-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
96 lines (84 loc) · 3.02 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
"""setup.py for axolotl"""
import platform
import re
from importlib.metadata import PackageNotFoundError, version
from setuptools import find_packages, setup
def parse_requirements():
_install_requires = []
_dependency_links = []
with open("./requirements.txt", encoding="utf-8") as requirements_file:
lines = [r.strip() for r in requirements_file.readlines()]
for line in lines:
is_extras = (
"flash-attn" in line
or "flash-attention" in line
or "deepspeed" in line
or "mamba-ssm" in line
or "lion-pytorch" in line
)
if line.startswith("--extra-index-url"):
# Handle custom index URLs
_, url = line.split()
_dependency_links.append(url)
elif not is_extras and line and line[0] != "#":
# Handle standard packages
_install_requires.append(line)
try:
if "Darwin" in platform.system():
_install_requires.pop(_install_requires.index("xformers==0.0.22"))
else:
torch_version = version("torch")
_install_requires.append(f"torch=={torch_version}")
version_match = re.match(r"^(\d+)\.(\d+)(?:\.(\d+))?", torch_version)
if version_match:
major, minor, patch = version_match.groups()
major, minor = int(major), int(minor)
patch = (
int(patch) if patch is not None else 0
) # Default patch to 0 if not present
else:
raise ValueError("Invalid version format")
if (major, minor) >= (2, 1):
_install_requires.pop(_install_requires.index("xformers==0.0.22"))
_install_requires.append("xformers>=0.0.23")
except PackageNotFoundError:
pass
return _install_requires, _dependency_links
install_requires, dependency_links = parse_requirements()
setup(
name="axolotl",
version="0.4.0",
description="LLM Trainer",
long_description="Axolotl is a tool designed to streamline the fine-tuning of various AI models, offering support for multiple configurations and architectures.",
package_dir={"": "src"},
packages=find_packages(),
install_requires=install_requires,
dependency_links=dependency_links,
extras_require={
"flash-attn": [
"flash-attn==2.5.5",
],
"fused-dense-lib": [
"fused-dense-lib @ git+https://github.com/Dao-AILab/[email protected]#subdirectory=csrc/fused_dense_lib",
],
"deepspeed": [
"deepspeed==0.13.1",
"deepspeed-kernels",
],
"mamba-ssm": [
"mamba-ssm==1.2.0.post1",
],
"auto-gptq": [
"auto-gptq==0.5.1",
],
"mlflow": [
"mlflow",
],
"lion-pytorch": [
"lion-pytorch==0.1.2",
],
"galore": [
"galore_torch",
],
},
)