const ShapeTensor& x, const ShapeTensor& y);
//! Return product of x[i] for i in [first..last), as 0D or one-element 1D tensor of given rank.
ShapeTensor product(IImporterContext* ctx, const ShapeTensor& x, int first, int last, int rank);
//! Gather where x is 1D tensor and y can be 0D or 1D
ShapeTensor gather(IImporterContext* ctx, const ShapeTensor& data, const ShapeTensor& indices);
//! Concatenation of two 1D tensors
ShapeTensor concat(IImporterContext* ctx, const ShapeTensor& x, const ShapeTensor& y);
//! Return gather(concat(x,y),subscripts)
inline ShapeTensor interlace(
IImporterContext* ctx, const ShapeTensor& x, const ShapeTensor& y, const ShapeTensor& subscripts)
{
return gather(ctx, concat(ctx, x, y), subscripts);
}
//! Return shape of a tensor.
ShapeTensor shapeOf(IImporterContext* ctx, nvinfer1::ITensor& tensor);
//! Return shape of the value represented by a TensorOrWeights.
ShapeTensor shapeOf(IImporterContext* ctx, TensorOrWeights& t);
//! Reshape 0D tensor to 1D tensor.
ShapeTensor convertTo1D(IImporterContext* ctx, const ShapeTensor& tensor);
//! Add an ISliceLayer.
nvinfer1::ISliceLayer* addSlice(IImporterContext* ctx, nvinfer1::ITensor& data, const ShapeTensor& starts,
const ShapeTensor& sizes, const ShapeTensor& strides);
//! Add an IShuffleLayer.
nvinfer1::IShuffleLayer* addShuffle(IImporterContext* ctx, nvinfer1::ITensor& data, const ShapeTensor& reshapeDims);
//! Add an IFillLayer.
nvinfer1::IFillLayer* addFill(IImporterContext* ctx, const ShapeTensor& shape, nvinfer1::FillOperation op);
} // namespace onnx2trt