-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathULvT_gen_dag.py
75 lines (57 loc) · 2.43 KB
/
ULvT_gen_dag.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import random, os
import numpy as np
import healpy as hp
nside = 2
npix = hp.nside2npix(nside) # 48 sky points
Npol = 8 # number of polarization bins
POLs = np.arange(Npol) * np.pi / Npol
Nts = 40 # number of time bins
TMIN = 53217.0
TMAX = 57387.0
Ts = np.linspace(TMIN, TMAX, Nts+2)[1:-1] # don't use first/last t0
datadir = '/home/pbaker/nanograv/data'
datafile_root = 'nano11_{:s}.pkl'
EPHs = ['DE430', 'DE436', 'DE436_BE']
subdir = 'condor_sub/'
subfile = 'bwm_fixsrc.sub'
dag_dir = '/home/pbaker/nanograv/bwm/ULvT/'
if not os.path.exists(dag_dir):
os.makedirs(dag_dir)
os.system('cp {0:s} {1:s}'.format(subdir+subfile, dag_dir))
dag_root = 'ULvT_{:s}.dag'
# each ephem gets its own .dag
for ephem in EPHs:
bayesephem = ""
if '_BE' in ephem:
bayesephem = "--bayesephem"
ee = ephem.split('_')[0]
datafile = os.path.join(datadir, datafile_root.format(ee))
else:
bayesephem = ""
datafile = os.path.join(datadir, datafile_root.format(ephem))
dag_name = dag_root.format(ephem)
dag = os.path.join(dag_dir, dag_name)
config = os.path.join(dag_dir, dag_name+'.config')
with open(config, 'w') as f:
f.write('DAGMAN_DEFAULT_NODE_LOG = '+ dag +'.nodes.log')
with open(dag, 'w') as f:
f.write('CONFIG {:s}\n\n'.format(config))
for t0 in Ts:
for loc in range(npix):
theta, phi = hp.pix2ang(nside, loc)
costh = np.cos(theta)
for pol in POLs:
runpath = "{:s}/{:.2f}/{:02d}/{:.2f}".format(ephem, t0, loc, pol)
outdir = os.path.join(dag_dir, runpath)
if not os.path.exists(outdir):
os.makedirs(outdir)
job_ID = random.getrandbits(128)
f.write('JOB {0:d} {1:s}\n'.format(job_ID, subfile))
f.write('VARS {0:d} outdir="{1:s}"\n'.format(job_ID, outdir))
f.write('VARS {0:d} datafile="{1:s}"\n'.format(job_ID, datafile))
f.write('VARS {0:d} BE="{1:s}"\n'.format(job_ID, bayesephem))
f.write('VARS {0:d} costh="{1:.8f}"\n'.format(job_ID, costh))
f.write('VARS {0:d} phi="{1:.8f}"\n'.format(job_ID, phi))
f.write('VARS {0:d} psi="{1:.8f}"\n'.format(job_ID, pol))
f.write('VARS {0:d} t0="{1:.2f}"\n'.format(job_ID, t0))
f.write('\n')