-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_ndays_predictions.py
463 lines (361 loc) · 18.4 KB
/
test_ndays_predictions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
######## Perform Test run fixing k, combination, aggregations
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.neighbors import NearestNeighbors
import static_sim_functions as smf
from scipy.spatial.distance import pdist, squareform
import properties
import pandas as pd
import ml_modelling_ts as ml_ts
from sklearn.model_selection import train_test_split
from sklearn.metrics import *
from HEOM import HEOM
# Global declaration. Set this once, and run each of the functions with different bounds.
# Should be moved later to a class level based executions. So that entire py file can be executed.
# Note: Select Line based execution is required since the store for each of percentage is held in globals.
lr_rmse_ = []
wa_rmse_ = []
# Set true for Loudness based calculation.
ema = True
# Percentage value in 0 to 1. (20%, 30%, 50% bounds are looked at)
bound = 0.50
###################
lr_usr_bounds_dict = {}
wa_usr_bounds_dict = {}
lr_usr_bounds_dict_ema = {}
lr_usr_bounds_dict_ema = {}
# Common elements
# Feature engineering family history
def create_cols_family_hist(x):
if x["tschq04-1"] == "YES":
lst_sorted = sorted(x["tschq04-2"])
list_to_str = "_".join([val for val in lst_sorted])
return list_to_str
else:
return x["tschq04-1"]
def get_common_cols(col1, col2):
common_elements = set(col1).intersection(col2)
return common_elements
def initial_processing():
# Read the csv of the tschq data and make the necessary things
tschq = pd.read_pickle(properties.data_location + "/input_pckl/" + "3_q.pckl")
# Dropping users
drop_indexs = []
# Users with very few observations and user do not containing the time series are filtered.
drop_user_ids = [54, 60, 140, 170, 4, 6, 7, 9, 12, 19, 25, 53, 59, 130, 144, 145, 148, 156, 167]
# indexes to be obtained
for val in drop_user_ids:
drop_indexs.append(tschq[tschq["user_id"] == val].index[0])
# Drop those indexes of the users who have very less observations (less than 10 days)
tschq.drop(drop_indexs, inplace=True)
tschq.reset_index(inplace=True, drop=True)
# Cleaning tschq05 question. There is an abstraction for a row we add common value
def filter_age(x):
if isinstance(x, int):
# Append the most common value obtained
return tschq["tschq05"].value_counts().head(1).index[0]
else:
return x
tschq["tschq05"] = tschq["tschq05"].apply(filter_age)
# Drop the questionnaire_id and created_at
tschq.drop(["questionnaire_id", "created_at"], axis=1, inplace=True)
# Lets read and join two questionnaires tschq and hq
hq = pd.read_pickle("data/input_pckl/4_q.pckl")
hq.isna().sum(axis=0)
# By looking at the output we are sure that h5 and h6 do not contribute much and can be dropped
hq.drop(["hq05", "hq06"], axis=1, inplace=True)
hq_df = hq.set_index("user_id")
df = tschq.join(hq_df.iloc[:, 2:], on="user_id")
# Repeated code but it should be okay
# Looking at the output, we can drop tschq25, tschq07-02, tschq04-2
drop_cols = ["tschq01", "tschq25", "tschq07-2",
"tschq13", "tschq04-1", "tschq04-2"]
# Getting percentage between 0 to 1 rather than score values
df["tschq12"] = df["tschq12"].apply(lambda x: x / 100)
df["tschq16"] = df["tschq16"].apply(lambda x: x / 100)
df["tschq17"] = df["tschq17"].apply(lambda x: x / 100)
df["tschq04"] = df.apply(create_cols_family_hist, axis=1)
df.drop(drop_cols, axis=1, inplace=True)
# Set the heom object, while using the required similarity
# Alternative
# Categorical boolean mask
categorical_feature_mask = df.iloc[:, 1:].dtypes == object
other_feature_mask = df.iloc[:, 1:].dtypes != object
# filter categorical columns using mask and turn it into a list
categorical_cols = df.iloc[:, 1:].columns[categorical_feature_mask].tolist()
num_cols = df.iloc[:, 1:].columns[other_feature_mask].tolist()
cat_idx = [df.iloc[:, 1:].columns.get_loc(val) for val in categorical_cols]
num_idx = [df.iloc[:, 1:].columns.get_loc(val) for val in num_cols]
return cat_idx, num_idx, df
# Create reference points for multiple reference predictions
def get_pred_ref_points(user_id, ndays, method="mean"):
# Using the default tsg which is mean observations of the user
test_user_ts = tsg_data.get_usr_mday_ts_predict(user_id)
# user_ts = tsg.get_usr_mday_ts_index_corrected(int(user_id))
user_ts_idx = test_user_ts[:, 1]
# ["date", "time_idx", "s02", "s03", "s04", "s05", "s06", "s07]
user_distress = test_user_ts[:, 3]
# bound -> 0.20, 0.30, 0.5 percentage of the time series recordings
# from where the start day is chosen.
# Should be made this as a function parameter rather.
percentage_range = bound
# percentage because of unequal length in the time series
prediction_at = round(len(user_ts_idx) * percentage_range)
y_labels = user_distress[prediction_at:prediction_at + ndays].tolist()
prediction_at_list = user_ts_idx[prediction_at:prediction_at + ndays].tolist()
return y_labels, prediction_at_list
def weighted_average(distress_list):
average = np.asarray(distress_list, dtype=float).mean()
return average
def splitData(dataset, test_user_ids):
train_d = dataset[~dataset["user_id"].isin(test_user_ids)]
test_d = dataset[dataset["user_id"].isin(test_user_ids)]
return train_d, test_d
# Function computes the weighted average as predictions for given prediction time point
def compute_weighted_avg(n_idx, encoded_data, pred_at_list, is_ema=False, method="mean", dist_nn=None, wt_flag=False):
preds = list()
train_users = encoded_data["user_id"].to_numpy()
# Prediction for ahead time points
for pval in pred_at_list:
distress_list = list()
for vals in n_idx:
if is_ema:
u_id = train_users[vals]
else:
u_id = encoded_data["user_id"].iloc[vals]
user_ts = tsg_data.get_usr_mday_ts_predict(int(u_id))
# 3rd val of the series is s03 of the neighbor
print("{}, {} Values ".format(int(pval), int(u_id)))
if len(user_ts) > int(pval):
value = user_ts[int(pval), :][3]
elif len(user_ts) <= int(pval):
value = user_ts[len(user_ts)-1, :][3]
distress_list.append(value)
print("Calling weighted average to predict distress")
preds.append(weighted_average(distress_list))
return preds
def compute(test_nn, encoded_data,
pred_list, is_ema=False, method="mean", dist_nn=None, wt_dist=False):
train_users = encoded_data["user_id"].to_numpy()
from sklearn.linear_model import LinearRegression
preds = list()
for point in pred_list:
nn_preds = list()
intercepts_list = list()
coeff_list = list()
for nn in test_nn:
if is_ema:
u_id = train_users[nn]
else:
u_id = encoded_data["user_id"].iloc[nn]
user_ts = tsg_data.get_usr_mday_ts_predict(int(u_id))
# Obtain the time series until time point and fit the data for linear regression
diff_arr = np.abs(np.subtract(point, user_ts[:, 1]))
diff_near_idx = np.where(diff_arr == diff_arr.min())
print("minimum to the time point is at -- ", diff_near_idx)
# difference near index. Handling for the length of users
usr_idx = diff_near_idx[0][0]
user_ts_p = user_ts[:usr_idx]
user_ts_df = pd.DataFrame(user_ts_p, columns=["day", "day_sess_index",
"s02", "s03", "s04",
"s05", "s06", "s07"])
X = user_ts_df[["day_sess_index"]]
# We show for tinnitus distress. This can be extended to other physiological variables as well.
y = user_ts_df[["s03"]]
# Fit on X axis as time and Y as the s03 predictive value.
reg_fit = LinearRegression(normalize=True)
reg_fit.fit(X, y)
intercepts_list.append(reg_fit.intercept_)
coeff_list.append(reg_fit.coef_)
print("Predicting the value of s3 over the averaged slope and intercepts of observations of the neighbors")
# y = mx + c, where m is the average slope of the neighbors and c is the average intercept obtained.
print("The equation to estimate s03 for the user is {}".format("".join(str(np.asarray(coeff_list).mean())) +
"* time_index + " +
str(np.asarray(intercepts_list).mean())))
y = np.multiply(np.asarray(coeff_list).mean(), point) + np.asarray(intercepts_list).mean()
preds.append(y)
return preds
def plot_bar(x, y, plot_props=None):
fig = sns.barplot(x=x, y=y, order=x, color="steelblue")
if plot_props:
fig.set(xlabel=plot_props["xlabel"],
ylabel=plot_props["ylabel"],
title=plot_props["title"],
ylim=plot_props["ylim"])
return fig
def setup_dict_usr_vals(rmse_scores, test_users):
temp_dict = {}
for u_id, rmse_val in zip(test_users, rmse_scores):
if u_id not in temp_dict:
temp_dict[u_id] = rmse_val
return temp_dict
import operator
def sort_dict_vals(dictionary):
return {key: values for key, values in sorted(dictionary.items(), key=lambda item: item[1])}
def calculate_mse_users(y_labels, wa_user_preds, lr_usr_preds):
mse_wa_list = []
mse_lr_list = []
from sklearn.metrics import mean_squared_error
for y_label, wa_pred, lr_pred in zip(y_labels, wa_user_preds, lr_usr_preds):
mse_val_wa = np.square(np.subtract(y_label, wa_pred))
mse_val_lr = np.square(np.subtract(y_label, lr_pred))
#print(np.sqrt(mean_squared_error(y_label, wa_pred)))
#print(np.sqrt(mean_squared_error(y_label, lr_pred)))
# Unequal lengths append zeroes for the unavailable predictions, so that numpy computation is possible.
if mse_val_wa.shape[0] < ndays:
mse_val_wa = np.append(mse_val_wa, np.zeros(ndays - mse_val_wa.shape[0]))
if mse_val_lr.shape[0] < ndays:
mse_val_lr = np.append(mse_val_lr, np.zeros(ndays - mse_val_lr.shape[0]))
# Append
mse_wa_list.append(mse_val_wa)
mse_lr_list.append(mse_val_lr)
return mse_wa_list, mse_lr_list
def compute_predictions(test_info, train_info, nn_idx, ndays=3, eval_cond="mean", is_ema=False):
y_labels_list = list() # truth label list
wa_usr_list = list() # wa list of user predictions
lr_usr_list = list() # lr list of user predictions
prediction_tp_list = list()
for t_user in range(0, len(test_info)):
user_id = int(test_info.iloc[t_user]["user_id"])
print("User- Id ", user_id)
y_labels, prediction_at_list = get_pred_ref_points(user_id, ndays, method=eval_cond)
test_user_nn = nn_idx[t_user]
#test_user_ema_nn = ema_idx[i]
pred_weighted_average = compute_weighted_avg(test_user_nn, train_info, prediction_at_list, is_ema=is_ema,
method=eval_cond)
#pred_weighted_average_ema = compute_weighted_avg(test_user_ema_nn, train_data, prediction_at_list,
# method=eval_cond)
pred_lr = compute(test_user_nn, train_info, prediction_at_list, is_ema=is_ema,
method=eval_cond)
#pred_lr_ema = compute(test_user_ema_nn, train_data, prediction_at_list,
# method=eval_cond)
# Append all
if user_id == 51:
print("User 51 ---- ", np.sqrt(mean_squared_error(pred_weighted_average, y_labels)))
print("User 51 ----- ", np.sqrt(mean_squared_error(pred_lr, y_labels)))
y_labels_list.append(y_labels)
prediction_tp_list.append(prediction_at_list)
wa_usr_list.append(pred_weighted_average)
lr_usr_list.append(pred_lr)
return y_labels_list, wa_usr_list, lr_usr_list
##### Start of Main #################
# For ema set k= 11 and for static reg set k=9
ndays = 3
k = 11
quest_cmb = "related_conditions"
eval_cond = "mean"
random_state = 1220
from time_series_grp import TimeSeriesGroupProcessing
tsg_data = TimeSeriesGroupProcessing(method=eval_cond)
user_obs_cond = tsg_data.user_grp_dict_predict
# Initial cleaning of the data.
cat_idx, num_idx, df = smf.initial_processing(quest_cmb, properties.quest_comb[quest_cmb],
append_synthethic=False)
# unnecessary column not required for the computations
drop_cols = ["tschq01", "tschq04-1", "tschq04-2", "tschq07-2", "tschq13", "tschq25"]
if quest_cmb not in ["all", "overall"]:
filtered_cols = [x for x in properties.quest_comb[quest_cmb] if x not in drop_cols]
if quest_cmb == "bg_tinnitus_history":
filtered_query_data = df[filtered_cols + ["tschq04"]]
else:
filtered_query_data = df[filtered_cols]
else:
filtered_query_data = df
# Label and ordinal encoding scheme
encoded_combined_df = smf.preprocess(filtered_query_data, quest_cmb, age_bin=False,
process_model_name="",
prediction=False, save_model=False)
#Split into train test with same random state as per eval
X, test = train_test_split(encoded_combined_df,
test_size=0.20,
random_state=random_state)
# This is required for obtaining the same train and test sets from EMA data.
train_user_ids = X["user_id"].to_list()
test_user_ids = test["user_id"].to_list()
#train_len = 0
#test_len = 0
#for k, v in user_obs_cond.items():
# if k in train_user_ids:
# train_len += len(v)
# else:
# test_len += len(v)
EMA_data = ml_ts.process_data(grouping="day")
# Calculate pairwise distance and create a dataframe for the same
from scipy.spatial.distance import pdist, squareform
# Note: Only one combination will be present
C = np.zeros((EMA_data.shape[0], EMA_data.shape[0]))
for i in range(0, len(EMA_data)):
#print("User is -- {}", X[i][0])
#print("User is -- {}", len(X[i][1]))
for j in range(0, len(EMA_data)):
dist = ml_ts.compute_dist(EMA_data[:, 1][i], EMA_data[:, 1][j])
C[i][j] = dist
C_df = pd.DataFrame(C)
# Threshold overall distance for making within radius
threshold_distance = sum(C_df.mean()) / len(C_df)
user_ids = []
for val in EMA_data:
user_ids.append(val[0])
C_df["user_id"] = user_ids
train_data, test_data = splitData(C_df, test_user_ids)
# Fit the train into nearest neighbors and predict over test by choosing the specified neighborhood
heom = HEOM(X.to_numpy()[:, 1:], cat_idx, num_idx)
sim_matrix = pdist(X.to_numpy()[:, 1:], heom.heom_distance)
mean_heom_distance = sim_matrix.mean()
knn = NearestNeighbors(n_neighbors=k, radius=mean_heom_distance, metric=heom.heom_distance)
knn.fit(X.to_numpy()[:, 1:])
# Fit with static data
dist, idx = knn.kneighbors(test.to_numpy()[:, 1:], n_neighbors=k)
# Fit with EMA data based on Loudness
knn_ema = NearestNeighbors(n_neighbors=k, metric="precomputed", radius=threshold_distance)
knn_ema.fit(train_data[train_data.index])
ema_dist, ema_idx = knn_ema.kneighbors(test_data[train_data.index], n_neighbors=k)
if ema:
y_labels_list, wa_usr_list, lr_usr_list = compute_predictions(test_data, train_data, ema_idx,
ndays=ndays, eval_cond=eval_cond, is_ema=ema)
rmse_wa_list, rmse_lr_list = calculate_mse_users(y_labels_list, wa_usr_list, lr_usr_list)
else:
y_labels_list, wa_usr_list, lr_usr_list = compute_predictions(test, X, idx,
ndays=ndays, eval_cond=eval_cond)
rmse_wa_list, rmse_lr_list = calculate_mse_users(y_labels_list, wa_usr_list, lr_usr_list)
# At each timepoints
mean_rmse_wa_list = np.sqrt(np.mean(rmse_wa_list, axis=0))
mean_rmse_lr_list = np.sqrt(np.mean(rmse_lr_list, axis=0))
### Visualize a bar chart of test users average rmse values for ndays
# At each user level
user_mean_rmse_wa_list = np.sqrt(np.mean(rmse_wa_list, axis=1))
user_mean_rmse_lr_list = np.sqrt(np.mean(rmse_lr_list, axis=1))
lr_rmse_.append(user_mean_rmse_lr_list)
wa_rmse_.append(user_mean_rmse_wa_list)
## Save the user-rmse in dictionary and sort based on rmse.
plot_props = {
"ylim": (0, 0.6),
"xlabel": "user_ids",
"ylabel": "RMSE",
"title": "Sorted RMSE values of the test users"
}
import utility
# uncomment while processing ema based similarity
if ema:
lr_usr_bounds_dict_ema = sort_dict_vals(setup_dict_usr_vals(np.mean(np.asarray(lr_rmse_), axis=0), test_data["user_id"].to_list()))
wa_usr_bounds_dict_ema = sort_dict_vals(setup_dict_usr_vals(np.mean(np.asarray(wa_rmse_), axis=0), test_data["user_id"].to_list()))
utility.save_model("lr_usr_bounds_dict_ema.pckl", lr_usr_bounds_dict_ema)
utility.save_model("wa_usr_bounds_dict_ema.pckl", wa_usr_bounds_dict_ema)
fig_set1 = plot_bar(x=list(lr_usr_bounds_dict_ema.keys()), y=list(lr_usr_bounds_dict_ema.values()), plot_props=plot_props)
plt.savefig("eval_images/" + "barplot_lr_ema-{}_k-{}_x_0.2".format(eval_cond, k) + "_.png", dpi=300, bbox_inches='tight')
plt.show()
fig_set2 = plot_bar(x=list(wa_usr_bounds_dict_ema.keys()), y=list(wa_usr_bounds_dict_ema.values()), plot_props=plot_props)
plt.savefig("eval_images/" + "barplot_wa_ema-{}_k-{}_x_0.2".format(eval_cond, k) + "_.png", dpi=300, bbox_inches='tight')
plt.show()
else:
lr_usr_bounds_dict = sort_dict_vals(setup_dict_usr_vals(np.mean(np.asarray(lr_rmse_), axis=0), test_user_ids))
wa_usr_bounds_dict = sort_dict_vals(setup_dict_usr_vals(np.mean(np.asarray(wa_rmse_), axis=0), test_user_ids))
utility.save_model("lr_usr_bounds_dict.pckl", lr_usr_bounds_dict)
utility.save_model("wa_usr_bounds_dict.pckl", wa_usr_bounds_dict)
fig_set3 = plot_bar(x=list(lr_usr_bounds_dict.keys()), y=list(lr_usr_bounds_dict.values()), plot_props=plot_props)
plt.savefig("eval_images/" + "barplot_lr_c3-{}_k-{}_x_0.2".format(eval_cond, k) + "_.png", dpi=300, bbox_inches='tight')
plt.show()
fig_set4 = plot_bar(x=list(wa_usr_bounds_dict.keys()), y=list(wa_usr_bounds_dict.values()), plot_props=plot_props)
plt.savefig("eval_images/" + "barplot_wa_C3-{}_k-{}_x_0.2".format(eval_cond, k) + "_.png", dpi=300, bbox_inches='tight')
plt.show()