forked from BoltzmannEntropy/xtts2-ui
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathapp.py
executable file
·130 lines (101 loc) · 4.36 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import gradio as gr
import torch
import platform
import random
import json
from pathlib import Path
from TTS.api import TTS
import uuid
import html
import soundfile as sf
def is_mac_os():
return platform.system() == 'Darwin'
params = {
"activate": True,
"autoplay": True,
"show_text": False,
"remove_trailing_dots": False,
"voice": "Rogger.wav",
"language": "English",
"model_name": "tts_models/multilingual/multi-dataset/xtts_v2",
}
# SUPPORTED_FORMATS = ['wav', 'mp3', 'flac', 'ogg']
SAMPLE_RATE = 16000
device = None
# Set the default speaker name
default_speaker_name = "Rogger"
if is_mac_os():
device = torch.device('cpu')
else:
device = torch.device('cuda:0')
# Load model
tts = TTS(model_name=params["model_name"]).to(device)
# # Random sentence (assuming harvard_sentences.txt is in the correct path)
# def random_sentence():
# with open(Path("harvard_sentences.txt")) as f:
# return random.choice(list(f))
# Voice generation function
def gen_voice(string, spk, speed, english):
string = html.unescape(string)
short_uuid = str(uuid.uuid4())[:8]
fl_name='outputs/' + spk + "-" + short_uuid +'.wav'
output_file = Path(fl_name)
this_dir = str(Path(__file__).parent.resolve())
tts.tts_to_file(
text=string,
speed=speed,
file_path=output_file,
speaker_wav=[f"{this_dir}/targets/" +spk + ".wav"],
language=languages[english]
)
return output_file
def update_speakers():
speakers = {p.stem: str(p) for p in list(Path('targets').glob("*.wav"))}
return list(speakers.keys())
def update_dropdown(_=None, selected_speaker=default_speaker_name):
return gr.Dropdown(choices=update_speakers(), value=selected_speaker, label="Select Speaker")
def handle_recorded_audio(audio_data, speaker_dropdown, filename = "user_entered"):
if not audio_data:
return speaker_dropdown
sample_rate, audio_content = audio_data
save_path = f"targets/{filename}.wav"
# Write the audio content to a WAV file
sf.write(save_path, audio_content, sample_rate)
# Create a new Dropdown with the updated speakers list, including the recorded audio
updated_dropdown = update_dropdown(selected_speaker=filename)
return updated_dropdown
# Load the language data
with open(Path('languages.json'), encoding='utf8') as f:
languages = json.load(f)
# Gradio Blocks interface
with gr.Blocks() as app:
gr.Markdown("### TTS based Voice Cloning.")
with gr.Row():
with gr.Column():
text_input = gr.Textbox(lines=2, label="Speechify this Text",value="Even in the darkest nights, a single spark of hope can ignite the fire of determination within us, guiding us towards a future we dare to dream.")
speed_slider = gr.Slider(label='Speed', minimum=0.1, maximum=1.99, value=0.8, step=0.01)
language_dropdown = gr.Dropdown(list(languages.keys()), label="Language/Accent", value="English")
gr.Markdown("### Speaker Selection and Voice Cloning")
with gr.Row():
with gr.Column():
speaker_dropdown = update_dropdown()
refresh_button = gr.Button("Refresh Speakers")
with gr.Column():
filename_input = gr.Textbox(label="Add new Speaker", placeholder="Enter a name for your recording/upload to save as")
save_button = gr.Button("Save Below Recording")
refresh_button.click(fn=update_dropdown, inputs=[], outputs=speaker_dropdown)
with gr.Row():
record_button = gr.Audio(label="Record Your Voice")
save_button.click(fn=handle_recorded_audio, inputs=[record_button, speaker_dropdown, filename_input], outputs=speaker_dropdown)
record_button.stop_recording(fn=handle_recorded_audio, inputs=[record_button, filename_input], outputs=speaker_dropdown)
record_button.upload(fn=handle_recorded_audio, inputs=[record_button, filename_input], outputs=speaker_dropdown)
submit_button = gr.Button("Convert")
with gr.Column():
audio_output = gr.Audio()
submit_button.click(
fn=gen_voice,
inputs=[text_input, speaker_dropdown, speed_slider, language_dropdown],
outputs=audio_output
)
if __name__ == "__main__":
app.launch()