-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathtrain.py
50 lines (39 loc) · 1.94 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import datetime
from utils.utils_visualizer import vis_train
from models.model import FasterRCNN
from models.trainer import FasterRCNNTrainer
import tensorflow as tf
from utils.utils_data import Dataset, vis, LABEL_NAMES, DATA_DIR
import pkbar
import matplotlib.pyplot as plt
# HYPERPARAMETER
epochs = 5
print('Loading dataset')
dataset = Dataset(DATA_DIR)
frcnn = FasterRCNN(21, (7, 7))
print('Constructing Model')
model = FasterRCNNTrainer(frcnn)
optimizer = tf.keras.optimizers.SGD(learning_rate=1e-3, momentum=0.9)
loss = []
for epoch in range(epochs):
kbar = pkbar.Kbar(target=len(dataset), epoch=epoch, num_epochs=epochs, width=20, always_stateful=False)
for i in range(len(dataset)):
img, bboxes, labels, scale = dataset[1]
bboxes = tf.cast(bboxes, dtype=tf.float32)
labels = tf.cast(labels, dtype=tf.float32)
with tf.GradientTape() as tape:
rpn_loc_l, rpn_cls_l, roi_loc_l, roi_cls_l = model(img, bboxes, labels, scale, training=True)
total_loss = rpn_loc_l + rpn_cls_l + roi_loc_l + roi_cls_l
grads = tape.gradient(total_loss, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables))
kbar.update(i, values=[("loss", total_loss)])
# Displaying predictions on train, TODO: Use test data for predictions.
if(i%100==0 and i!=0):
img, bboxes, labels, scale = dataset[1]
feature_map = model.faster_rcnn.extractor(img)
f = tf.reduce_sum(feature_map, axis=-1)
img_size = img.shape[1:3]
rpn_locs, rpn_scores, rois, anchor = model.faster_rcnn.rpn(feature_map, img_size, scale)
sample_roi, gt_roi_loc, gt_roi_label = model.proposal_target_creator(rois, bboxes, labels)
roi_cls_loc, roi_score = model.faster_rcnn.head(feature_map, sample_roi, img_size)
vis_train(img, bboxes, labels, rois, roi_score, epoch,sample_roi,roi_cls_loc)