-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy path12_activation_functions.py
74 lines (63 loc) · 1.77 KB
/
12_activation_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# output = w*x + b
# output = activation_function(output)
import torch
import torch.nn as nn
import torch.nn.functional as F
x = torch.tensor([-1.0, 1.0, 2.0, 3.0])
# sofmax
output = torch.softmax(x, dim=0)
print(output)
sm = nn.Softmax(dim=0)
output = sm(x)
print(output)
# sigmoid
output = torch.sigmoid(x)
print(output)
s = nn.Sigmoid()
output = s(x)
print(output)
#tanh
output = torch.tanh(x)
print(output)
t = nn.Tanh()
output = t(x)
print(output)
# relu
output = torch.relu(x)
print(output)
relu = nn.ReLU()
output = relu(x)
print(output)
# leaky relu
output = F.leaky_relu(x)
print(output)
lrelu = nn.LeakyReLU()
output = lrelu(x)
print(output)
#nn.ReLU() creates an nn.Module which you can add e.g. to an nn.Sequential model.
#torch.relu on the other side is just the functional API call to the relu function,
#so that you can add it e.g. in your forward method yourself.
# option 1 (create nn modules)
class NeuralNet(nn.Module):
def __init__(self, input_size, hidden_size):
super(NeuralNet, self).__init__()
self.linear1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.linear2 = nn.Linear(hidden_size, 1)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
out = self.linear1(x)
out = self.relu(out)
out = self.linear2(out)
out = self.sigmoid(out)
return out
# option 2 (use activation functions directly in forward pass)
class NeuralNet(nn.Module):
def __init__(self, input_size, hidden_size):
super(NeuralNet, self).__init__()
self.linear1 = nn.Linear(input_size, hidden_size)
self.linear2 = nn.Linear(hidden_size, 1)
def forward(self, x):
out = torch.relu(self.linear1(x))
out = torch.sigmoid(self.linear2(out))
return out