-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathmodels_dy.py
422 lines (341 loc) · 16.8 KB
/
models_dy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
import os
import math
import time
import numpy as np
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.nn.functional as F
from model_modules import GRUNet, CNNet, PropNet
from models_kp import SpatialSoftmax
from data import denormalize, normalize
from utils import load_data, count_parameters
class HLoss(nn.Module):
def __init__(self):
super(HLoss, self).__init__()
def forward(self, x, prior=None):
if prior is None:
b = F.softmax(x, dim=1) * F.log_softmax(x, dim=1)
b = -b.sum(1)
b = b.mean()
else:
b = F.softmax(x, dim=1)
b = b * (F.log_softmax(x, dim=1) - torch.log(prior).view(-1, x.size(1)))
b = -b.sum(1)
b = b.mean()
return b
def sample_gumbel(shape, eps=1e-10):
U = torch.rand(shape).cuda()
return -torch.log(-torch.log(U + eps) + eps)
def gumbel_softmax_sample(logits, temperature):
y = logits + sample_gumbel(logits.size())
return F.softmax(y / temperature, dim=-1)
def gumbel_softmax(logits, temperature=0.5, hard=False):
"""
ST-gumple-softmax
input: [*, n_class]
return: flatten --> [*, n_class] an one-hot vector
"""
B, categorical_dim = logits.size()
y = gumbel_softmax_sample(logits, temperature)
if not hard:
return y.view(-1, categorical_dim)
shape = y.size()
_, ind = y.max(dim=-1)
y_hard = torch.zeros_like(y).view(-1, shape[-1])
y_hard.scatter_(1, ind.view(-1, 1), 1)
y_hard = y_hard.view(*shape)
# Set gradients w.r.t. y_hard gradients w.r.t. y
y_hard = (y_hard - y).detach() + y
return y_hard.view(-1, categorical_dim)
class DynaNetGNN(nn.Module):
def __init__(self, args, use_gpu=True, drop_prob=0.2):
super(DynaNetGNN, self).__init__()
self.propnet_selfloop = False
self.mask_remove_self_loop = torch.FloatTensor(
np.ones((args.n_kp, args.n_kp)) - np.eye(args.n_kp)).cuda().view(1, args.n_kp, args.n_kp, 1)
self.args = args
nf = args.nf_hidden_dy * 4
self.ratio = (args.height // 64) * (args.width // 64)
# infer the graph
self.model_infer_encode = PropNet(
node_dim_in=2,
edge_dim_in=0,
nf_hidden=nf * 3,
node_dim_out=nf,
edge_dim_out=nf,
edge_type_num=1,
pstep=1,
batch_norm=1)
if args.en_model == 'gru':
self.model_infer_node_agg = GRUNet(
nf + 2 + args.action_dim, nf * 4, nf,
drop_prob=drop_prob)
self.model_infer_edge_agg = GRUNet(
nf + 4 + args.action_dim * 2, nf * 4, nf,
drop_prob=drop_prob)
elif args.en_model == 'cnn':
self.model_infer_node_agg = CNNet(
7 if args.env == 'Ball' else 3,
nf + 2 + args.action_dim, nf * 4, nf)
self.model_infer_edge_agg = CNNet(
7 if args.env == 'Ball' else 3,
nf + 4 + args.action_dim * 2, nf * 4, nf)
self.model_infer_affi_matx = PropNet(
node_dim_in=nf,
edge_dim_in=nf,
nf_hidden=nf * 3,
node_dim_out=0,
edge_dim_out=args.edge_type_num,
edge_type_num=1,
pstep=2,
batch_norm=1)
self.model_infer_graph_attr = PropNet(
node_dim_in=nf,
edge_dim_in=nf,
nf_hidden=nf * 3,
node_dim_out=args.node_attr_dim,
edge_dim_out=args.edge_attr_dim,
edge_type_num=args.edge_type_num,
pstep=1,
batch_norm=1)
# dynamics modeling
self.model_dynam_encode = PropNet(
node_dim_in=args.node_attr_dim + 6,
edge_dim_in=args.edge_attr_dim + 12,
nf_hidden=nf * 3,
node_dim_out=nf,
edge_dim_out=nf,
edge_type_num=args.edge_type_num,
pstep=1,
batch_norm=1)
self.model_dynam_node_forward = GRUNet(
nf + 6 + args.node_attr_dim + args.action_dim, nf * 2, nf,
drop_prob=drop_prob)
self.model_dynam_edge_forward = GRUNet(
nf + 12 + args.edge_attr_dim + args.action_dim * 2, nf * 2, nf,
drop_prob=drop_prob)
self.model_dynam_decode = PropNet(
node_dim_in=nf + args.node_attr_dim + args.action_dim + 6,
edge_dim_in=nf + args.edge_attr_dim + args.action_dim * 2 + 12,
nf_hidden=nf * 3,
node_dim_out=5,
edge_dim_out=1,
edge_type_num=args.edge_type_num,
pstep=1,
batch_norm=0)
print('model_infer_encode #params', count_parameters(self.model_infer_encode))
print('model_infer_node_agg #params', count_parameters(self.model_infer_node_agg))
print('model_infer_edge_agg #params', count_parameters(self.model_infer_edge_agg))
print('model_infer_affi_matx #params', count_parameters(self.model_infer_affi_matx))
print('model_infer_graph_attr #params', count_parameters(self.model_infer_graph_attr))
print('model_dynam_encode #params', count_parameters(self.model_dynam_encode))
print('model_dynam_node_forward #params', count_parameters(self.model_dynam_node_forward))
print('model_dynam_edge_forward #params', count_parameters(self.model_dynam_edge_forward))
print('model_dynam_decode #params', count_parameters(self.model_dynam_decode))
# integration tools
self.integrater = SpatialSoftmax(
height=args.height//4, width=args.width//4, channel=args.n_kp, lim=args.lim)
# for generating gaussian heatmap
lim = args.lim
x = np.linspace(lim[0], lim[1], args.width // 4)
y = np.linspace(lim[2], lim[3], args.height // 4)
if use_gpu:
self.x = Variable(torch.FloatTensor(x)).cuda()
self.y = Variable(torch.FloatTensor(y)).cuda()
else:
self.x = Variable(torch.FloatTensor(x))
self.y = Variable(torch.FloatTensor(y))
self.graph = [None, None, None]
# self.init_weights()
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Linear):
nn.init.xavier_normal_(m.weight.data)
m.bias.data.fill_(0.1)
elif isinstance(m, nn.BatchNorm1d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Conv1d):
n = m.kernel_size[0] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
m.bias.data.fill_(0.1)
def integrate(self, heatmap):
return self.integrater(heatmap)
def init_graph(self, kp, use_gpu=False, hard=False):
# randomly generated graph
# kp: B x T x n_kp x (2 + 4)
#
# node_attr: B x n_kp x node_attr_dim
# edge_attr: B x n_kp x n_kp x edge_attr_dim
# edge_type: B x n_kp x n_kp x edge_type_num
# edge_type_logits: B x n_kp x n_kp x edge_type_num
args = self.args
B, T, n_kp, _ = kp.size()
node_attr = torch.FloatTensor(np.zeros((B, n_kp, args.node_attr_dim)))
edge_attr = torch.FloatTensor(np.zeros((B, n_kp, n_kp, args.edge_attr_dim)))
# edge_type_logits: B x n_kp x n_kp x edge_type_num
edge_type_logits = args.prior[None, None, None, :].repeat(B, n_kp, n_kp, 1)
edge_type_logits = torch.log(edge_type_logits).view(B * n_kp * n_kp, args.edge_type_num)
# edge_type: B x n_kp x n_kp x edge_type_num
edge_type = gumbel_softmax(edge_type_logits, hard=hard).view(B, n_kp, n_kp, args.edge_type_num)
edge_type_logits = edge_type_logits.view(B, n_kp, n_kp, args.edge_type_num)
if use_gpu:
node_attr = node_attr.cuda()
edge_attr = edge_attr.cuda()
edge_type = edge_type.cuda()
edge_type_logits = edge_type_logits.cuda()
graph = [node_attr, edge_attr, edge_type, edge_type_logits]
return graph
def graph_inference(self, kp, action=None, hard=False, env=None):
# update the belief over the structure of the graph
# kp: B x T x n_kp x (2 + 4)
# action:
# ToyFullAct, BallAct, BallFullAct, BallFullActFull: B x T x n_kp x action_dim
# Fluid: B x T x action_dim
args = self.args
B, T, n_kp, _ = kp.size()
nf = self.args.nf_hidden_dy * 4
# node_enc: B x T x n_kp x (2 + 4)
node_enc = kp.contiguous()
# node_rep: B x T x N x nf
# edge_rep: B x T x (N * N) x nf
node_rep, edge_rep = self.model_infer_encode(
node_enc.view(B * T, n_kp, 2), None)
node_rep = node_rep.view(B, T, n_kp, nf)
edge_rep = edge_rep.view(B, T, n_kp * n_kp, nf)
kp_t = kp.transpose(1, 2).contiguous().view(B, n_kp, T, 2)
kp_t_r = kp_t[:, :, None, :, :].repeat(1, 1, n_kp, 1, 1)
kp_t_s = kp_t[:, None, :, :, :].repeat(1, n_kp, 1, 1, 1)
node_rep = node_rep.transpose(1, 2).contiguous().view(B * n_kp, T, nf)
edge_rep = edge_rep.transpose(1, 2).contiguous().view(B * n_kp * n_kp, T, nf)
node_rep = torch.cat([
node_rep, kp_t.view(B * n_kp, T, 2)], 2)
edge_rep = torch.cat([
edge_rep, kp_t_r.view(B * n_kp**2, T, 2), kp_t_s.view(B * n_kp**2, T, 2)], 2)
if action is not None:
action_dim = self.args.action_dim
action_t = action.transpose(1, 2).contiguous().view(B, n_kp, T, action_dim)
action_t_r = action_t[:, :, None, :, :].repeat(1, 1, n_kp, 1, 1)
action_t_s = action_t[:, None, :, :, :].repeat(1, n_kp, 1, 1, 1)
# print('node_rep', node_rep.size(), 'edge_rep', edge_rep.size())
# print('action_t', action_t.size(), 'action_t_r', action_t_r.size(), 'action_t_s', action_t_s.size())
node_rep = torch.cat([
node_rep, action_t.view(B * n_kp, T, action_dim)], 2)
edge_rep = torch.cat([
edge_rep,
action_t_r.view(B * n_kp**2, T, action_dim),
action_t_s.view(B * n_kp**2, T, action_dim)], 2)
# node_rep: (B * n_kp) x T x (nf + 2 + action_dim)
# edge_rep: (B * n_kp * n_kp) x T x (nf + 4 + action_dim)
# node_rep_agg: (B * n_kp) x nf
# edge_rep_agg: (B * n_kp * n_kp) x nf
node_rep_agg = self.model_infer_node_agg(node_rep).view(B, n_kp, nf)
edge_rep_agg = self.model_infer_edge_agg(edge_rep).view(B, n_kp, n_kp, nf)
# edge_type_logits: B x n_kp x n_kp x edge_type_num
edge_type_logits = self.model_infer_affi_matx(node_rep_agg, edge_rep_agg, ignore_node=True)
if args.edge_share:
edge_type_logits = (edge_type_logits + torch.transpose(edge_type_logits, 1, 2)) / 2.
# edge_type: B x n_kp x n_kp x edge_type_num
# edge_type_logits: B x n_kp x n_kp x edge_type_num
edge_type = gumbel_softmax(edge_type_logits.view(B * n_kp * n_kp, args.edge_type_num), hard=hard)
edge_type = edge_type.view(B, n_kp, n_kp, args.edge_type_num)
if self.propnet_selfloop == False:
edge_type = edge_type * self.mask_remove_self_loop
# node_attr: B x n_kp x node_attr_dim
# edge_attr: B x n_kp x n_kp x edge_attr_dim
node_attr, edge_attr = self.model_infer_graph_attr(node_rep_agg, edge_rep_agg, edge_type)
if args.edge_share:
edge_attr = (edge_attr + torch.transpose(edge_attr, 1, 2)) / 2.
# node_attr: B x n_kp x node_attr_dim
# edge_attr: B x n_kp x n_kp x edge_attr_dim
# edge_type: B x n_kp x n_kp x edge_type_num
# edge_type_logits: B x n_kp x n_kp x edge_type_num
self.graph = [node_attr, edge_attr, edge_type, edge_type_logits]
return self.graph
def dynam_prediction(self, kp, graph, action=None, eps=5e-2, env=None):
# kp: B x n_his x n_kp x (2 + 4)
# action:
# ToyFullAct, BallAct, BallFullAct, BallFullActFull: B x n_his x n_kp x action_dim
# Fluid: B x n_his x action_dim
args = self.args
nf = args.nf_hidden_dy * 4
action_dim = args.action_dim
node_attr_dim = args.node_attr_dim
edge_attr_dim = args.edge_attr_dim
edge_type_num = args.edge_type_num
B, n_his, n_kp, _ = kp.size()
# node_attr: B x n_kp x node_attr_dim
# edge_attr: B x n_kp x n_kp x edge_attr_dim
# edge_type: B x n_kp x n_kp x edge_type_num
# edge_type_logits: B x n_kp x n_kp x edge_type_num
node_attr, edge_attr, edge_type, edge_type_logits = graph
# node_enc: B x n_his x n_kp x nf
# edge_enc: B x n_his x (n_kp * n_kp) x nf
node_enc = torch.cat([kp, node_attr.view(B, 1, n_kp, node_attr_dim).repeat(1, n_his, 1, 1)], 3)
edge_enc = torch.cat([
torch.cat([kp[:, :, :, None, :].repeat(1, 1, 1, n_kp, 1),
kp[:, :, None, :, :].repeat(1, 1, n_kp, 1, 1)], 4),
edge_attr.view(B, 1, n_kp, n_kp, edge_attr_dim).repeat(1, n_his, 1, 1, 1)], 4)
node_enc, edge_enc = self.model_dynam_encode(
node_enc.view(B * n_his, n_kp, node_attr_dim + 6),
edge_enc.view(B * n_his, n_kp, n_kp, edge_attr_dim + 12),
edge_type[:, None, :, :, :].repeat(1, n_his, 1, 1, 1).view(B * n_his, n_kp, n_kp, edge_type_num),
start_idx=args.edge_st_idx)
node_enc = node_enc.view(B, n_his, n_kp, nf)
edge_enc = edge_enc.view(B, n_his, n_kp * n_kp, nf)
# node_enc: B x n_kp x n_his x nf
# edge_enc: B x (n_kp * n_kp) x n_his x nf
node_enc = node_enc.transpose(1, 2).contiguous().view(B, n_kp, n_his, nf)
edge_enc = edge_enc.transpose(1, 2).contiguous().view(B, n_kp * n_kp, n_his, nf)
# node_enc: B x n_kp x n_his x (nf + node_attr_dim + action_dim)
# kp_node: B x n_kp x n_his x 6
kp_node = kp.transpose(1, 2).contiguous().view(B, n_kp, n_his, 6)
node_enc = torch.cat([
kp_node, node_enc, node_attr.view(B, n_kp, 1, node_attr_dim).repeat(1, 1, n_his, 1)], 3)
# edge_enc: B x (n_kp * n_kp) x n_his x (nf + edge_attr_dim + action_dim)
# kp_edge: B x (n_kp * n_kp) x n_his x (2 + 2)
kp_edge = torch.cat([
kp_node[:, :, None, :, :].repeat(1, 1, n_kp, 1, 1),
kp_node[:, None, :, :, :].repeat(1, n_kp, 1, 1, 1)], 4)
kp_edge = kp_edge.view(B, n_kp**2, n_his, 12)
edge_enc = torch.cat([
kp_edge, edge_enc, edge_attr.view(B, n_kp**2, 1, edge_attr_dim).repeat(1, 1, n_his, 1)], 3)
# append action
if action is not None:
action_t = action.transpose(1, 2).contiguous()
action_t_r = action_t[:, :, None, :, :].repeat(1, 1, n_kp, 1, 1).view(B, n_kp**2, n_his, action_dim)
action_t_s = action_t[:, None, :, :, :].repeat(1, n_kp, 1, 1, 1).view(B, n_kp**2, n_his, action_dim)
# print('node_enc', node_enc.size(), 'edge_enc', edge_enc.size())
# print('action_t', action_t.size(), 'action_t_r', action_t_r.size(), 'action_t_s', action_t_s.size())
node_enc = torch.cat([node_enc, action_t], 3)
edge_enc = torch.cat([edge_enc, action_t_r, action_t_s], 3)
# node_enc: B x n_kp x nf
# edge_enc: B x n_kp x n_kp x nf
node_enc = self.model_dynam_node_forward(
node_enc.view(B * n_kp, n_his, -1)).view(B, n_kp, nf)
edge_enc = self.model_dynam_edge_forward(
edge_enc.view(B * n_kp**2, n_his, -1)).view(B, n_kp, n_kp, nf)
# kp_pred: B x n_kp x (2 + 3)
node_enc = torch.cat([node_enc, node_attr, kp_node[:, :, -1]], 2)
edge_enc = torch.cat([edge_enc, edge_attr, kp_edge[:, :, -1].view(B, n_kp, n_kp, 12)], 3)
if action is not None:
# print('node_enc', node_enc.size(), 'edge_enc', edge_enc.size(), 'action', action.size())
action_r = action[:, :, :, None, :].repeat(1, 1, 1, n_kp, 1)
action_s = action[:, :, None, :, :].repeat(1, 1, n_kp, 1, 1)
node_enc = torch.cat([node_enc, action[:, -1]], 2)
edge_enc = torch.cat([edge_enc, action_r[:, -1], action_s[:, -1]], 3)
kp_pred = self.model_dynam_decode(
node_enc, edge_enc, edge_type,
start_idx=args.edge_st_idx, ignore_edge=True)
# kp_pred: B x n_kp x (2 + 4)
kp_pred = torch.cat([
kp[:, -1, :, :2] + kp_pred[:, :, :2], # mean
F.relu(kp_pred[:, :, 2:3]) + args.gauss_std, # covar (0, 0), need to > 0
torch.zeros(B, n_kp, 1).cuda(), # covar (0, 1)
kp_pred[:, :, 3:4], # covar (1, 0)
F.relu(kp_pred[:, :, 4:5]) + args.gauss_std], # covar (1, 1), need to > 0
dim=2)
return kp_pred
def forward(self, feat, hmap, action=None):
pass