Skip to content

Latest commit

 

History

History
2887 lines (2147 loc) · 91.4 KB

README.md

File metadata and controls

2887 lines (2147 loc) · 91.4 KB

iExec SDK logo

iExec SDK V5

Build Status npm version npm version license Twitter Follow

The iExec SDK is a CLI and a JS library that allows easy interactions with iExec decentralized Marketplace in order to run off-chain computations.

Resources

Install

All three major OS are supported (linux, OSX, windows).

Using Nodejs

Requirements: npm version and Git.

npm -g install iexec # install the cli
iexec --version
iexec --help

Using Docker

Requirements: Docker.

# For Linux users
echo 'alias iexec='"'"'docker run -e DEBUG=$DEBUG --interactive --tty --rm -v /tmp:/tmp -v $(pwd):/iexec-project -v /home/$(whoami)/.ethereum/keystore:/home/node/.ethereum/keystore -w /iexec-project iexechub/iexec-sdk:latest'"'"'' >> ~/.bash_aliases && source ~/.bashrc
# For Mac OSX users
echo 'alias iexec='"'"'docker run -e DEBUG=$DEBUG --interactive --tty --rm -v /tmp:/tmp -v $(pwd):/iexec-project -v /Users/$(whoami)/Library/Ethereum/keystore:/home/node/.ethereum/keystore -w /iexec-project iexechub/iexec-sdk:latest'"'"'' >> ~/.bash_profile && source ~/.bash_profile

Now run iexec --version to check all is working.

Upgrade

  • Nodejs: run npm -g install iexec
  • Docker: run docker pull iexechub/iexec-sdk

Tutorials

CLI Tutorials

Init project

required steps before following any other workflow.

iexec init # create all required files
iexec wallet getETH # ask faucet for ETH, this may require manual action
iexec wallet getRLC # ask iExec faucet for RLC
iexec wallet show # show your wallet
iexec storage init # initialize your remote storage

NB: iExec SDK CLI access the public blockchains (mainnet & goerli) through ethers to connect different backends (Alchemy, Etherscan, INFURA).

Default API keys for backend services are provided for convenience. As these keys are shared accross all users and are subject to rate limits, you must use your own API keys or better your own node.

Get API keys for backend services:

Once you created your access, you can add your API keys in the chains.json configuration file:

{
   "default": ...,
   "chains": { ... },
   "providers": {
     "infura": {
       "projectId": "INFURA_PROJECT_ID",
       "projectSecret": "INFURA_PROJECT_SECRET"
      },
    "etherscan": "ETHERSCAN_API_KEY",
    "alchemy": "ALCHEMY_API_KEY"
   }
}

If you run your own node, you can add an host key in the chains.json configuration file to target your node:

{
   "default": ...,
   "chains": {
      ...
      "mainnet": {
        "id": "1",
        "host": "http://localhost:8545"
      },
      "goerli": {
        "id": "5",
        "host": "http://localhost:58545"
      }
   }
}

Check your current host: iexec info

SDK CLI for Dapp developpers

First go through Init project

Deploy an app

iexec app count # check if you have already deployed apps
iexec app init # reset app fields in iexec.json
iexec app deploy # deploy app on Ethereum and get an address
iexec app show # show details of deployed app

Run an app

iexec app run [address] # run an application on iExec at market price

Sell your app on the Marketplace

iexec orderbook app <address> # check if you have valid sell orders for your app on the Marketplace
iexec app publish [address] # publish an apporder on the Marketplace and get an orderHash
iexec order show --app [orderHash] # show your order on the Marketplace
iexec order cancel --app <orderHash> # cancel your order

SDK CLI for Dataset providers

First go through Init project

Encrypt your dataset (optional)

cp 'myAwsomeDataset.file' ./datasets/original # copy your dataset file or folder into the dataset/original/ folder
iexec dataset encrypt # generate a secret key for each file or folder in dataset/original/ and encrypt it
cat ./.secrets/dataset/myAwsomeDataset.file.secret # this is the secret key for decrypting the dataset
cat ./datasets/encrypted/myAwsomeDataset.file.enc # this is the encrypted dataset, you must share this file at a public url

Deploy your dataset

iexec dataset count # check if you have already deployed datasets
iexec dataset init # reset dataset fields in iexec.json
iexec dataset deploy # deploy dataset on Ethereum
iexec dataset show # show details of deployed dataset

Securely share the dataset secret key (Encrypted datasets only)

Disclaimer: The secrets pushed in the Secreet Management Service will be shared with the worker to process the dataset in the therms your specify in the dataset order. Make sure to always double check your selling policy in the dataset order before signing it

iexec dataset push-secret # Push the secret in the Secret Management Service (sms)

Sell your dataset on the Marketplace

iexec orderbook dataset <address> # check if you have valid sell orders for your dataset on the Marketplace
iexec dataset publish [address] --tag tee --app-restrict <address> # publish a datasetorder (restricted to specific app running in Trusted Execution Environment) on the Marketplace and get an orderHash
iexec order show --dataset [orderHash] # show your order on the Marketplace
iexec order cancel --dataset <orderHash> # cancel your order

SDK CLI for Workerpools

First go through Init project

Deploy a workerpool

iexec workerpool count # check if you have already deployed workerpools
iexec workerpool init # reset workerpool fields in iexec.json
iexec workerpool deploy # deploy workerpool on Ethereum
iexec workerpool show # show details of deployed workerpool

Sell your computing power at limit price on the Marketplace

iexec orderbook workerpool [address] --category <id> # check if you have valid sell orders for your workerpool on the Marketplace
iexec publish workerpool # publish a workerpoolorder on the Marketplace and get an orderHash
iexec order cancel --workerpool <orderHash> # cancel your order

Sell your computing power at market price on the Marketplace

iexec orderbook requester --category <id> # find a requestorder ask you want to fill in your category
iexec orderbook app <address> #  find a compatible apporder
iexec orderbook dataset <address> #  find a compatible datasetorder
iexec order init --workerpool # reset workerpoolorder fields in iexec.json
iexec order sign --workerpool # sign your workerpoolorder
iexec order fill --request <orderHash> --app <orderHash> --dataset <orderHash> # send the orders and get a dealid
iexec deal show <dealid> # show the detail of the deal you concludes

SDK CLI for Requesters

First go through Init project

Top up your iExec account to buy compution

iexec account show # show your iExec account
iexec account deposit 200 # deposit RLC from your wallet to your account
iexec account show # make sure you have enough staked RCL to buy computation

Buy computation at market price on the Marketplace

iexec app run [address] [--dataset [address] --params <params> --category <id>] # run an iExec application at market price

see app run available options

Or Buy computation at limit price on the Marketplace

iexec orderbook requester [address] --category <id> # check if you already have valid orders on the Marketplace
iexec order init --request # reset requestorder fields in iexec.json
iexec order sign --request # sign your requestorder
iexec order publish --request # publish your requestorder on the Marketplace and get an orderHash
iexec order show --app <orderHash> --deals # show your order on the Marketplace and check the deals

Watch your Deals, your Tasks and download the results

iexec deal show <dealid> # show your deal details, get the taskids
iexec task show <taskid> # show the status of your task
iexec task show <taskid> --watch # wait until the task is COMPLETED or FAILED
iexec task show <taskid> --download [fileName] # download the result of your COMPLETED task

Use results encryption

iexec result generate-encryption-keypair # generate private/public RSA keypair for result encryption
iexec result push-encryption-key # share the public RSA key with the secret management service, all your results will be encrypted with this key
# Go through the normal buy process  and download the result of the computation #
iexec result decrypt [encryptedResultsFilePath] # decrypt the result with the private RSA key

SDK CLI for workers

First go through Init project

Top up your iExec account to buy compution

iexec account deposit 200 # deposit RLC from your wallet to your account
iexec account show # make sure you have enough stake to join a workerpool

Withdraw your working reward

iexec account show # view your available stake
iexec account withdraw 1000 # withdraw RLC from your account to your wallet

iExec SDK CLI API

Help & Info

iexec --version
iexec --help
iexec app --help
iexec orderbook --help
iexec info --chain goerli

Global options

--quiet # disable update notification
--raw # display the command result as a json (disable update notification)

Wallet options

--keystoredir <'global'|'local'|customPath> # specify the location of the keystoredir
--wallet-address <address> # specify which wallet to use in the keystore
--wallet-file <fileName> # specify which wallet to use in the keystore
--password <password> # specify the password for unlocking the wallet (not recommended)

Transactions options

--gas-price <amount> [unit] # use the specified value (in wei or specified unit) for next transactions gas price (default use eth_gasPrice current value)

init

iexec init # create all files necessary to get started
iexec init --skip-wallet # skip the wallet creation step

wallet

# OPTIONS
# --chain <chainName>
# --to <address>
# --force
# --password <password>
iexec wallet create # create a new encrypted wallet
iexec wallet create --unencrypted # create unencrypted wallet.json (not recommended)
iexec wallet import <privateKey> # create an encrypted wallet from a privateKey
iexec wallet getETH # ask ETH from faucets
iexec wallet getRLC # ask RLC from faucets
iexec wallet show [address] # optional address to show other people's wallet
iexec wallet show --show-private-key # allow displaying wallet private key
iexec wallet sendETH <amount> [unit] --to <address> # send ether amount (in ether or specified unit) to the specified eth address
iexec wallet sendRLC <amount> [unit] --to <address>  # send RLC amount (in nRLC or specified unit) to the specified eth address
iexec wallet sweep --to <address> # drain all ether and RLC, sending them to the specified eth address
iexec wallet bridge-to-sidechain <amount> [unit] # send RLC amount (in nRLC or specified unit) from a mainchain to the bridged sidechain.
iexec wallet bridge-to-mainchain <amount> [unit] # send RLC amount (in nRLC or specified unit) from a sidechain to the bridged mainchain.

The wallet files are stored in the Ethereum keystore. The keystore location depends on your OS:

  • Linux : ~/.ethereum/keystore
  • Mac: ~/Library/Ethereum/keystore
  • Windows: ~/AppData/Roaming/Ethereum/keystore

account

# OPTIONS
# --chain <chainName>
# --force
iexec account show [address] # optional address to show other people's account
iexec account deposit <amount> [unit] # deposit the specified amount of RLC (in nRLC or specified unit) from your wallet to your account
iexec account withdraw <amount> [unit] # withdraw the specified amount of RLC  (in nRLC or specified unit) from your account to your wallet

app

# OPTIONS
# --chain <chainName>
# --user <address>
iexec app init # init the app template
iexec app deploy # deploy the app on the blockchain
iexec app publish [address] # publish an apporder to make your app publicly available on the marketplace (use options to manage access)
iexec app unpublish [address] # unpublish the last published apporder for specified app
iexec app unpublish [address] --all # unpublish all the published apporders for specified app
iexec app show [address|index] # show app details
iexec app count # count your total number of app
iexec app count --user <userAddress> # count user total number of app

app run

iexec app run [appAddress] [options] # run an iExec application at market price (default run last deployed app)
# OPTIONS
--dataset <address|"deployed"> # dataset address, use "deployed" to use last deployed from "deployed.json"
--workerpool <address|"deployed"> # workerpool address, use "deployed" to use last deployed from "deployed.json"
--category <id> # id of the task category
--tag <tag...> # specify tags (usage: --tag tee,gpu)
--trust <integer> # trust level
--beneficiary <address> # specify the beneficiary of the request (default user address)
--callback <address> # specify the callback address of the request
--args <string> # specify the arguments to pass to the app
--input-files <fileUrl...> # specify the URL of input files to be used by the app (usage: --input-files https://example.com/foo.txt,https://example.com/bar.zip)
--encrypt-result # encrypt the result archive with the beneficiary public key
--storage-provider <"ipfs"|"dropbox"> # specify the storage to use to store the result archive
--skip-request-check # skip request validity checks, this may result in task execution fail
--params <json> # specify the params of the request, this option is reserved to an advanced usage (usage: --params '{"iexec_args":"dostuff","iexec_input_files":["https://example.com/file.zip"]}')
--watch # watch execution status changes

dataset

# OPTIONS
# --chain <chainName>
# --user <address>
iexec dataset init # init the dataset template
iexec dataset init --encrypted # init the dataset template and create the folders for dataset encryption
iexec dataset deploy # deploy the dataset on the blockchain
iexec dataset publish [datasetAddress] # publish an datasetorder to make your dataset publicly available on the marketplace (use options to manage access)
iexec dataset unpublish [datasetAddress] # unpublish the last published datasetorder for specified dataset
iexec dataset unpublish [datasetAddress] --all # unpublish all the published datasetorders for specified dataset
iexec dataset show [address|index] # show dataset details
iexec dataset count # count your total number of dataset
iexec dataset count --user <userAddress> # count user total number of dataset
iexec dataset encrypt --algorithm scone # generate a key and encrypt the dataset files from ./datasets/original/ with Scone TEE
iexec dataset push-secret [datasetAddress] # push the secret for the encrypted dataset
iexec dataset check-secret [datasetAddress] # check if a secret exists for the dataset

workerpool

# OPTIONS
# --chain <chainName>
# --user <address>
iexec workerpool init # init the workerpool template
iexec workerpool deploy # deploy the workerpool on the blockchain
iexec workerpool publish [workerpoolAddress] --price <amount> [unit] # publish an workerpoolorder to make your workerpool computing power publicly available on the marketplace
iexec workerpool unpublish [workerpoolAddress] # unpublish the last published workerpoolorder for specified workerpool
iexec workerpool unpublish [workerpoolAddress] --all # unpublish all the published workerpoolorders for specified workerpool
iexec workerpool show [address|index] # show workerpool details
iexec workerpool count # count your total number of workerpool
iexec workerpool count --user <userAddress> # count user total number of workerpool

order

# OPTIONS
# --chain <chainName>
# --force
iexec order init # init all kind of orders
iexec order init --app --dataset --workerpool --request # specify the kind of order to init
iexec order sign # sign all initialized orders
iexec order sign --app --dataset --workerpool --request # sign the specific initialized orders
iexec order publish --app --dataset --workerpool --request # publish the specific signed orders on iExec Marketplace
iexec order show --app [orderHash] --dataset [orderHash] --workerpool [orderHash] --request [orderHash] # show the specified published order from iExec Marketplace
iexec order show --request [orderHash] --deals # show the deals produced by an order
iexec order fill # fill a set of local signed orders (app + dataset + workerpool + request) and return a dealid
iexec order fill --app <orderHash> --dataset <orderHash> --workerpool <orderHash> --request <orderHash> # fill a set of signed orders from iExec Marketplace and return a dealid
iexec order fill --params <params> # fill a set of signed orders generate a request order with specified params on the fly (existing apporder is ignored)
iexec order cancel --app --dataset --workerpool --request # cancel a specific signed order
iexec order unpublish --app [orderHash] --dataset [orderHash] --workerpool [orderHash] --request [orderHash] # unpublish a specific published order from iExec Marketplace (unpublished orders are still valid in the PoCo, to invalidate them use cancel)

orderbook

# OPTIONS
# --chain <chainName>
iexec orderbook requester --category <id> # show the best requestorders published on the Marketplace for the specified category
iexec orderbook requester [address] --category <id> # filters the result on requester
iexec orderbook workerpool --category <id> # show the best workerpools published on the Marketplace for the specified category
iexec orderbook workerpool [address] --category <id> # filters the result on workerpool
iexec orderbook workerpool --category <id> --require-tag <...tags> # show the best workerpools published on the Marketplace matchin the specified tags
iexec orderbook app <address> # show the best apporders published on the Marketplace for the specified app
iexec orderbook app <address> --dataset <address> --requester <address> --workerpool <address> # filter on specific dataset, requester, workerpool
iexec orderbook dataset <address> # show the best datasetorders published on the Marketplace for the specified dataset
iexec orderbook dataset <address> --app <address> --requester <address> --workerpool <address> # filter on specific app, requester, workerpool

deal

# OPTIONS
# ---chain <chainName>
iexec deal show <dealid> # show a deal identified by dealid
iexec deal claim <dealid> # claim all failed tasks from a deal

task

# OPTIONS
# --chain <chainName>
iexec task show <taskid> # show task identified by taskid
iexec task show <taskid> --watch # wait for task to be COMPLETED or CLAIMED
iexec task show <taskid> --download [fileName] # download the result of a COMPLETED task
iexec task show <taskid> --download [fileName] --decrypt # download and decrypt the result of a COMPLETED task
iexec task claim <taskid> # claim a task requested by the user if the final deadline is reached and the task is still not COMPLETED

result

# OPTIONS
# --chain <chainName>
iexec result generate-encryption-keypair # generate a beneficiary keypair to encrypt and decrypt the results
iexec result push-encryption-key # push the encryption key for the beneficiary
iexec result push-encryption-key --force-update # push the encryption key for the beneficiary, update if exists
iexec result push-encryption-key --secret-file [secretPath] # specify a file path for reading the secret
iexec result decrypt [encryptedResultsPath] # decrypt encrypted results with beneficary key
iexec result check-encryption-key [userAddress] # check if a encryption key exists for the user

storage

# OPTIONS
# --chain <chainName>
iexec storage init # initialize the IPFS based default remote storage
iexec storage init [provider] # initialize the specified remote storage (supported "default"|"dropbox")
iexec storage check [provider] # check if the specified remote storage is initialized
iexec storage check [provider] --user <address> # check if the remote storage of specified user is initialized

category

# OPTIONS
# --chain <chainName>
iexec category init # init the category template
iexec category create # create new category
iexec category show <index> # show category details by index
iexec category count # count total number of category

registry

iexec registry validate <'app'|'dataset'|'workerpool'> # validate an object before submitting it to the iExec registry and be listed in the iExec stores

CLI files and folders

iexec.json

The iexec.json file, located in every iExec project, describes the parameters used when creating a [app|dataset|category|workerpool], or when signing an order.

{
  "app": {
    "owner": "0xF048eF3d7E3B33A465E0599E641BB29421f7Df92",
    "name": "VanityGen",
    "type": "DOCKER",
    "multiaddr": "registry.hub.docker.com/iexechub/vanitygen:1.0.0",
    "checksum": "0x762a451c05e0d8097b35d6376e748798b5dc6a13290439cf67d5202f7c6f695f",
    "mrenclave": ""
  },
  "dataset": {
    "owner": "0xF048eF3d7E3B33A465E0599E641BB29421f7Df92",
    "name": "my-dataset",
    "multiaddr": "/ipfs/QmW2WQi7j6c7UgJTarActp7tDNikE4B2qXtFCfLPdsgaTQ",
    "checksum": "0x0000000000000000000000000000000000000000000000000000000000000000"
  },
  "workerpool": {
    "owner": "0xF048eF3d7E3B33A465E0599E641BB29421f7Df92",
    "description": "my workerpool"
  },
  "category": {
    "name": "CAT1",
    "description": "my category N°1",
    "workClockTimeRef": 100
  },
  "order": {
    "apporder": {
      "app": "0x0000000000000000000000000000000000000000",
      "appprice": "0",
      "volume": "1",
      "tag": "0x0000000000000000000000000000000000000000000000000000000000000000",
      "datasetrestrict": "0x0000000000000000000000000000000000000000",
      "workerpoolrestrict": "0x0000000000000000000000000000000000000000",
      "requesterrestrict": "0x0000000000000000000000000000000000000000"
    },
    "datasetorder": {
      "dataset": "0x0000000000000000000000000000000000000000",
      "datasetprice": "0",
      "volume": "1",
      "tag": "0x0000000000000000000000000000000000000000000000000000000000000000",
      "apprestrict": "0x0000000000000000000000000000000000000000",
      "workerpoolrestrict": "0x0000000000000000000000000000000000000000",
      "requesterrestrict": "0x0000000000000000000000000000000000000000"
    },
    "workerpoolorder": {
      "workerpool": "0x0000000000000000000000000000000000000000",
      "workerpoolprice": "0",
      "volume": "1",
      "category": "1",
      "trust": "100",
      "tag": "0x0000000000000000000000000000000000000000000000000000000000000000",
      "apprestrict": "0x0000000000000000000000000000000000000000",
      "datasetrestrict": "0x0000000000000000000000000000000000000000",
      "requesterrestrict": "0x0000000000000000000000000000000000000000"
    },
    "requestorder": {
      "app": "0x0000000000000000000000000000000000000000",
      "appmaxprice": "0",
      "dataset": "0x0000000000000000000000000000000000000000",
      "datasetmaxprice": "0",
      "workerpool": "0x0000000000000000000000000000000000000000",
      "workerpoolmaxprice": "0",
      "volume": "1",
      "category": "1",
      "trust": "100",
      "tag": "0x0000000000000000000000000000000000000000000000000000000000000000",
      "beneficiary": "0x0000000000000000000000000000000000000000",
      "callback": "0x0000000000000000000000000000000000000000",
      "params": "{ cmdline: '--help' }"
    }
  }
}

chain.json

The chain.json file, located in every iExec project, describes the parameters used when communicating with ethereum nodes and iExec Secret Management Services. They are ordered by chain name, accessible by using the --chain <chainName> option for each command of the SDK.

  • default set the default chain used by the SDK cli.
  • chains set the available chains
    • optional key host set the url of the ethereum node used by the SDK cli on each chain (overwrite default value).
    • optional key hub set the address of the hub used by the SDK cli on each chain (overwrite default value).
    • optional key sms set the url of the Secret Management Service used by the SDK cli on each chain (overwrite default value).
    • optional key resultProxy set the url of the Result Proxy used by the SDK cli on each chain (overwrite default value).
    • optional key ipfsGateway set the url of the IPFS gateway used by the SDK cli on each chain (overwrite default value).
    • optional key bridge set the bridge used by the SDK cli when working with bridged networks (sidechain). bridge.contract set the address of the RLC bridge on the chain, bridge.bridgedChainId set the reference to the bridged network specified by id.
    • optional key native specify whether or not the chain native token is RLC (overwrite default value).
  • optional key providers set the backends for public chains
    • optional key alchemy set Alchemy API Token
    • optional key etherscan set Etherscan API Token
    • optional key infura set INFURA Project ID or ProjectID and Project Secret
    • optional key quorum set minimum number of backends that must agree before forwarding blockchain responses
{
  "default": "goerli",
  "chains": {
    "development": {
      "host": "http://localhost:8545",
      "id": "1544020727674",
      "sms": "http://localhost:5000",
      "resultProxy": "http://localhost:18089",
      "ipfsGateway": "http://localhost:8080",
      "native": true,
      "hub": "0x7C788C2B85E20B4Fa25bd579A6B1D0218D86BDd1",
      "bridge": {
        "contract": "0x1e32aFA55854B6c015D284E3ccA9aA5a463A1418",
        "bridgedChainId": "123456789"
      }
    },
    "goerli": {
      "id": "5"
    },
    "mainnet": {
      "id": "1"
    },
    "bellecour": {
      "id": "134"
    }
  },
  "providers": {
    "alchemy": "ALCHEMY_API_KEY",
    "etherscan": "ETHERSCAN_API_KEY",
    "infura": {
      "projectId": "INFURA_PROJECT_ID",
      "projectSecret": "INFURA_PROJECT_SECRET"
    },
    "quorum": 1
  }
}

deployed.json

The deployed.json file, located in iExec project, locally stores your latest deployed resources address. These address are used when you run a command without specifying a resource address (exemple: iexec app show will show the app in deployed.json).

{
  "app": {
    "42": "0xa760FEfAd0a38D494890501120cB79f5EEAFeE28"
  },
  "workerpool": {
    "42": "0xFb346A453C4D34AbA0038c274D1bd3C98099962c"
  },
  "dataset": {
    "42": "0xB9c7647ECd48d795A9031d6fe8292C13E73372F7"
  }
}

orders.json

The orders.json file, located in iExec project, locally stores your latest signed orders. This file is used when you publish an order on the Marketplace and when you fill orders without specified orders from the Marketplace.

{
  "42": {
    "apporder": {
      "app": "0x0000000000000000000000000000000000000000",
      "appprice": "0",
      "volume": "1",
      "tag": "0x0000000000000000000000000000000000000000000000000000000000000000",
      "datasetrestrict": "0x0000000000000000000000000000000000000000",
      "workerpoolrestrict": "0x0000000000000000000000000000000000000000",
      "requesterrestrict": "0x0000000000000000000000000000000000000000",
      "salt": "0x0000000000000000000000000000000000000000000000000000000000000000",
      "sign": "0x"
    },
    "datasetorder": {
      "dataset": "0x0000000000000000000000000000000000000000",
      "datasetprice": "0",
      "volume": "1",
      "tag": "0x0000000000000000000000000000000000000000000000000000000000000000",
      "apprestrict": "0x0000000000000000000000000000000000000000",
      "workerpoolrestrict": "0x0000000000000000000000000000000000000000",
      "requesterrestrict": "0x0000000000000000000000000000000000000000",
      "salt": "0x0000000000000000000000000000000000000000000000000000000000000000",
      "sign": "0x"
    },
    "workerpoolorder": {
      "workerpool": "0x0000000000000000000000000000000000000000",
      "workerpoolprice": "0",
      "volume": "1",
      "category": "1",
      "trust": "100",
      "tag": "0x0000000000000000000000000000000000000000000000000000000000000000",
      "apprestrict": "0x0000000000000000000000000000000000000000",
      "datasetrestrict": "0x0000000000000000000000000000000000000000",
      "requesterrestrict": "0x0000000000000000000000000000000000000000",
      "salt": "0x0000000000000000000000000000000000000000000000000000000000000000",
      "sign": "0x"
    },
    "requestorder": {
      "app": "0x0000000000000000000000000000000000000000",
      "appmaxprice": "0",
      "dataset": "0x0000000000000000000000000000000000000000",
      "datasetmaxprice": "0",
      "workerpool": "0x0000000000000000000000000000000000000000",
      "workerpoolmaxprice": "0",
      "volume": "1",
      "category": "1",
      "trust": "100",
      "tag": "0x0000000000000000000000000000000000000000000000000000000000000000",
      "beneficiary": "0x0000000000000000000000000000000000000000",
      "callback": "0x0000000000000000000000000000000000000000",
      "params": "--help",
      "requester": "0x0000000000000000000000000000000000000000",
      "salt": "0x0000000000000000000000000000000000000000000000000000000000000000",
      "sign": "0x"
    }
  }
}

./secrets/

This folder is created when running iexec result generate-encryption-keypair or ìexec dataset init --encrypted and is intended to store credentials generated by the iexec SDK CLI.

./secrets/beneficiary/

This folder store the keypair to use for result encryption and decryption. A keypair is generated when running iexec result generate-encryption-keypair Public keys name follow the pattern userAddress_key.pub , this key is shared with the workers when running ìexec result push-encryption-key Private keys name follow the pattern userAddress_key this should never be shared with third party, the private key is used by the SDK CLI to decrypt a result when running ìexec result decrypt.

./secrets/datasets/

This folder store the secret used for dataset encryption. A secret is generated when running iexec dataset encrypt The secret file is named after the dataset file, last secret generated is also stored in ./secrets/datasets/dataset.secret to be used as default secret to share with workers when running iexec dataset push-secret.

./datasets/

This folder is created when running ìexec dataset init --encrypted and is intended to store datasets files.

./datasets/original/

Paste your original dataset files in this folder and run iexec dataset encrypt to encrypt them.

./datasets/encrypted/

Encrypted dataset files ends in this folder when you run iexec dataset encrypt.

iExec SDK Library API

[Work In Progress] Although we'll try to avoid any API change, the Lib API may still evolve based on beta-testers feedback.

iExec SDK can be imported in your project as a library/module, and it's compatible with old JS engines:

  • >= Node v8
  • >= Firefox v22
  • >= Chrome v28
  • >= IE 9

Test iexec in codesandbox

These dapps are built on the top of iexec SDK

  • Price feed DOracle: a decentralized price oracle for your favorite cryptos.
  • Not safe for work: find if a picture is safe for work using an AI trained model protected by iExec TEE.

How to use ?

  1. Install the dependency in your JS project
  2. Instanciate the iExec SDK
  3. Use iexec sdk
  4. Utils
  5. Types
  6. Errors

Install the dependency in your JS project

Install iexec sdk

npm install iexec

Instanciate the iExec SDK

IExec Constructor

new Iexec ({ ethProvider: Web3SignerProvider, chainId: String } [, options ]) => IExec

options:

  • hubAddress: Address specify the address of iExec hub smart contract to use
  • smsURL: URL specify the Secret Management System to use
  • resultProxyURL: URL specify the result proxy to use for results remote storage
  • ipfsGatewayURL: URL specify the IPFS gateway to use
  • isNative: Boolean true when the RLC is the chain native token
  • bridgeAddress: Address specify the bridge smart contract on current chain to transfert RLC to a bridged chain
  • bridgedNetworkConf: { rpcURL: URL, chainId: String, hubAddress: Address, bridgeAddress: Address } specify how to connect to the bridged chain
Basic configuration

Example:

import { IExec } from 'iexec';

const iexec = new IExec({
  ethProvider: ethProvider, // an eth signer provider like MetaMask
  chainId: '5', // id of the chain (5 for goerli)
});

Important: if the current network change, you must reinstanciate the iExec SDK (actual supported networks are '1' (ethereum mainnet), '5' (goerli testnet), '134' (iExec sidechain)).

Important: ethProvider must implement eth_signTypedData_v3 (EIP712)

In the browser, you can get a signer provider from MetaMask plugin

In the server side, use utils.getSignerFromPrivateKey

Example:

const getIExec = async () => {
  let ethProvider;
  if (!window.ethereum)
    // check existing web3 provider
    throw Error('Need to install MetaMask');
  ethProvider = window.ethereum;
  try {
    await window.ethereum.enable(); // prompt the use to grant the dapp access to the blockchain
  } catch (error) {
    throw Error('User denied access', error);
  }
  return new IExec({
    ethProvider: ethProvider,
    chainId: ethProvider.networkVersion,
  });
};
Sidechain configuration
Adding iExec sidechain to MetaMask

Click Custom RPC in the MetaMask Networks dropdown and fill with the following values:

Connecting iExec SDK to iExec sidechain

If you intend to use iExec SDK on a RLC native chain (ie: RLC is the native token), you must use isNative option. NB: Default values are provided on well known native networks such iExec test sidechain 133 and iExec mainnet sidechain 134.

Example:

import { IExec } from 'iexec';

const iexec = new IExec(
  {
    ethProvider: ethProvider, // an eth signer provider like MetaMask
    chainId: '134', // id of the chain (134 for iExec sidechain)
  },
  {
    isNative: true, // iExec sidechain use RLC as native token
  },
);
Bridge configuration

If you intend to bridge RLC from a chain to another (mainchain to sidechain or sidechain to mainchain), you must set bridgeAddress and bridgedNetwork options.

Example:

import { IExec } from 'iexec';

const bridgeAddress = '0x...'; // Address of the RLC bridge smart contract on mainnet

const bridgedNetworkConf = {
  chainId: '134', // id of the bridged chain (134 for iExec sidechain)
  hubAddress: '0x...', // Address of theiExec hub smart contract on bridged chain
  rpcURL: 'https://bellecour.iex.ec', // url of a public node of bridged chain
  bridgeAddress: '0x...'; // Address of the RLC bridge smart contract on bridged chain
};

const iexec = new IExec({
  ethProvider: ethProvider, // an eth signer provider like MetaMask
  chainId: '1', // id of the chain (1 for mainnet)
}, {
  bridgeAddress,
  bridgedNetworkConf
});

Use iexec sdk

  • wallet: manage your wallet, send RLC...
  • account: manage your account, deposit, withdraw...
  • app: deploy a new app, show an existing one
  • dataset: deploy a new dataset, show an existing one
  • workerpool: deploy a new workerpool, show an existing one
  • order: manage any type of order, make deals to start offchain computation
  • orderbook: explore the iexec Marketplace
  • deal: find your deals
  • task: follow the computation, download results or claim failed executions
  • result: manage the results encryption
  • storage: manage the remote storage
  • network: useful information about the chain

iexec.wallet

getAddress

iexec.wallet.getAddress ( ) => Promise < Address >

get the user selected address

Example:

const userAddress = await iexec.wallet.getAddress();
console.log('User address:', userAddress);

checkBalances

iexec.wallet.checkBalances ( address: Address ) => Promise < { nRLC: BN, wei: BN } >

check the wallet balance of specified address

Example:

const balance = await iexec.wallet.checkBalances(ethAddress);
console.log('Nano RLC:', balance.nRLC.toString());
console.log('Eth wei:', balance.wei.toString());

sendRLC

iexec.wallet.sendRLC ( nRlcAmount: NRlcAmount, address: Address ) => Promise < TxHash >

send some nRLC (1 nRLC = 1*10^-9 RLC) to the specified address

Example:

const txHash = await iexec.wallet.sendRLC(nRlcAmount, toEthAddress);
console.log('Transaction hash:', txHash);

sendETH

iexec.wallet.sendETH ( weiAmount: WeiAmount, address: Address ) => Promise < TxHash >

send some wei to the specified address

Example:

const txHash = await iexec.wallet.sendETH(weiAmount, toEthAddress);
console.log('Transaction hash:', txHash);

sweep

iexec.wallet.sweep ( address: Address ) => Promise < { sendNativeTxHash: TxHash, sendERC20TxHash: TxHash, errors }

send all the RLC ERC20 (if applicable) and the native token to the specified address

Example:

await sdk.wallet.sweep(toEthAddress);

bridgeToSidechain

iexec.wallet.bridgeToSidechain ( amount: NRlcAmount ) => Promise < { sendTxHash: TxHash [, receiveTxHash: TxHash ] }

send some nRLC (1 nRLC = 1*10^-9 RLC) to the sidechain. RLC is send to the mainchain bridge smart contract on mainchain then credited on sidechain by the sidechain bridge smart contract The optional bridgeAddress is required The optional bridgedNetworkConf is required to get the receiveTxHash confirmation from the sidechain, if not set receiveTxHash will be undefined see Bridge configuration

Example:

const { sendTxHash, receiveTxHash } = await sdk.wallet.bridgeToSidechain(
  '1000000000',
);
console.log(
  `Sent RLC on mainchain (tx: ${sendTxHash}), wallet credited on sidechain (tx: ${receiveTxHash})`,
);

bridgeToMainchain

iexec.wallet.bridgeToMainchain ( amount: NRlcAmount ) => Promise < { sendTxHash: TxHash [, receiveTxHash: TxHash ] }

send some nRLC (1 nRLC = 1*10^-9 RLC) to the mainchain. RLC is send to the sidechain bridge smart contract on sidechain then credited on mainchain by the mainchain bridge smart contract The optional bridgeAddress is required The optional bridgedNetworkConf is required to get the receiveTxHash confirmation from the mainchain, if not set receiveTxHash will be undefined see Bridge configuration

Example:

const { sendTxHash, receiveTxHash } = await sdk.wallet.bridgeToMainchain(
  '1000000000',
);
console.log(
  `Sent RLC on sidechain (tx: ${sendTxHash}), wallet credited on mainchain (tx: ${receiveTxHash})`,
);

iexec.account

checkBalance

iexec.account.checkBalance ( address: Address ) => Promise < { stake: BN, locked: BN } >

check the account balance of specified address (stake is availlable nRLC, locked is escowed nRLC)

Example:

const balance = await iexec.account.checkBalance(ethAddress);
console.log('Nano RLC staked:', balance.stake.toString());
console.log('Nano RLC locked:', balance.locked.toString());

deposit

iexec.account.deposit ( nRlcAmount: NRlcAmount ) => Promise < { amount: BN, txHash: TxHash } >

deposit some nRLC (1 nRLC = 1*10^-9 RLC) from user wallet to user account

The deposit include 2 transaction (1st to approve the iexec clerk SC, 2nd for deposit)

Example:

const { amount, txHash } = await iexec.account.deposit('1000000000');
console.log('Deposited:', amount);
console.log('tx:', txHash);

withdraw

iexec.account.withdraw ( nRlcAmount: NRlcAmount ) => Promise < { amount: BN, txHash: TxHash } >

withdraw some nRLC (1 nRLC = 1*10^-9 RLC) from user account to user wallet

Example:

const { amount, txHash } = await iexec.account.withdraw('1000000000');
console.log('Withdrawed:', amount);
console.log('tx:', txHash);

iexec.orderbook

fetchAppOrderbook

iexec.orderbook.fetchAppOrderbook ( address: Address, [, { dataset: Address, workerpool: Address, requester: Address, minVolume: Int, skip: Int } ] ) => Promise < { count, appOrders: [ { order: SignedApporder , status, remaining} ] } >

find the cheapest orders for the specified app

Optional:

  • dataset: filter on order available for specified dataset
  • workerpool: filter on order available for specified workerpool
  • requester: filter on order available for specified requester
  • minVolume: filter on minimum volume remaining
  • minTag: filter on minimum tag required
  • maxTag: filter on maximun tag accepted
  • skip: skip first results

Example:

const res = await iexec.orderbook.fetchAppOrderbook(
  '0xdBDF1FE51fd3AF9aD94fb63824EbD977518d64b3',
);
console.log('best order:', res.appOrders[0].order);
console.log('total orders:', res.count);

fetchDatasetOrderbook

iexec.orderbook.fetchDatasetOrderbook ( address: Address [, { app: Address, workerpool: Address, requester: Address, minVolume: Int, skip: Int } ] ) => Promise < { count, datasetOrders: [ { order: SignedDatasetorder , status, remaining} ] } >

find the cheapest orders for the specified dataset

Optional:

  • app: filter on order available for specified app
  • workerpool: filter on order available for specified workerpool
  • requester: filter on order available for specified requester
  • minVolume: filter on minimum volume remaining
  • minTag: filter on minimum tag required
  • maxTag: filter on maximun tag accepted
  • skip: skip first results

Example:

const res = await iexec.orderbook.fetchDatasetOrderbook(
  '0xf6b2bA0793C225c28a6E7753f6f67a3C68750bF1',
);
console.log('best order:', res.datasetOrders[0].order);
console.log('total orders:', res.count);

fetchWorkerpoolOrderbook

iexec.orderbook.fetchWorkerpoolOrderbook ( category: Uint256 [, { workerpoolAddress: Address, signerAddress: Address, minTag: Tag, minTrust: Int, minVolume: Int, skip: Int } ] ) => Promise < { count, workerpoolOrders: [ { order: SignedWorkerpoolorder, status, remaining} ] } >

find the cheapest orders for computing resource in specified category.

Optional:

  • workerpoolAddress: filter on specific workerpoolAddress
  • signerAddress: filter on specific signer (ie:workerpool owner)
  • minTag: filter on minimum tag required
  • minTrust: filter on minimum trust required
  • minVolume: filter on minimum volume remaining
  • skip: skip first results

Example:

const res = await iexec.orderbook.fetchWorkerpoolOrderbook('1');
console.log('best order:', res.workerpoolOrders[0].order);
console.log('total orders:', res.count);

fetchRequestOrderbook

iexec.orderbook.fetchRequestOrderbook ( category: Uint256 [, { requesterAddress: Address, beneficiaryAddress: Address, maxTag: Tag, maxTrust: Int, minVolume: Int, skip: Int } ] ) => Promise < { count, requestOrders: [ { order: SignedRequestorder, status, remaining} ] } >

find the best paying request orders for computing resource in specified category.

Optional:

  • requesterAddress: filter on specific requesterAddress
  • beneficiaryAddress: filter on specific beneficiaryAddress
  • maxTag: filter on maximum tag accepted
  • maxTrust: filter on maximum trust required
  • minVolume: filter on minimum volume remaining
  • skip: skip first results

Example:

const res = await iexec.orderbook.fetchRequestOrderbook('1');
console.log('best order:', res.requestOrders[0].order);
console.log('total orders:', res.count);

fetchApporder

iexec.orderbook.fetchApporder ( orderHash: Bytes32 ) => Promise < { order: SignedApporder, status, remaining } >

find a published apporder by orderHash

Example:

const res = await iexec.orderbook.fetchApporder(
  '0x5ea856b5169486243c22ac77c778de2bdf8317fa0c52cb86c81eb06ad3854d88',
);
console.log('order:', res.order);
console.log('status:', res.status);
console.log('remaining:', res.remaining);

fetchDatasetorder

iexec.orderbook.fetchDatasetorder ( orderHash: Bytes32 ) => Promise < { order: SignedDatasetorder, status, remaining } >

find a published datasetorder by orderHash

Example:

const res = await iexec.orderbook.fetchDatasetorder(
  '0xe001eb5294b88c9998ee43fff116a4f7b0a05a05d4cef9382d811631fdaa7259',
);
console.log('order:', res.order);
console.log('status:', res.status);
console.log('remaining:', res.remaining);

fetchWorkerpoolorder

iexec.orderbook.fetchWorkerpoolorder ( orderHash: Bytes32 ) => Promise < { order: SignedWorkerpoolorder, status, remaining } >

find a published workerpoolorder by orderHash

Example:

const res = await iexec.orderbook.fetchWorkerpoolorder(
  '0x0ba665c9ae1578cdb37b89888ae25d65b06e67911f7aef30ed5cad30701f641f',
);
console.log('order:', res.order);
console.log('status:', res.status);
console.log('remaining:', res.remaining);

fetchRequestorder

iexec.orderbook.fetchRequestorder ( orderHash: Bytes32 ) => Promise < { order: SignedRequestorder, status, remaining } >

find a published requestorder by orderHash

Example:

const res = await iexec.orderbook.fetchRequestorder(orderHash);
console.log('order:', res.order);
console.log('status:', res.status);
console.log('remaining:', res.remaining);

iexec.order

createApporder

iexec.order.createApporder ( { app: Address [, appprice: NRlcAmount, volume: Uint256, tag: Bytes32, datasetrestrict: Address, workerpoolrestrict: Address, requesterrestrict: Address ] } ) => Promise < Apporder >

create an apporder with specified params

mandatory values:

  • app: address of the app

optional values:

  • appprice: resource price per task, default 0 RLC "0"
  • volume: number of tasks to execute, default "1"
  • tag: required tags, default no tag required []
  • datasetrestrict: restrict usage to specific dataset address, default no restrict NULL_ADDRESS
  • workerpoolrestrict: restrict usage to specific workerpool address, default no restrict NULL_ADDRESS
  • requesterrestrict: restrict usage to specific requester address, default no restrict NULL_ADDRESS

Example:

const apporderToSign = await iexec.order.createApporder({
  app: '0xdBDF1FE51fd3AF9aD94fb63824EbD977518d64b3',
  appprice: '1000000000',
  volume: '1000',
});

signApporder

iexec.order.signApporder ( apporderToSign: Apporder ) => Promise < SignedApporder >

sign an apporder to produce a SignedApporder valid for the PoCo.

Example:

const signedApporder = await iexec.order.signApporder(apporderToSign);

hashApporder

iexec.order.hashApporder ( signedorder: SignerdApporder ) => Promise < orderHash: Bytes32 >

return the hash of the order

Example:

const hash = await iexec.order.hashApporder(apporder);

createDatasetorder

iexec.order.createDatasetorder ( { dataset: Address [, datasetprice: NRlcAmount, volume: Uint256, tag: Bytes32, apprestrict: Address, workerpoolrestrict: Address, requesterrestrict: Address ] } ) => Promise < Datasetorder >

create a datasetorder with specified params

mandatory values:

  • dataset: address of the dataset

optional values:

  • datasetprice: resource price per task, default 0 RLC "0"
  • volume: number of tasks to execute, default "1"
  • tag: required tags, default no tag required []
  • apprestrict: restrict usage to specific app address, default no restrict NULL_ADDRESS
  • workerpoolrestrict: restrict usage to specific workerpool address, default no restrict NULL_ADDRESS
  • requesterrestrict: restrict usage to specific requester address, default no restrict NULL_ADDRESS

Example:

const datasetorderToSign = await iexec.order.createDatasetorder({
  dataset: '0xf6b2bA0793C225c28a6E7753f6f67a3C68750bF1',
  datasetprice: '1000000000',
  volume: '1000',
});

signDatasetorder

iexec.order.signDatasetorder ( datasetorderToSign: Datasetorder ) => Promise < SignedDatasetorder >

sign a datasetorder to produce a SignedDatasetorder valid for the PoCo.

Example:

const signedDatasetorder = await iexec.order.signDatasetorder(
  datasetorderToSign,
);

hashDatasetorder

iexec.order.hashDatasetorder ( signedorder: SignerdDatasetorder ) => Promise < orderHash: Bytes32 >

return the hash of the order

Example:

const hash = await iexec.order.hashDatasetorder(datasetorder);

createWorkerpoolorder

iexec.order.createWorkerpoolorder ( { workerpool: Address, category: Uint256 [, workerpoolprice: NRlcAmount, volume: Uint256, trust: Uint256, tag: Bytes32, apprestrict: Address, datasetrestrict: Address, requesterrestrict: Address ] } ) => Promise < Workerpoolorder >

create a workerpoolorder with specified params

mandatory values:

  • workerpool: address of the workerpool
  • category: id of the selected computation category

optional values:

  • workerpoolprice: resource price per task, default 0 RLC "0"
  • volume: number of tasks to execute, default "1"
  • tag: available tags, default no tag []
  • trust: available trust, default minimum trust "0"
  • apprestrict: restrict usage to specific app address, default no restrict NULL_ADDRESS
  • datasetrestrict: restrict usage to specific dataset address, default no restrict NULL_ADDRESS
  • requesterrestrict: restrict usage to specific requester address, default no restrict NULL_ADDRESS

Example:

const workerpoolorderToSign = await iexec.order.createWorkerpoolorder({
  workerpool: '0xD34b0356D3A80De34d4fd71eF51346E468fe8cC2',
  workerpoolprice: '1000000000',
  category: '2',
  volume: '1',
});

signWorkerpoolorder

iexec.order.signWorkerpoolorder ( workerpoolorderToSign: Workerpoolorder ) => Promise < SignedWorkerpoolorder >

sign a workerpoolorder to produce a SignedWorkerpoolorder valid for the PoCo.

Example:

const signedWorkerpoolorder = await iexec.order.signWorkerpoolorder(
  workerpoolorderToSign,
);

hashWorkerpoolorder

iexec.order.hashWorkerpoolorder ( signedorder: SignerdWorkerpoolorder ) => Promise < orderHash: Bytes32 >

return the hash of the order

Example:

const hash = await iexec.order.hashWorkerpoolorder(workerpoolorder);

createRequestorder

iexec.order.createRequestorder ( { app: Address, category: Uint256 [, appmaxprice: NRlcAmount, workerpoolmaxprice: NRlcAmount, requester: Address, volume: Uint256, workerpool: Address, dataset: Address, datasetmaxprice: NRlcAmount, beneficiary: Address, params: String, callback: Address, trust: Uint256, tag: Bytes32 ] } ) => Promise < Requestorder >

create a requestorder with specified params

mandatory values:

  • app: address of the app to run
  • category: id of the selected computation category

optional values:

  • params: object, map of execution params:
    • iexec_args: string arguments to pass to the application
    • iexec_input_files: array of url of input files for the application, default []
    • iexec_result_storage_provider: selected storage provider "ipfs"|"dropbox", default "ipfs"
    • iexec_result_encryption: boolean should encrypt the result default false
  • dataset: address of the dataset to use, default no dataset NULL_ADDRESS
  • workerpool: allow only specific workerpool, default all workerpools allowed NULL_ADDRESS
  • appmaxprice: max amount of nRLC allowed to spend per task from requester account to pay for the app, default 0 RLC "0"
  • workerpoolmaxprice: max amount of nRLC allowed to spend per task from requester account to pay for the workerpool, default 0 RLC "0"
  • datasetmaxprice: max amount of nRLC allowed to spend per task from requester account to pay for the dataset, default 0 RLC "0"
  • volume: number of tasks to execute, default "1"
  • requester: address paying for the computation, default current wallet address
  • beneficiary: address allowed to get the results, default requester or current wallet address
  • callback: smart contract to call after each task execution, default no callback NULL_ADDRESS
  • tag: required tags, default no tag required []
  • trust: minimum trust level to reach in the PoCo, default minimum trust "0"

Example:

const requestorderToSign = await iexec.order.createRequestorder({
  app: '0xdBDF1FE51fd3AF9aD94fb63824EbD977518d64b3',
  appmaxprice: '0',
  workerpoolmaxprice: '1000000000',
  category: '2',
  volume: '1',
  params: 'ETH USD 9 2019-09-03T08:37:00.000Z',
});

signRequestorder

iexec.order.signRequestorder ( requestorderToSign: Requestorder [, options: Object ] ) => Promise < SignedRequestorder >

sign a requestorder to produce a SignedRequestorder valid for the PoCo.

options:

  • checkRequest: boolean, default true. Perform advanced checks on request and throw if request inconsistency is found (this may prevent creating always failing task).

Example:

const SignedRequestorder = await iexec.order.signRequestorder(
  requestorderToSign,
);

hashRequestorder

iexec.order.hashRequestorder ( signedorder: SignerdRequestorder ) => Promise < orderHash: Bytes32 >

return the hash of the order

Example:

const hash = await iexec.order.hashRequestorder(requestorder);

publishApporder

iexec.order.publishApporder ( order: SignedApporder ) => Promise < orderHash: Bytes32 >

publish a SignedApporder on the offchain marketplace, the order will be available for other users

Example:

const orderHash = await iexec.order.publishApporder(signedApporder);
console.log('order published with orderHash:', orderHash);

unpublishApporder

iexec.order.unpublishApporder ( orderHash: Bytes32 ) => Promise < orderHash: Bytes32 >

unpublish a SignedApporder from the offchain marketplace, the order still valid but no longer displayed for other users (to invalidate an order on the blockchain, use cancel).

Example:

const unpublishedOrderHash = await iexec.order.unpublishApporder(orderHash);

unpublishLastApporder

iexec.order.unpublishApporder ( appAddress: Address ) => Promise < orderHash: Bytes32 >

unpublish the last pulished SignedApporder for specified app signed by the user from the offchain marketplace, the order still valid but no longer displayed for other users (to invalidate an order on the blockchain, use cancel).

Example:

const unpublishedOrderHash = await iexec.order.unpublishLastApporder(appAddess);

unpublishAllApporders

iexec.order.unpublishAllApporders ( appAddress: Address ) => Promise < [ ...orderHash: Bytes32 ] >

unpublish all SignedApporder for specified app signed by the user from the offchain marketplace, the order still valid but no longer displayed for other users (to invalidate an order on the blockchain, use cancel).

Example:

const unpublishedOrders = await iexec.order.unpublishAllApporders(appAddess);

cancelApporder

iexec.order.cancelApporder ( order: SignedApporder ) => Promise < { order: SignedApporder, txHash; TxHash } >

cancel a SignedApporder on the blockchain.

Example:

await iexec.order.cancelApporder(signedApporder);

publishDatasetorder

iexec.order.publishDatasetorder ( order: SignedDatasetorder ) => Promise < orderHash: Bytes32 >

publish a SignedDatasetorder on the offchain marketplace, the order will be available for other users

Example:

const orderHash = await iexec.order.publishDatasetorder(signedDatasetorder);
console.log('order published with orderHash:', orderHash);

unpublishDatasetorder

iexec.order.unpublishDatasetorder ( orderHash: Bytes32 ) => Promise < orderHash: Bytes32 >

unpublish a SignedDatasetorder from the offchain marketplace, the order still valid but no longer displayed for other users (to invalidate an order on the blockchain, use cancel).

Example:

const unpublishedOrderHash = await iexec.order.unpublishDatasetorder(orderHash);

unpublishLastDatasetorder

iexec.order.unpublishDatasetorder ( datasetAddress: Address ) => Promise < orderHash: Bytes32 >

unpublish the last pulished SignedDatasetorder for specified dataset signed by the user from the offchain marketplace, the order still valid but no longer displayed for other users (to invalidate an order on the blockchain, use cancel).

Example:

const unpublishedOrderHash = await iexec.order.unpublishLastDatasetorder(
  datasetAddess,
);

unpublishAllDatasetorders

iexec.order.unpublishAllDatasetorders ( datasetAddress: Address ) => Promise < [ ...orderHash: Bytes32 ] >

unpublish all SignedDatasetorder for specified dataset signed by the user from the offchain marketplace, the order still valid but no longer displayed for other users (to invalidate an order on the blockchain, use cancel).

Example:

const unpublishedOrders = await iexec.order.unpublishAllDatasetorders(
  datasetAddess,
);

cancelDatasetorder

iexec.order.cancelDatasetorder ( order: SignedDatasetorder ) => Promise < { order: SignedDatasetorder, txHash; TxHash } >

cancel a SignedDatasetorder on the blockchain.

Example:

await iexec.order.cancelDatasetorder(signedDatasetorder);

publishWorkerpoolorder

iexec.order.publishWorkerpoolorder ( order: SignedWorkerpoolorder ) => Promise < orderHash: Bytes32 >

publish a SignedWorkerpoolorder on the offchain marketplace, the order will be available for other users

Example:

const orderHash = await iexec.order.publishWorkerpoolorder(
  signedWorkerpoolorder,
);
console.log('order published with orderHash:', orderHash);

unpublisWorkerpoolorder

iexec.order.unpublisWorkerpoolorder ( orderHash: Bytes32 ) => Promise < orderHash: Bytes32 >

unpublish a SignedWorkerpoolorder from the offchain marketplace, the order still valid but no longer displayed for other users (to invalidate an order on the blockchain, use cancel).

Example:

const unpublishedOrderHash = await iexec.order.unpublisWorkerpoolorder(
  orderHash,
);

unpublishLastWorkerpoolorder

iexec.order.unpublishWorkerpoolorder ( workerpoolAddress: Address ) => Promise < orderHash: Bytes32 >

unpublish the last pulished SignedWorkerpoolorder for specified workerpool signed by the user from the offchain marketplace, the order still valid but no longer displayed for other users (to invalidate an order on the blockchain, use cancel).

Example:

const unpublishedOrderHash = await iexec.order.unpublishLastWorkerpoolorder(
  workerpoolAddess,
);

unpublishAllWorkerpoolorders

iexec.order.unpublishAllWorkerpoolorders ( workerpoolAddress: Address ) => Promise < [ ...orderHash: Bytes32 ] >

unpublish all SignedWorkerpoolorder for specified workerpool signed by the user from the offchain marketplace, the order still valid but no longer displayed for other users (to invalidate an order on the blockchain, use cancel).

Example:

const unpublishedOrders = await iexec.order.unpublishAllWorkerpoolorders(
  workerpoolAddess,
);

cancelWorkerpoolorder

iexec.order.cancelWorkerpoolorder ( order: SignedWorkerpoolorder ) => Promise < { order: SignedWorkerpoolorder, txHash; TxHash } >

cancel a SignedWorkerpoolorder on the blockchain.

Example:

await iexec.order.cancelWorkerpoolorder(signedWorkerpoolorder);

publishRequestorder

iexec.order.publishRequestorder ( order: SignedRequestorder [, options: Object ] ) => Promise < orderHash: Bytes32 >

publish a SignedRequestorder on the offchain marketplace, the order will be available for other users

options:

  • checkRequest: boolean, default true. Perform advanced checks on request and throw if request inconsistency is found (this may prevent creating always failing task).

Example:

const orderHash = await iexec.order.publishRequestorder(signedRequestorder);
console.log('order published with orderHash:', orderHash);

unpublishRequestorder

iexec.order.unpublishRequestorder ( orderHash: Bytes32 ) => Promise < orderHash: Bytes32 >

unpublish a SignedRequestorder of the user from the offchain marketplace, the order still valid but no longer displayed for other users (to invalidate an order on the blockchain, use cancel).

Example:

const unpublishedOrderHash = await iexec.order.unpublishRequestorder(orderHash);

unpublishLastRequestorder

iexec.order.unpublishRequestorder ( ) => Promise < orderHash: Bytes32 >

unpublish the last pulished SignedRequestorder of the user from the offchain marketplace, the order still valid but no longer displayed for other users (to invalidate an order on the blockchain, use cancel).

Example:

const unpublishedOrderHash = await iexec.order.unpublishLastRequestorder();

unpublishAllRequestorders

iexec.order.unpublishAllRequestorders ( ) => Promise < [ ...orderHash: Bytes32 ] >

unpublish all SignedRequestorder of the user from the offchain marketplace, the order still valid but no longer displayed for other users (to invalidate an order on the blockchain, use cancel).

Example:

const unpublishedOrders = await iexec.order.unpublishAllRequestorders();

cancelRequestorder

iexec.order.cancelRequestorder ( order: SignedRequestorder ) => Promise < { order: SignedRequestorder, txHash; TxHash } >

cancel a SignedRequestorder on the blockchain.

Example:

await iexec.order.cancelRequestorder(signedRequestorder);

matchOrders

iexec.order.matchOrders ( { apporder: SignedApporder, workerpoolorder: SignedWorkerpoolorder, requestorder: SignedRequestorder [, datasetorder: SignedDatasetorder ]} [, options: Object ] ) => Promise < { dealid: Bytes32, volume: Uint256, txHash: TxHash } >

make a deal on-chain with compatible orders and trigger off-chain computation.

options:

  • checkRequest: boolean, default true. Perform advanced checks on request and throw if request inconsistency is found (this may prevent creating always failing task).

Example:

const res = await iexec.order.matchOrders(
  signedApporder,
  signedDatasetorder,
  signedRequestorder,
);
console.log('deal:', res.dealid);

iexec.deal

show

iexec.deal.show ( dealid: Bytes32 ) => Promise < { app : { pointer: Address, owner: Address, price: BN }, dataset : { pointer: Address, owner: Address, price: BN }, workerpool : { pointer: Address, owner: Address, price: BN }, trust: BN, category: BN, tag: Tag, requester: Address, beneficiary: Address, callback: Address, params: String, startTime: BN, deadlineReached: Boolean, botFirst: BN, botSize: BN, workerStake: BN, schedulerRewardRatio: BN, tasks: { ...[ {[idx]: taskid] }] } >

show the details of a deal.

Example:

const deal = await iexec.deal.show(
  '0xe0ebfa1177a5997434fe14b5e88897950e07ff82e6976a024b07f30063249a1e',
);
console.log('deal:', deal);

obsDeal

iexec.deal.obsDeal ( dealid: Bytes32 ) => Observable < { subscribe: Function({ next: Function({ message: String, tasksCount: Int, completedTasksCount: Int, failedTasksCount: Int, deal: Deal, tasks: { ...[ {[idx]: task ] }] } }), error: Function(Error), complete: Function() }) } >

return an observable with subscribe method to monitor the deal status changes.

  • next is called with initial status and after every task status update
  • error is called once on error and stops the updates
  • complete is called once on task completion or timeout/fail

messages:

  • DEAL_UPDATED: deal status changed (task updated)
  • DEAL_COMPLETED: all tasks are completed
  • DEAL_TIMEDOUT: deal timed out before all tasks completion

Example:

const dealObservable = iexec.deal.obsDeal(
  '0xbae010aa25684354e5dc9bf01b8dc8a05f36ed549a31a353e02917f62a496a43',
);

const unsubscribe = dealObservable.subscribe({
  next: data =>
    console.log(
      data.message,
      `completed tasks ${data.completedTasksCount}/${data.tasksCount}`,
    ),
  error: e => console.error(e),
  complete: () => console.log('final state reached'),
});
// call unsubscribe() to unsubscribe from dealObservable

computeTaskId

iexec.deal.computeTaskId ( dealid: Bytes32, taskIdx: Uint256 ) => Promise < taskid: Bytes32 >

compute the taskid of the task with index taskIdx of specified deal.

Example:

const taskid = await iexec.deal.computeTaskId(
  '0xe0ebfa1177a5997434fe14b5e88897950e07ff82e6976a024b07f30063249a1e',
  '0',
);
console.log('taskid:', taskid);

fetchRequesterDeals

iexec.deal.fetchRequesterDeals ( requesterAddress: Address, [ { appAddress: Address, datasetAddress: Address, workerpoolAddress: Address } ] ) => Promise < { count, deals: [ ...Deals ]} >

show the last deals of the specified requester.

Optional: filter by appAddress, datasetAddress, workerpoolAddress.

Example:

const res = await iexec.deal.fetchRequesterDeals(
  await iexec.wallet.getAddress(),
);
console.log('deals count:', res.count);
console.log('last deal:', res.deals[0]);

claim

iexec.deal.claim ( dealid: Bytes32 ) => Promise < { claimed : { ...[ {[idx]: taskid] }] }, transactions: [ { txHash: TxHash, type: String } ] } >

claim all the failed task from a deal. Depending the number and the status of task to claim, this may involve several transactions in order to fit in the blockchain gasLimit per block. (mainnet actual gas limit is 10000000, this allows to claim 180 initialized task or 40 non-initialized tasks in one block)

Example:

const { claimed, transactions } = await iexec.deal.claim(
  '0xe0ebfa1177a5997434fe14b5e88897950e07ff82e6976a024b07f30063249a1e',
);
Object.entries(claimed).forEach(e => {
  console.log(`claimed task: idx ${e[0]} taskid ${e[1]}`);
});
transactions.forEach(e => {
  console.log(`transaction ${e.type} hash ${e.txHash}`);
});

iexec.task

show

iexec.task.show ( taskid: Bytes32 ) => Promise < { status: Number(0|1|2|3|4), dealid: Bytes32, idx: BN, timeref: BN, contributionDeadline: BN, revealDeadline: BN, finalDeadline: BN, consensusValue: Bytes32, revealCounter: BN, winnerCounter: BN, contributors: [...Address], resultDigest: Bytes32, results: { storage: String('none'|StorageProviderName) [, location: String ]}, statusName: String('UNSET'|'ACTIVE'|'REVEALING'|'COMPLETED'|'FAILED'|'TIMEOUT'), taskTimedOut: Boolean } >

show the details of a task.

Example:

const task = await iexec.task.show(
  '0x5c959fd2e9ea2d5bdb965d7c2e7271c9cb91dd05b7bdcfa8204c34c52f8c8c19',
);
console.log('task:', task);

claim

iexec.task.claim ( taskid: Bytes32 ) => Promise < TxHash >

claim a task not completed after the final deadline (refund RLC for the requester and the workers).

Example:

await iexec.task.claim(
  '0x5c959fd2e9ea2d5bdb965d7c2e7271c9cb91dd05b7bdcfa8204c34c52f8c8c19',
);

fetchResults

iexec.task.fetchResults ( taskid: Bytes32 ) => Promise < fetchResponse: Response >

download the specified task result. only supported for IPFS stored results

Example:

const res = await iexec.task.fetchResults(
  '0x5c959fd2e9ea2d5bdb965d7c2e7271c9cb91dd05b7bdcfa8204c34c52f8c8c19',
);
const binary = await res.blob();

obsTask

iexec.task.obsTask ( taskid: Bytes32 [, { dealid: Bytes32 }] ) => Observable < { subscribe: Function({ next: Function({ message: String, task: Task }), error: Function(Error), complete: Function() }) } >

return an observable with subscribe method to monitor the task status changes.

  • next is called with initial status and after every status update
  • error is called once on error and stops the updates
  • complete is called once on task completion or timeout/fail

Optional: specify the dealid of the task, this prevent error to be called when task is not yet initialized (ACTIVE)

messages:

  • TASK_UPDATED: task status changed
  • TASK_COMPLETED: task is completed
  • TASK_TIMEDOUT: task timed out
  • TASK_FAILED: task was claimed after timeout

Example:

// log task updtates
const taskObservable = iexec.task.obsTask(
  '0x5c959fd2e9ea2d5bdb965d7c2e7271c9cb91dd05b7bdcfa8204c34c52f8c8c19',
);

const unsubscribe = taskObservable.subscribe({
  next: ({ message, task }) => console.log(message, task.statusName),
  error: e => console.error(e),
  complete: () => console.log('final state reached'),
});
// call unsubscribe() to unsubscribe from taskObservable
// wait for task completion
const waitFinalState = (taskid, dealid) =>
  new Promise((resolve, reject) => {
    let taskState;
    iexec.task.obsTask(taskid, { dealid }).subscribe({
      next ({task}) => taskState = task,
      error: e => reject(e),
      complete: () => resolve(taskState),
    });
  });

const task = await waitFinalState(
  '0x3c0ab2de0cd14de2746d0e1b6ae4ad07659c02f61ca24bffba500b1b2a216d30',
  '0xbae010aa25684354e5dc9bf01b8dc8a05f36ed549a31a353e02917f62a496a43',
);

waitForTaskStatusChange (deprecated prefer obsTask)

iexec.task.waitForTaskStatusChange ( taskid: Bytes32, initialStatus: Uint256 ) => Promise < { status: Uint256, statusName: String } >

wait until the status of specified task change.

Example:

const res = await iexec.task.fetchResults(
  '0x5c959fd2e9ea2d5bdb965d7c2e7271c9cb91dd05b7bdcfa8204c34c52f8c8c19',
  '1',
);
console.log('task status is', res.statusName);

iexec.app

show

iexec.app.showApp ( appAddress: Address ) => Promise < { objAddress: Address, app: { appName, appMultiaddr, appChecksum, owner, appMREnclave, appType } } >

show the details of an app.

Example:

const { app } = await iexec.app.showApp(
  '0x917D71168fF60A10afD684d8D815b4A78097225D',
);
console.log('app:', app);

deploy

iexec.app.deployApp ( app: App ) => Promise < { address: Address, txHash: TxHash } >

deploy an app on the blockchain.

Example:

const { address } = await iexec.app.deployApp({
  owner: await iexec.wallet.getAddress(),
  name: 'My app',
  type: 'DOCKER',
  multiaddr: 'registry.hub.docker.com/iexechub/vanityeth:1.1.1',
  checksum:
    '0x00f51494d7a42a3c1c43464d9f09e06b2a99968e3b978f6cd11ab3410b7bcd14',
  mrenclave: '',
});
console.log('deployed at', address);

iexec.dataset

show

iexec.dataset.showDataset ( datasetAddress: Address ) => Promise < { objAddress: Address, dataset: { datasetName, datasetMultiaddr, datasetChecksum, owner } } >

show the details of a dataset.

Example:

const { dataset } = await iexec.dataset.showDataset(
  '0xf6b2bA0793C225c28a6E7753f6f67a3C68750bF1',
);
console.log('dataset:', dataset);

deploy

iexec.dataset.deployDataset ( dataset: Dataset ) => Promise < { address: Address, txHash: TxHash } >

deploy a dataset on the blockchain.

Example:

const { address } = await iexec.dataset.deployDataset({
  owner: await iexec.wallet.getAddress(),
  name: 'My dataset',
  multiaddr: '/ipfs/QmW2WQi7j6c7UgJTarActp7tDNikE4B2qXtFCfLPdsgaTQ',
  checksum:
    '0x0000000000000000000000000000000000000000000000000000000000000000',
});
console.log('deployed at', address);

pushDatasetSecret

iexec.dataset.pushDatasetSecret ( datasetAddress: Address, secret: String ) => Promise < success: Boolean >

push the dataset secret to the SMS pushed secret can't be ubdated

Example:

const pushed = await iexec.dataset.pushDatasetSecret(
  datasetAddress,
  'secretkey',
);
console.log('secret pushed:', pushed);

checkDatasetSecretExists

iexec.dataset.checkDatasetSecretExists ( datasetAddress: Address ) => Promise < secretExists: Boolean >

check if a the dataset secret exists in the SMS

Example:

const isSecretSet = await iexec.dataset.checkDatasetSecretExists(
  datasetAddress,
);
console.log('secret exists:', isSecretSet);

iexec.workerpool

show

iexec.workerpool.showWorkerpool ( workerpoolAddress: Address ) => Promise < { objAddress: Address, workerpool: { workerpoolDescription, owner } } >

show the details of a workerpool.

Example:

const { workerpool } = await iexec.workerpool.showWorkerpool(
  '0xD34b0356D3A80De34d4fd71eF51346E468fe8cC2',
);
console.log('workerpool:', workerpool);

deploy

iexec.workerpool.deployWorkerpool ( workerpool: Workerpool ) => Promise < { address: Address, txHash: TxHash } >

deploy a workerpool on the blockchain.

Example:

const { address } = await iexec.workerpool.deployWorkerpool({
  owner: await iexec.wallet.getAddress(),
  description: 'My workerpool',
});
console.log('deployed at', address);

iexec.result

pushResultEncryptionKey

iexec.result.pushResultEncryptionKey ( rsaPublicKey: String [, options ]) => Promise < { isPushed: Boolean, isUpdated: Boolean } >

push an encryption public key to the SMS, this allow results encryption options:

  • forceUpdate: Boolean update if exists

Example:

const { isPushed } = await iexec.result.pushResultEncryptionKey(
  '-----BEGIN PUBLIC KEY-----
  MIICIjANBgkqhkiG9w0BAQEFAAOCAg8AMIICCgKCAgEA0gKRKKNCLe1O+A8nRsOc
  gnnvLwE+rpvmKnjOTzoR8ZBTaIjD1dqlhPyJ3kgUnKyCNqru9ayf0srUddwj+20N
  zdLvhI03cYD+GFYM6rrGvaUekGZ43f309f3wOrQjNkTeGo+K+hloHL/gmuN/XML9
  MST/01+mdCImPdG+dxk4RQAsFS7HE00VXsVjcLGeZ95AKILFJKLbCOJxxvsQ+L1g
  rameEwTUF1Mb5TJnV44YZJiCKYFj6/6zrZ3+pdUjxBSN96iOyE2KiYeNuhEEJbjb
  4rWl+TpWLmDkLIeyL3TpDTRedaXVx6h7DOOphX5vG63+5UIHol3vJwPbeODiFWH0
  hpFcFVPoW3wQgEpSMhUabg59Hc0rnXfM5nrIRS+SHTzjD7jpbSisGzXKcuHMc69g
  brEHGJsNnxr0A65PzN1RMJGq44lnjeTPZnjWjM7PnnfH72MiWmwVptB38QP5+tao
  UJu9HvZdCr9ZzdHebO5mCWIBKEt9bLRa2LMgAYfWVg21ARfIzjvc9GCwuu+958GR
  O/VhIFB71aaAxpGmK9bX5U5QN6Tpjn/ykRIBEyY0Y6CJUkc33KhVvxXSirIpcZCO
  OY8MsmW8+J2ZJI1JA0DIR2LHingtFWlQprd7lt6AxzcYSizeWVTZzM7trbBExBGq
  VOlIzoTeJjL+SgBZBa+xVC0CAwEAAQ==
  -----END PUBLIC KEY-----',
);
console.log('encryption key pushed:', isPushed);

checkResultEncryptionKeyExists

iexec.result.checkResultEncryptionKeyExists ( userAddress: Address ) => Promise < encryptionKeyExists: Boolean >

check if an encryption key exists in the SMS

Example:

const isMyKeySet = await iexec.result.checkResultEncryptionKeyExists(
  await iexec.wallet.getAddress(),
);
console.log('encryption key set:', isMyKeySet);

iexec.storage

defaultStorageLogin

iexec.storage.defaultStorageLogin () => Promise < token: String >

get an authorization token from the default IPFS based remote storage. Share this token through the SMS to allows the worker to push your tasks results to the default remote storage.

pushStorageToken

iexec.storage.pushStorageToken ( token: String [, options ]) => Promise < { isPushed: Boolean, isUpdated: Boolean } >

push a storage provider authorization token to the SMS, this allow results storage

options:

  • provider: String specify storage provider (supported: "default", "dropbox", )
  • forceUpdate: Boolean update if exists

Example:

const defaultStorageToken = await iexec.storage.defaultStorageLogin();
const { isPushed } = await iexec.storage.pushStorageToken(defaultStorageToken);
console.log('default storage initialized:', isPushed);

checkStorageTokenExists

iexec.storage.checkStorageTokenExists ( userAddress: Address [, options ] ) => Promise < storageInitialized: Boolean >

check if storage credential exists in the SMS

options:

  • provider: string, storage provider name, default "ipfs". supported "ipfs"|"dropbox"

Example:

const isIpfsStorageInitialized = await iexec.storage.checkStorageTokenExists(
  await iexec.wallet.getAddress(),
);
console.log('ipfs storage initialized:', isIpfsStorageInitialized);

iexec.network

id

iexec.network.id => String

current chain Id

Example:

console.log('current chain:', iexec.network.id);

isSidechain

iexec.network.isSidechain => Boolean

current is a sidechain

Example:

console.log('current chain is a sidechain:', iexec.network.isSidechain);

Utils

utils provides some utility functions for iExec.

BN

BN is instance of bn.js it allows big numbers manipulation in js (see bn.js).

Example:

new utils.BN(1);

NULL_ADDRESS

Constant: the address 0 represention

Example:

console.log(utils.NULL_ADDRESS);

NULL_BYTES32

Constant: an empty bytes32 represention

Example:

console.log(utils.NULL_BYTES32);

parseEth

utils.parseEth (value: String|Number|BN [, defaultUnit: String]) => weiValue: BN

parse an ether amount and return the value in wei supported units: 'wei', 'kwei', 'mwei', 'gwei', 'szabo', 'finney', 'ether' (or 'eth') default unit 'wei'

Example:

console.log('5 gwei = ' + utils.parseEth('5 gwei') + 'wei');

formatEth

utils.formatEth (weiAmount: BN|Number|String) => etherAmount: String

return the display value of a wei amount in ether

Example:

console.log(
  '500000000 wei = ' + utils.formatEth('500000000')) + 'ether',
);

parseRLC

utils.parseRLC (value: String|Number|BN [, defaultUnit: String]) => nRlcValue: BN

parse a RLC amount and return the value in nRLC supported units: 'nRLC', 'RLC' default unit 'nRLC'

Example:

console.log('5 RLC = ' + utils.parseEth('5 RLC') + 'nRLC');

formatRLC

utils.formatRLC (nRlcAmount: BN|Number|String) => RlcAmount: String

return the display value of a nRLC amount in RLC

Example:

console.log('500000000 nRLC = ' + utils.formatRLC('500000000') + 'RLC');

encodeTag

utils.encodeTag ([...tag: String]) => tag: Bytes32

encode human readable tag array to the blockchain format Bytes32

Example:

console.log(utils.encodeTag(['tee', 'gpu']));

decodeTag

utils.decodeTag (tag: Bytes32) => [...tag: String]

decode Bytes32 tag to human readable tag array

Example:

console.log(
  utils.decodeTag(
    '0x0000000000000000000000000000000000000000000000000000000000000001',
  ),
);

sumTags

utils.sumTags ([...tag: Bytes32]) => tag: Bytes32

sum Bytes32 tag array (allow to compute workerpool minimum required tag)

Example:

const appTag =
  '0x0000000000000000000000000000000000000000000000000000000000000100';
const datasetTag =
  '0x0000000000000000000000000000000000000000000000000000000000000001';
const requestTag =
  '0x0000000000000000000000000000000000000000000000000000000000000000';
const workerpoolMinTag = utils.sumTags([appTag, datasetTag, requestTag]);
console.log('workerpoolMinTag', workerpoolMinTag);

decryptResult

utils.decryptResult ( encryptedZipFile: Buffer, beneficiaryKey: String|Buffer) => Promise < decryptedZipFile: Buffer >

decrypt en encrypted result with the beneficiary RSA Key.

Example:

const beneficaryKey = await loadBeneficiaryKey(); // somehow load the beneficiary RSA private key

const response = await iexec.task.fetchResults(
  '0x5c959fd2e9ea2d5bdb965d7c2e7271c9cb91dd05b7bdcfa8204c34c52f8c8c19',
);
const encFileBuffer = await response.arrayBuffer();
const decryptedFileBuffer = await utils.decryptResult(
  encFileBuffer,
  beneficaryKey,
);
const binary = new Blob([decryptedFileBuffer]);

getSignerFromPrivateKey

utils.getSignerFromPrivateKey ( host: 'goerli'|'mainnet'|Url, privateKey: PrivateKey [, options ] ) => SignerProvider

Returns a web3 SignerProvider compliant with IExec. Use this only for server side implementation.

options:

  • providers: Object specify the option for provider backend when connected to public blockchain (host: 'goerli'|'mainnet').
    • alchemy: String Alchemy API Token
    • etherscan: String Etherscan API Token
    • infura: String|{ projectId: String, projectSecret: String } INFURA Project ID or ProjectID and Project Secret
    • quorum: Int The number of backends that must agree (default: 2 for mainnet, 1 for testnets)
  • gasPrice: Uint256 specify the gasPrice to use for transactions
  • getTransactionCount: function(address, block) => Promise < nonce: HexString > specify the function to be called to get the nonce of an account. block may be an integer number, or the string "latest", "earliest" or "pending".

Example:

const { IExec, utils } = require('iexec');
const ethProvider = utils.getSignerFromPrivateKey(
  'http://localhost:8545',
  '0x564a9db84969c8159f7aa3d5393c5ecd014fce6a375842a45b12af6677b12407',
);
const iexec = new IExec({
  ethProvider,
  chainId: '42',
});

Types

BN

BN is instance of bn.js it allows big numbers manipulation in js (see bn.js).

BN constructor can be imported from iexec:

import { utils } from 'iexec';
const { BN } = utils;

Address

Address is a "0x" prefixed checksummed ethereum address. Any valid ethereum address can be used as argument of methods requiring Address (ENS is not supported).

Bytes32

Bytes32 is a "0x" prefixed hexadecimal string representation of 32 bytes.

TxHash

TxHash is an ethereum transaction hash.

Uint256

Uint256 is a decimal string representation of a 256 bit unsigned integer.

Accepted:

  • Number
  • String
  • BN

WeiAmount

WeiAmount is a decimal string representation of a wei amount (wei is the smallest sub-division of ether: 1 ether = 1,000,000,000,000,000,000 wei).

Accepted:

  • Number
  • String with optionnal unit (ex: '1000000', '0.01 ether')
    • accepted units: ether (eth), finney, szabo, gwei, mwei, kwei, wei
    • default unit: wei
  • BN

NRlcAmount

NRlcAmount is a decimal string representation of a nRLC (nano RLC) amount (nRLC is the smallest sub-division of RLC: 1 RLC = 1,000,000,000 RLC).

Accepted:

  • Number
  • String with optionnal unit (ex: '1000000', '1000000 nRLC', '0.01 RLC')
    • accepted units: RCL, nRLC
    • default unit: nRLC
  • BN

Tag

Tag is task tag representation. A Tag is the encoding of 256 flags under a bytes32.

Accepted:

  • Bytes32 encoded tag (ex: 0x0000000000000000000000000000000000000000000000000000000000000001)
  • Array of tags (ex: ['tee'])

Multiaddress

Multiaddress is resource address representation multiaddr.

Accepted:

  • url as string
  • multiaddr string representation
  • multiaddr().buffer

App

App is an object representation of an app.

{
  owner: Address,
  name: String,
  type: String, // only "DOCKER" is supported
  multiaddr: Multiaddress,
  checksum: Bytes32,
  mrenclave: String,
}

Apporder

Apporder is an object representation of an apporder not signed.

{
  app: Address,
  appprice: Uint256,
  volume: Uint256,
  tag: Bytes32,
  datasetrestrict: Address,
  workerpoolrestrict: Address,
  requesterrestrict: Address
}

Dataset

Dataset is an object representation of a dataset.

{
  owner: Address,
  name: String,
  multiaddr: Multiaddress,
  checksum: Bytes32
}

Workerpool

Workerpool is an object representation of a workerpool.

{
  owner: Address,
  description: String
}

Category

Category is an object representation of a category.

{
  name: String,
  description: String,
  workClockTimeRef: Uint256
}

SignedApporder

SignedApporder is an object representation of a signed apporder.

{
  app: Address,
  appprice: uint256S,
  volume: Uint256,
  tag: Bytes32,
  datasetrestrict: Address,
  workerpoolrestrict: Address,
  requesterrestrict: Address,
  salt: Bytes32,
  sign: HexString
}

Datasetorder

Datasetorder is an object representation of a datasetorder not signed.

{
  dataset: Address,
  datasetprice: NRlcAmount,
  volume: Uint256,
  tag: Bytes32,
  apprestrict: Address,
  workerpoolrestrict: Address,
  requesterrestrict: Address,
}

SignedDatasetorder

SignedApporder is an object representation of a signed datasetorder.

{
  dataset: Address,
  datasetprice: uint256S,
  volume: Uint256,
  tag: Bytes32,
  apprestrict: Address,
  workerpoolrestrict: Address,
  requesterrestrict: Address,
  salt: Bytes32,
  sign: HexString
}

Workerpoolorder

Workerpoolorder is an object representation of a workerpoolorder not signed.

{
  workerpool: Address,
  workerpoolprice: NRlcAmount,
  volume: Uint256,
  tag: Bytes32,
  category: Uint256,
  trust: Uint256,
  apprestrict: Address,
  datasetrestrict: Address,
  requesterrestrict: Address,
}

SignedWorkerpoolorder

SignedWorkerpoolorder is an object representation of a signed workerpoolorder.

{
  workerpool: Address,
  workerpoolprice: Uint256,
  volume: Uint256,
  tag: Bytes32,
  category: Uint256,
  trust: Uint256,
  apprestrict: Address,
  datasetrestrict: Address,
  requesterrestrict: Address,
  salt: Bytes32,
  sign: HexString
}

Requestorder

Requestorder is an object representation of a requestorder not signed.

{
  app: Address,
  appmaxprice: NRlcAmount,
  dataset: Address,
  datasetmaxprice: NRlcAmount,
  workerpool: Address,
  workerpoolprice: NRlcAmount,
  requester: Address,
  volume: Uint256,
  tag: Bytes32,
  category: Uint256,
  trust: Uint256,
  beneficary: Address,
  callback: Address,
  params: String,
}

SignedRequestorder

SignedRequestorder is an object representation of a signed requestorder.

{
  app: Address,
  appmaxprice: uint256S,
  dataset: Address,
  datasetmaxprice: uint256,
  workerpool: Address,
  workerpoolprice: Uint256,
  requester: Address,
  volume: Uint256,
  tag: Bytes32,
  category: Uint256,
  trust: Uint256,
  beneficary: Address,
  callback: Address,
  params: String,
  salt: Bytes32,
  sign: HexString
}

Errors

iexec sdk use typed errors, errors constructors are accessible through import.

import { errors } from 'iexec';
const {
  BridgeError,
  ObjectNotFoundError,
  ValidationError,
  Web3ProviderError,
  Web3ProviderCallError,
  Web3ProviderSendError,
  Web3ProviderSignMessageError,
} = errors;

BridgeError

BridgeError is thrown when sending RLC between mainchain and sidechain fail before the value transfert confirmation.

Specific properties:

  • error.originalError: the original exception
  • error.sendTxHash: the send transaction

ObjectNotFoundError

ObjectNotFoundError is thrown when trying to access an unexisting resource.

Specific properties:

  • error.objName: type of object trying to access
  • error.chainId: chain id of the blockchain where the object is supposed to be
  • error.objectId : id used to find the object

ValidationError

ValidationError is thrown when a method is called with missing or unexpected parameters.

Web3ProviderError

Web3ProviderError encapsulate a web3 provider exception.

Specific properties:

  • error.originalError: the original exception from the web3Provider.

Web3ProviderCallError

Web3ProviderCallError extends the Web3ProviderError, this Error is thrown when an exception is catched during a web3 call.

Reasons:

  • network failure
  • unexpected args

Web3ProviderCallError

Web3ProviderSendError extends the Web3ProviderError, this Error is thrown when an exception is catched during a web3 send transaction.

Reasons:

  • user denied tx signature
  • not enough gas
  • transaction revert

Web3ProviderSignMessageError

Web3ProviderSignMessageError extends the Web3ProviderError, this Error is thrown when an exception is catched during a web3 message signature.

Reasons:

  • user denied message signature
  • method not supported by the web3 provider

iExec SDK CLI fork/spawn

If your program is not written in javascript, your last option to use the SDK would be to spawn it as a separate process (sometimes called FORK operation). After each SDK run you should check the exit code returned by the SDK to know if the operation was successful or not echo $?:

  • 0 = successful
  • 1 = error

Finally, you could choose to parse the SDK stdout/stderr to access more information. Use the global option --raw to get json formatted output. ex:

  • iexec wallet show --raw &> out.txt
  • iexec wallet show --raw | jq .

Warning:

  • The stdout/stderr is subject to changes (this is what makes this solution brittle)
  • The node and docker version have some slight differences in their stdout/stderr