-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrapidpro_to_bigquery.py
258 lines (220 loc) · 9.11 KB
/
rapidpro_to_bigquery.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
from temba_client.v2 import TembaClient
from google.cloud import bigquery
from google.oauth2 import service_account
from google.api_core.exceptions import BadRequest
import os
from datetime import datetime, timedelta
from fields import (
GROUP_CONTACT_FIELDS, FLOWS_FIELDS,
FLOW_RUNS_FIELDS, FLOW_RUN_VALUES_FIELDS, GROUP_FIELDS)
RAPIDPRO_URL = "https://country-rollouts-rapidpro-prd.govcloud-k8s.prd-p6t.org/"
RAPIDPRO_TOKEN_DRC = os.environ.get('RAPIDPRO_TOKEN_DRC', "")
RAPIDPRO_TOKEN_IC = os.environ.get('RAPIDPRO_TOKEN_IC', "")
BQ_KEY_PATH = "/bigquery/bq_credentials.json"
BQ_DATASETS = {
"drc": "cluster-infra-govcloud-prd.drc_rapidpro",
"ic": "cluster-infra-govcloud-prd.ivory_coast_rapidpro"
}
RAPIDPRO_URL = "https://country-rollouts-rapidpro-prd.govcloud-k8s.prd-p6t.org/"
credentials = service_account.Credentials.from_service_account_file(
BQ_KEY_PATH, scopes=["https://www.googleapis.com/auth/cloud-platform"],
)
bigquery_client = bigquery.Client(
credentials=credentials, project=credentials.project_id,
)
rapidpro_client_1 = TembaClient(RAPIDPRO_URL, RAPIDPRO_TOKEN_DRC)
rapidpro_client_2 = TembaClient(RAPIDPRO_URL, RAPIDPRO_TOKEN_IC)
rapidpro_clients = {
'drc': rapidpro_client_1,
'ic': rapidpro_client_2
}
CONTACT_FIELDS_DRC = rapidpro_client_1.get_fields().all()
CONTACT_FIELDS_IC = rapidpro_client_2.get_fields().all()
CONTACT_FIELDS = {
'drc': CONTACT_FIELDS_DRC,
'ic': CONTACT_FIELDS_IC,
}
def log(text):
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
print(f"{timestamp} - {text}")
def get_contact_wa_urn(contact):
wa_urn = " "
for rapidpro_urn in contact.urns:
if "whatsapp" in rapidpro_urn:
urn = rapidpro_urn.split(":")[1]
wa_urn = f"+{urn}"
else:
wa_urn = "1"
return wa_urn
def get_groups(rapidpro_client):
rapidpro_groups = rapidpro_client.get_groups().all(retry_on_rate_exceed=True)
groups = []
for group in rapidpro_groups:
groups.append({"uuid": group.uuid, "name": group.name})
return groups
def get_contacts_and_contact_groups(rapidpro_client, last_contact_date=None):
rapidpro_contacts = rapidpro_client.get_contacts(after=last_contact_date).all(
retry_on_rate_exceed=True
)
contacts = []
group_contacts = []
for contact in rapidpro_contacts:
record = {
"uuid": contact.uuid,
"modified_on": contact.modified_on.isoformat(),
"created_on": contact.created_on.isoformat(),
"name": contact.name,
"language": contact.language,
"urn": get_contact_wa_urn(contact),
}
for group in contact.groups:
group_contacts.append(
{"contact_uuid": contact.uuid, "group_uuid": group.uuid}
)
for field, value in contact.fields.items():
record[field] = value
contacts.append(record)
return contacts, group_contacts
def get_last_record_date(table, field, dataset):
query = f"select EXTRACT(DATETIME from max({field})) from {dataset}.{table};"
for row in bigquery_client.query(query).result():
if row[0]:
timestamp = row[0] + timedelta(hours=2)
return str(timestamp.strftime("%Y-%m-%dT%H:%M:%S.%fZ"))
def get_flows(rapidpro_client):
rapidpro_flows = rapidpro_client.get_flows().all(retry_on_rate_exceed=True)
records = []
for flow in rapidpro_flows:
records.append(
{
"uuid": flow.uuid,
"name": flow.name,
"labels": [label.name for label in flow.labels],
}
)
return records
def get_flow_runs(flows, rapidpro_client, last_contact_date=None):
records = []
value_records = []
for flow in flows:
for run_batch in rapidpro_client.get_runs(flow=flow["uuid"], after=last_contact_date).iterfetches(retry_on_rate_exceed=True):
for run in run_batch:
exited_on = None
if run.exited_on:
exited_on = run.exited_on.isoformat()
records.append(
{
"id": run.id,
"flow_uuid": run.flow.uuid,
"contact_uuid": run.contact.uuid,
"responded": run.responded,
"created_at": run.created_on.isoformat(),
"modified_on": run.modified_on.isoformat(),
"exited_on": exited_on,
"exit_type": run.exit_type,
}
)
for value in run.values.values():
value_records.append(
{
"run_id": run.id,
"value": str(value.value),
"category": value.category,
"time": value.time.isoformat(),
"name": value.name,
"input": value.input,
}
)
return records, value_records
def upload_to_bigquery(BQ_DATASET, table, data, fields):
schema = []
if table in ["flows", "groups"]:
for field, data_type in fields.items():
schema.append(bigquery.SchemaField(field, data_type))
job_config = bigquery.LoadJobConfig(
source_format="NEWLINE_DELIMITED_JSON",
write_disposition="WRITE_TRUNCATE",
max_bad_records=1,
autodetect=False
)
else:
if table == "contacts_raw":
for field in fields:
if field.value_type == "text":
schema.append(bigquery.SchemaField(field.label.replace(" ","_"), "STRING"))
elif field.value_type == "uuid":
schema.append(bigquery.SchemaField(field.label.replace(" ","_"), "STRING"))
elif field.value_type == "datetime":
schema.append(bigquery.SchemaField(field.label.replace(" ","_"), "TIMESTAMP"))
else:
schema.append(bigquery.SchemaField(field.label.replace(" ","_"), field.value_type))
schema.append(bigquery.SchemaField("uuid", "STRING"))
schema.append(bigquery.SchemaField("name", "STRING"))
schema.append(bigquery.SchemaField("urn", "STRING"))
schema.append(bigquery.SchemaField("modified_on", "TIMESTAMP"))
schema.append(bigquery.SchemaField("language", "STRING"))
schema.append(bigquery.SchemaField("created_on", "TIMESTAMP"))
else:
for field, data_type in fields.items():
schema.append(bigquery.SchemaField(field, data_type))
job_config = bigquery.LoadJobConfig(
source_format="NEWLINE_DELIMITED_JSON",
write_disposition="WRITE_APPEND",
max_bad_records=1,
schema=schema,
autodetect=False
)
job = bigquery_client.load_table_from_json(
data, f"{BQ_DATASET}.{table}", job_config=job_config
)
try:
job.result()
except BadRequest as e:
for e in job.errors:
print('ERROR: {}'.format(e['message']))
if __name__ == "__main__":
for country in ["drc", "ic"]:
last_contact_date_contacts = get_last_record_date("contacts_raw", "modified_on", BQ_DATASETS[country])
last_contact_date_flows = get_last_record_date("flow_runs", "created_at", BQ_DATASETS[country])
log("Start")
log("Fetching flows")
flows = get_flows(rapidpro_client=rapidpro_clients[country])
log("Fetching flow runs and values")
flow_runs, flow_run_values = get_flow_runs(flows, rapidpro_client=rapidpro_clients[country], last_contact_date=last_contact_date_flows)
log("Fetching groups...")
groups = get_groups(rapidpro_client=rapidpro_clients[country])
log(f"Groups: {len(groups)}")
log("Fetching contacts and contact groups...")
contacts, group_contacts = get_contacts_and_contact_groups(rapidpro_client=rapidpro_clients[country], last_contact_date=last_contact_date_contacts)
log(f"Contacts: {len(contacts)}")
log(f"Group Contacts: {len(group_contacts)}")
tables = {
"groups": {
"data": groups,
"fields": GROUP_FIELDS},
"contacts_raw": {
"data": contacts,
"fields": CONTACT_FIELDS[country],
},
"group_contacts": {
"data": group_contacts,
"fields": GROUP_CONTACT_FIELDS,
},
"flows": {
"data": flows,
"fields": FLOWS_FIELDS,
},
"flow_runs": {
"data": flow_runs,
"fields": FLOW_RUNS_FIELDS,
},
"flow_run_values": {
"data": flow_run_values,
"fields": FLOW_RUN_VALUES_FIELDS,
}
}
for table, data in tables.items():
rows = data["data"]
log(f"Uploading {len(rows)} {table}")
upload_to_bigquery(BQ_DATASETS[country], table, rows, data.get("fields"))
log("Done")