forked from philipperemy/keras-tcn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmulti_length_sequences.py
49 lines (40 loc) · 1.38 KB
/
multi_length_sequences.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import numpy as np
from tensorflow.keras import Sequential
from tensorflow.keras.layers import Dense
from tcn import TCN
# if you increase the sequence length make sure the receptive field of the TCN is big enough.
MAX_TIME_STEP = 30
"""
Input: sequence of length 7
Input: sequence of length 25
Input: sequence of length 29
Input: sequence of length 21
Input: sequence of length 20
Input: sequence of length 13
Input: sequence of length 9
Input: sequence of length 7
Input: sequence of length 4
Input: sequence of length 14
Input: sequence of length 10
Input: sequence of length 11
...
"""
def get_x_y(max_time_steps):
for k in range(int(1e9)):
time_steps = np.random.choice(range(1, max_time_steps), size=1)[0]
if k % 2 == 0:
x_train = np.expand_dims([np.insert(np.zeros(shape=(time_steps, 1)), 0, 1)], axis=-1)
y_train = [1]
else:
x_train = np.array([np.zeros(shape=(time_steps, 1))])
y_train = [0]
if k % 100 == 0:
print(f'({k}) Input: sequence of length {time_steps}.')
yield x_train, np.expand_dims(y_train, axis=-1)
m = Sequential([
TCN(input_shape=(None, 1)),
Dense(1, activation='sigmoid')
])
m.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
gen = get_x_y(max_time_steps=MAX_TIME_STEP)
m.fit(gen, epochs=1, steps_per_epoch=1000, max_queue_size=1, verbose=2)