-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathwave_process_general.m
270 lines (223 loc) · 9.25 KB
/
wave_process_general.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
%{
This is a more generalized version of wave process and is a little less clunky
This file generates spectrograms from the dataset gven in 'set_a'.
In general, when adding new wavefiles, follow the formats:
--->Artifact: artifact__random_numbers.wav
--->Unlabelled: Aunlabelledtest__random_numbers.wav
--->Extrahls: extrahls__random_numbers.wav
--->Murmur: murmur__random_numbers.wav
--->Normal: normal__random_numbers.wav
(Notice the two underscores)
This file is dependant on the function fileswave segment shannon
%}
%% Clear all previous figures and saved variables from the workspace
clc;
clf('reset');
close all hidden;
%% Seting the root folder from which the '.wav' files are read(Input folders).
filePattern = fullfile('t2','set_a','*.wav');
dirListings = dir(filePattern);
dir_len = length(dirListings);
fileID = fopen('set_a_timing.csv');
data = textscan(fileID,'%s %s %s %s','Delimiter',',');
categories ={'Artifact','Extrahls','Murmur','Normal','Test_Artifact','Test_Extrahls','Test_Murmur','Test_Normal','Unlabelled'};
len = 3099;
root_input = fullfile('t2','set_a');
%% Generate the relevant directory for saving the outputs the files(Output folders).
root_output = fullfile('t2','images');
%Remove the directory if it exists, else skip.
if(exist(root_output,'dir') == 7)
rmdir(root_output,'s');
end
mkdir(root_output);
for k = 1:numel(categories)
if(exist(root_output,'dir') == 7)
mkdir(fullfile(root_output,char(categories(k))));
end
end
%% Setting thresholds for the number of samples to be takes as training data
training_artifact = 21;
training_extrahls = 21;
training_murmur = 21;
training_normal = 21;
%% Generate the spectrograms and sort into appropriate files
counter = zeros(4,1);
for d = 1:dir_len
if(contains(dirListings(d).name,'Aunlabelled'))
disp("Generating unlabelled data...")
[y,fs] = audioread(fullfile(root_input,dirListings(d).name));
%The data is normalized using generalized min-max method.
norm_y = ((y-min(y))/(max(y) - min(y)))*(1+1)-1;
%Settings to set position of figure axes
axes('Units', 'normalized', 'Position', [0 0 1 1])
F =linspace(1,600,1000);
%Generate the sectrogram and save gcf to fig
spectrogram(y,500,[],F,fs,'yaxis');
colormap gray;
fig = gcf;
%Configurations to turn off various features of the figure
set(fig,'Visible','off');
colorbar off;
axis off;
iptsetpref('ImshowBorder','tight');
%Save the image to file
frame = getframe(fig);
I = frame.cdata;
I = imresize(I,[525 700]);
imwrite(I,strcat(fullfile(root_output,'Unlabelled',dirListings(d).name(1:end-4)),'.png'),'png');
close all hidden;
clf;
elseif(contains(dirListings(d).name,'artifact'))
disp("Generating artifact data...")
[y,fs] = audioread(fullfile(root_input,dirListings(d).name));
%The data is normalized using generalized min-max method.
norm_y = ((y-min(y))/(max(y) - min(y)))*(1+1)-1;
%Settings to set position of figure axes
axes('Units', 'normalized', 'Position', [0 0 1 1])
F =linspace(1,600,1000);
%Generate the sectrogram and save gcf to fig
spectrogram(y,500,[],F,fs,'yaxis');
colormap gray;
fig = gcf;
%Configurations to turn off various features of the figure
set(fig,'Visible','off');
colorbar off;
axis off;
iptsetpref('ImshowBorder','tight');
%Increase the counter to keep track of number of traning data
counter(1) = counter(1)+1;
%Save the image to file
frame = getframe(fig);
I = frame.cdata;
I = imresize(I,[525 700]);
if(counter(1) <= training_artifact)
imwrite(I,strcat(fullfile(root_output,'Artifact',dirListings(d).name(1:end-4)),'.png'),'png');
close all hidden;
clf;
else
imwrite(I,strcat(fullfile(root_output,'Test_Artifact',dirListings(d).name(1:end-4)),'.png'),'png');
close all hidden;
clf;
end
elseif(contains(dirListings(d).name,'extrahls'))
[y,fs] = audioread(fullfile(root_input,dirListings(d).name));
%The data is normalized using generalized min-max method.
norm_y = ((y-min(y))/(max(y) - min(y)))*(1+1)-1;
%Settings to set position of figure axes
axes('Units', 'normalized', 'Position', [0 0 1 1])
F =linspace(1,600,1000);
%Generate the sectrogram and save gcf to fig
spectrogram(y,500,[],F,fs,'yaxis');
colormap gray;
fig = gcf;
%Configurations to turn off various features of the figure
set(fig,'Visible','off');
colorbar off;
axis off;
iptsetpref('ImshowBorder','tight');
%Increase the counter to keep track of number of traning data
counter(2) = counter(2)+1;
%Save the image to file
frame = getframe(fig);
I = frame.cdata;
I = imresize(I,[525 700]);
if(counter(2) <= training_extrahls)
imwrite(I,strcat(fullfile(root_output,'Extrahls',dirListings(d).name(1:end-4)),'.png'),'png');
close all hidden;
clf;
else
imwrite(I,strcat(fullfile(root_output,'Test_Extrahls',dirListings(d).name(1:end-4)),'.png'),'png');
close all hidden;
clf;
end
elseif(contains(dirListings(d).name,'murmur'))
[y,fs] = audioread(fullfile(root_input,dirListings(d).name));
%The data is normalized using generalized min-max method.
norm_y = ((y-min(y))/(max(y) - min(y)))*(1+1)-1;
%Settings to set position of figure axes
axes('Units', 'normalized', 'Position', [0 0 1 1])
F =linspace(1,600,1000);
%Generate the sectrogram and save gcf to fig
spectrogram(y,500,[],F,fs,'yaxis');
colormap gray;
fig = gcf;
%Configurations to turn off various features of the figure
set(fig,'Visible','off');
colorbar off;
axis off;
iptsetpref('ImshowBorder','tight');
%Increase the counter to keep track of number of traning data
counter(3) = counter(3)+1;
%Save the image to the file
frame = getframe(fig);
I = frame.cdata;
I = imresize(I,[525 700]);
if(counter(3) <= training_murmur)
imwrite(I,strcat(fullfile(root_output,'Murmur',dirListings(d).name(1:end-4)),'.png'),'png');
close all hidden;
clf;
else
imwrite(I,strcat(fullfile(root_output,'Test_Murmur',dirListings(d).name(1:end-4)),'.png'),'png');
close all hidden;
clf;
end
elseif(contains(dirListings(d).name,'normal'))
[y,fs] = audioread(fullfile(root_input,dirListings(d).name));
%The data is normalized using generalized min-max method.
norm_y = ((y-min(y))/(max(y) - min(y)))*(1+1)-1;
%Settings to set position of figure axes
axes('Units', 'normalized', 'Position', [0 0 1 1])
F =linspace(1,600,1000);
%Generate the sectrogram and save gcf to fig
spectrogram(y,500,[],F,fs,'yaxis');
colormap gray;
fig = gcf;
%Configurations to turn off various features of the figure
set(fig,'Visible','off');
colorbar off;
axis off;
iptsetpref('ImshowBorder','tight');
%Increase the counter to keep track of number of traning data
counter(4) = counter(4)+1;
%Save the image to the file
frame = getframe(fig);
I = frame.cdata;
I = imresize(I,[525 700]);
if(counter(4) <= training_normal)
imwrite(I,strcat(fullfile(root_output,'Normal',dirListings(d).name(1:end-4)),'.png'),'png');
close all hidden;
clf;
else
imwrite(I,strcat(fullfile(root_output,'Test_Normal',dirListings(d).name(1:end-4)),'.png'),'png');
close all hidden;
clf;
end
end
end
%% Loading and processing a bit quicker.
rootFolder = fullfile('t2','images');
%Train with all data except the unlabelled stuff
trainData = imageDatastore(fullfile(rootFolder, categories(1:4)), 'LabelSource', 'foldernames');
testData = imageDatastore(fullfile(rootFolder, categories(5:8)), 'LabelSource', 'foldernames');
%Show a summary of each labelr
tb1 = countEachLabel(trainData);
%Determine the minimum no of images
minSetCount = min(tb1{:,2});
%Count the number of test data
tb2 = countEachLabel(testData);
%Modifying the labels for the trainData
total = sum(tb2{1:4,2});
for i = 1:total
if(testData.Labels(i) == "Test_Artifact")
testData.Labels(i) = "Artifact";
elseif(testData.Labels(i) == "Test_Extrahls")
testData.Labels(i) = "Extrahls";
elseif(testData.Labels(i) == "Test_Murmur")
testData.Labels(i) = "Murmur";
elseif(testData.Labels(i) == "Test_Normal")
testData.Labels(i) = "Normal";
end
end
%Count the number of training data
countEachLabel(trainData)
countEachLabel(testData)