-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy patheval_dy.py
847 lines (636 loc) · 29.2 KB
/
eval_dy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
import os
import time
import random
import itertools
import matplotlib.pyplot as plt
plt.rcParams["font.family"] = 'Times New Roman'
plt.rcParams["font.size"] = 12
import cv2
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from progressbar import ProgressBar
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch.utils.data import Dataset, DataLoader
import torchvision.transforms as transforms
from config import gen_args
from data import PhysicsDataset, load_data, store_data, resize_and_crop, pil_loader
from models_kp import KeyPointNet
from models_dy import DynaNetGNN, HLoss
from utils import count_parameters, Tee, AverageMeter, to_np, to_var, norm, set_seed
from data import normalize, denormalize
args = gen_args()
use_gpu = torch.cuda.is_available()
set_seed(args.random_seed)
# used for cnn encoder, minimum input observation length
min_res = args.min_res
'''
model
'''
model_kp = KeyPointNet(args, use_gpu=use_gpu)
# print model #params
print("model #params: %d" % count_parameters(model_kp))
model_kp_path = os.path.join(
args.outf_kp, 'net_kp_epoch_%d_iter_%d.pth' % (args.eval_kp_epoch, args.eval_kp_iter))
print("Loading saved ckp from %s" % model_kp_path)
model_kp.load_state_dict(torch.load(model_kp_path))
model_kp.eval()
if args.stage == 'dy':
if args.dy_model == 'mlp':
model_dy = DynaNetMLP(args, use_gpu=use_gpu)
elif args.dy_model == 'gnn':
model_dy = DynaNetGNN(args, use_gpu=use_gpu)
# print model #params
print("model #params: %d" % count_parameters(model_dy))
if args.eval_dy_epoch == -1:
model_kp_path = os.path.join(args.outf_kp, 'net_best_kp.pth')
model_dy_path = os.path.join(args.outf_dy, 'net_best_dy.pth')
else:
model_dy_path = os.path.join(
args.outf_dy, 'net_dy_epoch_%d_iter_%d.pth' % (args.eval_dy_epoch, args.eval_dy_iter))
print("Loading saved ckp from %s" % model_dy_path)
model_dy.load_state_dict(torch.load(model_dy_path))
model_dy.eval()
if use_gpu:
model_kp.cuda()
model_dy.cuda()
criterionMSE = nn.MSELoss()
criterionH = HLoss()
'''
data
'''
data_dir = os.path.join(args.dataf, args.eval_set)
if args.env in ['Ball']:
data_names = ['attrs', 'states', 'actions', 'rels']
elif args.env in ['Cloth']:
data_names = ['states', 'actions', 'scene_params']
loader = pil_loader
trans_to_tensor = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
'''
store results
'''
os.system('mkdir -p ' + args.evalf)
log_path = os.path.join(args.evalf, 'log.txt')
tee = Tee(log_path, 'w')
def draw_graph(keypoint, edge_type, lim, c, file_name):
# draw pred confidence
fig, ax = plt.subplots(1)
plt.xlim(lim[0], lim[1])
plt.ylim(lim[2], lim[3])
height = 400.
for j in range(keypoint.shape[0]):
x, y = keypoint[j, 0], keypoint[j, 1]
x = x / height * 2
x -= lim[1]
y = y / height * 2
y -= lim[3]
y = -y
if args.vis_edge == 1:
for k in range(keypoint.shape[0]):
if k == j:
continue
xx, yy = keypoint[k, 0], keypoint[k, 1]
xx = xx / height * 2
xx -= lim[1]
yy = yy / height * 2
yy -= lim[3]
yy = -yy
edge_type_cur = edge_type[j, k]
if edge_type_cur < args.edge_st_idx:
continue
dist = norm(np.array([x - xx, y - yy]))
direct = np.array([x - xx, y - yy]) / dist
ax.arrow(xx + direct[0] * 0.05, yy + direct[1] * 0.05,
x - xx - direct[0] * 0.15, y - yy - direct[1] * 0.15,
fc=c[edge_type_cur], ec='w', width=0.02, head_width=0.06, head_length=0.06, alpha=0.5)
ax.scatter(x, y, c=c[j], s=150)
ax.set_aspect('equal')
plt.tight_layout()
# plt.show()
plt.savefig(file_name)
plt.close()
def evaluate(roll_idx, video=True, image=True):
fwd_loss_mse_cur = []
eval_path = os.path.join(args.evalf, str(roll_idx))
split = 4
if args.env in ['Ball', 'Cloth']:
n_split_w = 3
n_split_h = 1
n_kp = args.n_kp
if image:
os.system('mkdir -p ' + eval_path)
print('Save images to %s' % eval_path)
if video:
video_path = eval_path + '.avi'
fourcc = cv2.VideoWriter_fourcc('M', 'J', 'P', 'G')
print('Save video as %s' % video_path)
width_raw = 400
height_raw = 400
out = cv2.VideoWriter(video_path, fourcc, 10, (
width_raw * n_split_w + split * (n_split_w - 1),
height_raw * n_split_h + split * (n_split_h - 1)))
# load images
fig_suffix = '.png' if args.env == 'Ball' else '.jpg'
imgs = []
for i in range(args.eval_st_idx, args.eval_ed_idx):
img_path = os.path.join(data_dir, str(roll_idx), 'fig_%d%s' % (i * args.frame_offset, fig_suffix))
img = loader(img_path)
img = resize_and_crop('valid', img, args.scale_size, args.crop_size)
img = trans_to_tensor(img).unsqueeze(0).cuda()
imgs.append(img)
imgs = torch.cat(imgs, 0)
# load action
if args.env in ['Ball']:
data_path = os.path.join(data_dir, str(roll_idx) + '.h5')
data = load_data(data_names, data_path)
actions = data[data_names.index('actions')] / 600.
actions = torch.FloatTensor(actions).cuda()
actions_id = actions[args.identify_st_idx:args.identify_ed_idx]
elif args.env in ['Cloth']:
data_path = os.path.join(data_dir, str(roll_idx) + '.h5')
data = load_data(data_names, data_path)
states = data[data_names.index('states')][::args.frame_offset]
actions_raw = data[data_names.index('actions')][::args.frame_offset]
scene_params = data[data_names.index('scene_params')]
stiffness = scene_params[15]
ctrl_idx = scene_params[7:15].astype(np.int)
actions = np.zeros((states.shape[0], 6))
actions[:, :3] = states[
np.arange(actions.shape[0]),
ctrl_idx[actions_raw[:, 0, 0].astype(np.int)],
:3] / 0.5 # normalize
actions[:, 3:] = actions_raw[:, 0, 1:] / 0.03 # normalize
actions = torch.FloatTensor(actions)[:, None, :].repeat(1, args.n_kp, 1)
actions = actions.cuda()
actions_id = actions[args.identify_st_idx:args.identify_ed_idx]
'''
model prediction
'''
### metadata
metadata_path = os.path.join(data_dir, str(roll_idx) + '.h5')
metadata = load_data(data_names, metadata_path)
if args.env in ['Ball']:
# graph_gt
edge_type = metadata[data_names.index('rels')][0, :, 0].astype(np.int)
edge_attr = metadata[data_names.index('rels')][0, :, 1:]
edge_type_gt = np.zeros((args.n_kp, args.n_kp, args.edge_type_num))
edge_attr_gt = np.zeros((args.n_kp, args.n_kp, edge_attr.shape[1]))
cnt = 0
# print(edge_type)
# print(edge_attr)
for x in range(args.n_kp):
for y in range(x):
edge_type_gt[x, y, edge_type[cnt]] = 1.
edge_type_gt[y, x, edge_type[cnt]] = 1.
edge_attr_gt[x, y] = edge_attr[cnt]
edge_attr_gt[y, x] = edge_attr[cnt]
cnt += 1
graph_gt_ret = edge_type_gt, edge_attr_gt
edge_type_gt = torch.FloatTensor(edge_type_gt).cuda()
edge_attr_gt = torch.FloatTensor(edge_attr_gt).cuda()
graph_gt = edge_type_gt, edge_attr_gt
# kps_gt
kps = metadata[1][args.eval_st_idx:args.eval_ed_idx, :, :2] / 80.
kps[:, :, 1] *= -1
kps = torch.FloatTensor(kps).cuda()
kps_id = metadata[1][args.identify_st_idx:args.identify_ed_idx, :, :2] / 80.
kps_id = torch.FloatTensor(kps_id).cuda()
kps_id[:, :, 1] *= -1
kps_gt = kps
kps_gt_id = kps_id
kps = None
kps_id = None
elif args.env in ['Cloth']:
kps = None
kps_id = None
'''
data for identification
'''
imgs_id = []
for i in range(args.identify_st_idx, args.identify_ed_idx):
img_path = os.path.join(data_dir, str(roll_idx), 'fig_%d%s' % (i * args.frame_offset, fig_suffix))
img = loader(img_path)
img = resize_and_crop('valid', img, args.scale_size, args.crop_size)
img = trans_to_tensor(img).unsqueeze(0).cuda()
imgs_id.append(img)
imgs_id = torch.cat(imgs_id, 0)
### Evaluate the performance on graph discovery
with torch.set_grad_enabled(False):
# extract features for prediction
feats = model_kp.extract_feature(imgs)
kps = model_kp.predict_keypoint(imgs)
hmaps = model_kp.keypoint_to_heatmap(kps, inv_std=args.inv_std)
# extract features for graph identification
# feats_id = model_kp.extract_feature(imgs_id)
kps_id = model_kp.predict_keypoint(imgs_id)
# hmaps_id = model_kp.keypoint_to_heatmap(kps_id, inv_std=args.inv_std)
'''
print(kps_id[0])
print(kps_gt_id[0])
'''
# permute the keypoints to make the calculation of edge accuracy correct
if args.env in ['Ball']:
permu_node_list = list(itertools.permutations(np.arange(args.n_kp)))
permu_node_error = np.inf
permu_node_idx = None
for ii in permu_node_list:
p = np.array(ii)
kps_permuted = kps[:, p]
error = torch.mean((kps_permuted - kps_gt)**2).item()
if error < permu_node_error:
permu_node_error = error
permu_node_idx = p
print('selected node permu', permu_node_idx)
kps = kps[:, permu_node_idx]
kps_id = kps_id[:, permu_node_idx]
graphs = []
for i in range(min_res, kps_id.size(0) + 1):
edge_type_distribution = 0
edge_attr_distribution = []
if args.baseline == 1:
graph = model_dy.init_graph(kps_id[:i].unsqueeze(0), use_gpu=True, hard=True)
else:
graph = model_dy.graph_inference(
kps_id[:i].unsqueeze(0),
actions_id[:i].unsqueeze(0) if actions_id is not None else None,
hard=True, env=args.env)
graphs.append(graph) # append the inferred graph
# edge_type_logits = graph[3][:, :, :, -1].view(-1, args.edge_type_num)
edge_type_logits = graphs[-1][3].view(-1, args.edge_type_num)
loss_H = -criterionH(edge_type_logits, args.prior)
edge_attr, edge_type_logits = graphs[-1][1], graphs[-1][3]
graph_pred_ret = to_np(edge_attr[0]), to_np(edge_type_logits[0])
if args.env in ['Ball']:
# record the inferred graph over different observation length
idx_gt = torch.argmax(edge_type_gt, dim=2)
idx_pred = torch.argmax(edge_type_logits[0], dim=2)
assert idx_gt.size() == torch.Size([n_kp, n_kp])
assert idx_pred.size() == torch.Size([n_kp, n_kp])
idx_gt = to_np(idx_gt)
idx_pred = to_np(idx_pred)
permu_edge_list = list(itertools.permutations(np.arange(args.edge_type_num)))
permu_edge_acc = 0.
permu_edge_idx = None
for ii in permu_edge_list:
p = np.array(ii)
idx_mapped = p[idx_gt]
acc = np.logical_and(idx_mapped == idx_pred, np.logical_not(np.eye(n_kp)))
acc = np.sum(acc) / (n_kp * (n_kp - 1))
if acc > permu_edge_acc:
permu_edge_acc = acc
permu_edge_idx = p
if args.env in ['Ball']:
# permu_edge_idx = np.array([0, 2, 1])
permu_edge_idx = np.array([0, 1, 2])
print('selected edge premu', permu_edge_idx)
# record the edge type accuracy over time
acc_over_time = np.zeros(len(graphs))
ent_over_time = np.zeros(len(graphs))
for i in range(len(graphs)):
edge_type_logits_cur = graphs[i][3][0]
# accuracy
idx_pred = torch.argmax(edge_type_logits_cur, dim=2)
assert idx_pred.size() == torch.Size([n_kp, n_kp])
idx_pred = to_np(idx_pred)
idx_mapped = permu_edge_idx[idx_gt]
tmp = np.logical_and(idx_mapped == idx_pred, np.logical_not(np.eye(n_kp)))
acc_over_time[i] = np.sum(tmp) / (n_kp * (n_kp - 1))
# entropy
ent = F.softmax(edge_type_logits_cur, dim=2) * F.log_softmax(edge_type_logits_cur, dim=2)
ent = -ent.sum(2)
ent = ent.mean().item()
ent_over_time[i] = ent
print("Edge accuracy over different observation length:")
print(acc_over_time)
print("Entropy on edge distribution over different observation length:")
print(ent_over_time)
# record the edge param correlation over time
cor_over_time_raw = []
for i in range(len(graphs)):
edge_attr_np = to_np(graphs[i][1][0])
edge_attr_gt_np = graph_gt_ret[1]
# print(edge_attr_np.shape, edge_attr_gt_np.shape)
if args.env in ['Ball']:
idx_rel = np.argmax(graph_gt_ret[0], axis=2)
idx_empty = np.logical_and(idx_rel == 0, np.logical_not(np.eye(n_kp)))
idx_spring = np.logical_and(idx_rel == 1, np.logical_not(np.eye(n_kp)))
idx_rod = np.logical_and(idx_rel == 2, np.logical_not(np.eye(n_kp)))
cor_over_time_raw.append([
[edge_attr_np[idx_empty], edge_attr_gt_np[idx_empty]],
[edge_attr_np[idx_spring], edge_attr_gt_np[idx_spring]],
[edge_attr_np[idx_rod], edge_attr_gt_np[idx_rod]]])
over_time_results = acc_over_time, ent_over_time, cor_over_time_raw
else:
# record the entropy over edge type over time
ent_over_time = np.zeros(len(graphs))
for i in range(len(graphs)):
edge_type_logits_cur = graphs[i][3][0]
# entropy
ent = F.softmax(edge_type_logits_cur, dim=2) * F.log_softmax(edge_type_logits_cur, dim=2)
ent = -ent.sum(2)
ent = ent.mean().item()
ent_over_time[i] = ent
print("Entropy on edge distribution over different observation length:")
print(ent_over_time)
over_time_results = ent_over_time
### Evaluate the performance on forward prediction
# the current keypoint state
eps = 5e-2
kp_cur = kps[:args.n_his].view(1, args.n_his, args.n_kp, 2)
covar_gt = torch.FloatTensor(np.array([eps, 0., 0., eps])).cuda()
covar_gt = covar_gt.view(1, 1, 1, 4).repeat(1, args.n_his, args.n_kp, 1)
kp_cur = torch.cat([kp_cur, covar_gt], 3)
# kp_cur = kps[:args.n_his].view(1, args.n_his, args.n_kp, 2)
loss_kp_acc = 0.
n_roll = args.eval_ed_idx - args.eval_st_idx - args.n_his
for i in range(args.eval_ed_idx - args.eval_st_idx):
if args.stage == 'dy':
if i >= args.n_his:
with torch.set_grad_enabled(False):
# predict the feat and hmap at the next time step
if actions is not None:
action_cur = actions[i-args.n_his+args.eval_st_idx:i+args.eval_st_idx].unsqueeze(0)
else:
action_cur = None
kp_pred = model_dy.dynam_prediction(kp_cur, graph, action_cur, env=args.env)
mean_pred, covar_pred = kp_pred[:, :, :2], kp_pred[:, :, 2:].view(1, n_kp, 2, 2)
# compare with the ground truth
kp_des = kps[i:i+1]
loss_kp = criterionMSE(mean_pred, kp_des) * args.lam_kp
fwd_loss_mse_cur.append(F.mse_loss(mean_pred, kp_des).item())
# print(loss_rec.item(), loss_kp.item())
loss_kp_acc += loss_kp.item()
if i == args.n_his or i % 1 == 0:
print("step %d, kp: %.6f (%.6f), H: %.6f" % (
i, loss_kp.item(), loss_kp_acc / (i - args.n_his + 1), loss_H.item()))
# update feat_cur and hmap_cur
kp_cur = torch.cat([kp_cur[:, 1:], kp_pred.unsqueeze(1)], 1)
# img_pred & heatmap
keypoint = mean_pred
keypoint_covar = covar_pred
keypoint_gt = kp_des
else:
kp_cur_t = kps[i:i+1]
keypoint = kp_cur_t
keypoint_covar = covar_gt[:, -1].view(1, n_kp, 2, 2)
keypoint_gt = kp_cur_t
# generate the visualization
img_path = os.path.join(data_dir, str(roll_idx), 'fig_%d%s' % (
(i + args.eval_st_idx) * args.frame_offset, fig_suffix))
img = cv2.imread(img_path).astype(np.float)
img = cv2.resize(img, (400, 400))
overlay_gt = img.copy()
overlay_pred = img.copy()
c = [(255, 105, 65), (0, 69, 255), (50, 205, 50), (0, 165, 255), (238, 130, 238),
(128, 128, 128), (30, 105, 210), (147, 20, 255), (205, 90, 106), (0, 215, 255)]
# draw prediction
lim = args.lim
keypoint = to_np(keypoint)[0] - [lim[0], lim[2]]
keypoint *= 400 / 2.
keypoint = np.round(keypoint).astype(np.int)
keypoint_covar = to_np(keypoint_covar[0])
if args.env in ['Ball']:
for j in range(keypoint.shape[0]):
cv2.circle(overlay_pred, (keypoint[j, 0], keypoint[j, 1]), 8, c[j], -1)
cv2.circle(overlay_pred, (keypoint[j, 0], keypoint[j, 1]), 8, (255, 255, 255), 1)
elif args.env in ['Cloth']:
for j in range(keypoint.shape[0]):
cv2.circle(overlay_pred, (keypoint[j, 0], keypoint[j, 1]), 8, c[j], -1)
cv2.circle(overlay_pred, (keypoint[j, 0], keypoint[j, 1]), 8, (255, 255, 255), 1)
# draw gt
keypoint_gt = to_np(keypoint_gt)[0] - [lim[0], lim[2]]
keypoint_gt *= 400 / 2.
keypoint_gt = np.round(keypoint_gt).astype(np.int)
if args.env in ['Ball']:
for j in range(keypoint.shape[0]):
cv2.circle(overlay_gt, (keypoint_gt[j, 0], keypoint_gt[j, 1]), 8, c[j], -1)
cv2.circle(overlay_gt, (keypoint_gt[j, 0], keypoint_gt[j, 1]), 8, (255, 255, 255), 1)
# cv2.circle(overlay_pred, (keypoint_gt[j, 0], keypoint_gt[j, 1]), 4, c[j], -1)
# cv2.circle(overlay_pred, (keypoint_gt[j, 0], keypoint_gt[j, 1]), 4, (255, 255, 255), 1)
elif args.env in ['Cloth']:
for j in range(keypoint.shape[0]):
cv2.circle(overlay_gt, (keypoint_gt[j, 0], keypoint_gt[j, 1]), 8, c[j], -1)
cv2.circle(overlay_gt, (keypoint_gt[j, 0], keypoint_gt[j, 1]), 8, (255, 255, 255), 1)
# cv2.circle(overlay_pred, (keypoint_gt[j, 0], keypoint_gt[j, 1]), 8, c[j], -1)
# cv2.circle(overlay_pred, (keypoint_gt[j, 0], keypoint_gt[j, 1]), 8, (255, 255, 255), 1)
if image:
# draw predicted graph
c = ['royalblue', 'orangered', 'limegreen', 'orange', 'violet',
'gray', 'chocolate', 'deeppink', 'slateblue', 'gold']
file_name=os.path.join(eval_path, 'graph_pred_%d.png' % i)
draw_graph(
keypoint,
edge_type=np.argmax(to_np(
edge_type_logits.view(args.n_kp, args.n_kp, args.edge_type_num)), -1),
lim=lim, c=c,
file_name=file_name)
img_graph_pred = cv2.imread(file_name)[28:28+400, 119:119+400]
# draw ground truth graph
if args.env in ['Ball']:
file_name = os.path.join(eval_path, 'graph_gt_%d.png' % i)
draw_graph(
keypoint_gt,
edge_type=np.argmax(to_np(edge_type_gt), -1),
lim=lim, c=c,
file_name=file_name)
img_graph_gt = cv2.imread(file_name)[28:28+400, 119:119+400]
if image or video:
img_h = img_graph_pred.shape[0]
img_w = img_graph_pred.shape[1]
merge = np.zeros((
img_h * n_split_h + split * (n_split_h - 1),
img_w * n_split_w + split * (n_split_w - 1), 3)) * 255.
if args.env in ['Ball']:
overlay_pred = cv2.resize(overlay_pred, (img_w, img_h))
overlay_gt = cv2.resize(overlay_gt, (img_w, img_h))
merge[:, :img_w] = img_graph_gt
merge[:, img_w + split:img_w * 2 + split] = img_graph_pred
merge[:, img_w * 2 + split * 2:] = overlay_pred
elif args.env in ['Cloth']:
merge[:, :img_w] = img_graph_pred
merge[:, img_w + split:img_w * 2 + split] = overlay_pred
merge[:, img_w * 2 + split * 2:, :] = overlay_gt
merge = merge.astype(np.uint8)
if image:
cv2.imwrite(os.path.join(eval_path, 'fig_%d.png' % i), merge)
if video:
out.write(merge)
if video:
out.release()
print("kp: %.6f" % (loss_kp_acc / n_roll))
if args.env in ['Ball']:
return graph_gt_ret, graph_pred_ret, over_time_results, np.array(fwd_loss_mse_cur)
elif args.env in ['Cloth']:
return graph_pred_ret, over_time_results, np.array(fwd_loss_mse_cur)
if args.store_demo == 1:
ls_rollout_idx = np.arange(10)
else:
ls_rollout_idx = np.arange(200)
bar = ProgressBar()
### visualize the results
edge_acc_over_time_record = np.zeros(
(len(ls_rollout_idx), args.identify_ed_idx - args.identify_st_idx - min_res + 1))
edge_ent_over_time_record = np.zeros(
(len(ls_rollout_idx), args.identify_ed_idx - args.identify_st_idx - min_res + 1))
edge_cor_over_time_raw_record = []
fwd_loss_mse = []
for roll_idx in bar(ls_rollout_idx):
print()
print("Eval # %d / %d" % (roll_idx, ls_rollout_idx[-1]))
if args.env in ['Ball']:
graph_gt, graph_pred, over_time_results, fwd_loss_mse_cur = evaluate(
roll_idx, video=args.store_demo, image=args.store_demo)
elif args.env in ['Cloth']:
gt_pred, over_time_results, fwd_loss_mse_cur = evaluate(
roll_idx, video=args.store_demo, image=args.store_demo)
fwd_loss_mse.append(fwd_loss_mse_cur)
if args.env in ['Ball']:
edge_acc_over_time_record[roll_idx] = over_time_results[0]
edge_ent_over_time_record[roll_idx] = over_time_results[1]
edge_cor_over_time_raw_record.append(over_time_results[2])
elif args.env in ['Cloth']:
edge_ent_over_time_record[roll_idx] = over_time_results
fwd_loss_mse = np.array(fwd_loss_mse)
print()
print('MSE on forward prediction', fwd_loss_mse.shape)
for i in range(fwd_loss_mse.shape[1]):
print('Step:', i, 'mean: %.6f' % np.mean(fwd_loss_mse[:, i]), 'std: %.6f' % np.std(fwd_loss_mse[:, i]))
def plot_data_mean(ax, data, color, label):
m, lo, hi = np.mean(data, 0), \
np.mean(data, 0) - np.std(data, 0), \
np.mean(data, 0) + np.std(data, 0)
T = len(m)
x = np.arange(min_res, min_res + T)
ax.plot(x, m, '-', color=color, alpha=0.8, label=label)
ax.fill_between(x, lo, hi, color=color, alpha=0.2)
def plot_data_median(ax, data, color, label):
m, lo, hi = np.median(data, 0), \
np.quantile(data, 0.25, 0), \
np.quantile(data, 0.75, 0)
T = len(m)
x = np.arange(min_res, min_res + T)
ax.plot(x, m, '-', color=color, alpha=0.8, label=label)
ax.fill_between(x, lo, hi, color=color, alpha=0.2)
# plot edge accuracy over time
if args.env in ['Ball']:
fig, ax = plt.subplots(1, 1, figsize=(3, 3), dpi=200)
plot_data_median(ax, edge_acc_over_time_record, color='b', label='Acc')
# plt.legend(loc='best', fontsize=12)
plt.xlabel('# of observation frames', fontsize=15)
plt.ylabel('Accuracy on edge type', fontsize=15)
plt.xlim([min_res, args.identify_ed_idx - args.identify_st_idx])
plt.ylim([0.6, 1])
plt.tight_layout(pad=0)
plt.savefig(os.path.join(args.evalf, 'acc.png'))
plt.savefig(os.path.join(args.evalf, 'acc.pdf'))
plt.show()
# plot edge entropy over time
if args.env in ['Ball']:
fig, ax = plt.subplots(1, 1, figsize=(3, 3), dpi=200)
plot_data_median(ax, edge_ent_over_time_record, color='b', label='Entropy')
# plt.legend(loc='best', fontsize=12)
plt.xlabel('# of observation frames', fontsize=15)
plt.ylabel('Entropy on edge type', fontsize=15)
plt.xlim([min_res, args.identify_ed_idx - args.identify_st_idx])
plt.ylim([0.23, 0.34])
plt.yticks(np.arange(0.24, 0.35, 0.02))
plt.tight_layout(pad=0)
plt.savefig(os.path.join(args.evalf, 'ent.png'))
plt.savefig(os.path.join(args.evalf, 'ent.pdf'))
plt.show()
# plot edge attr correlation over time
if args.env in ['Ball']:
edge_cor_over_time_record = []
for idx_rel in range(args.edge_st_idx, len(edge_cor_over_time_raw_record[0][0])):
edge_cor_over_time_cur = np.zeros(
(args.identify_ed_idx - args.identify_st_idx - min_res + 1))
for i in range(len(edge_cor_over_time_raw_record[0])):
edge_attr_gt = []
edge_attr_pred = []
for j in range(len(edge_cor_over_time_raw_record)):
edge_attr_gt.append(edge_cor_over_time_raw_record[j][i][idx_rel][1])
edge_attr_pred.append(edge_cor_over_time_raw_record[j][i][idx_rel][0])
edge_attr_gt = np.concatenate(edge_attr_gt).reshape(-1)
edge_attr_pred = np.concatenate(edge_attr_pred).reshape(-1)
edge_cor_over_time_cur[i] = np.corrcoef(edge_attr_gt, edge_attr_pred)[0, 1]
fig, ax = plt.subplots(1, 1, figsize=(3, 3), dpi=200)
# plot_data_median(ax, edge_cor_over_time_record, color='b', label='Cor')
plt.plot(np.arange(min_res, args.identify_ed_idx - args.identify_st_idx + 1),
np.abs(edge_cor_over_time_cur))
plt.xlabel('# of observation frames', fontsize=15)
plt.ylabel('Correlation on edge attr (Abs)', fontsize=15)
plt.xlim([min_res, args.identify_ed_idx - args.identify_st_idx])
plt.ylim([0.8, 0.95])
plt.yticks(np.arange(0.8, 1.0, 0.05))
plt.tight_layout(pad=0)
plt.savefig(os.path.join(args.evalf, 'cor_%d.png' % idx_rel))
plt.savefig(os.path.join(args.evalf, 'cor_%d.pdf' % idx_rel))
plt.show()
edge_cor_over_time_record.append(edge_cor_over_time_cur)
# plot the scatter plot on attr at the last step
if args.env in ['Ball']:
for idx_rel in range(args.edge_st_idx, len(edge_cor_over_time_raw_record[0][0])):
fig, ax = plt.subplots(1, 1, figsize=(3, 3), dpi=200)
attr_pred = []
attr_gt = []
for i in range(len(edge_cor_over_time_raw_record)):
attr_pred.append(edge_cor_over_time_raw_record[i][-1][idx_rel][0])
attr_gt.append(edge_cor_over_time_raw_record[i][-1][idx_rel][1])
attr_pred = np.concatenate(attr_pred, 0).reshape(-1)
attr_gt = np.concatenate(attr_gt, 0).reshape(-1)
if idx_rel == 1:
idx = np.logical_and(attr_pred < 4.5, attr_gt >= 20)
attr_gt = attr_gt[idx]
attr_pred = attr_pred[idx]
elif idx_rel == 2:
idx = attr_gt <= 130
attr_gt = attr_gt[idx]
attr_pred = attr_pred[idx]
from scipy import stats
slope, intercept, r_value, p_value, std_err = \
stats.linregress(attr_gt, attr_pred)
# print(slope, intercept, r_value, p_value, std_err)
plt.scatter(attr_gt, attr_pred, c='r', s=4)
if idx_rel == 1:
plt.xticks(np.arange(20, 121, 20))
elif idx_rel == 2:
plt.xticks(np.arange(30, 131, 20))
plt.xlabel('Ground truth hidden confounder')
plt.ylabel('Predicted edge parameter')
plt.tight_layout(pad=0.8)
plt.savefig(os.path.join(args.evalf, 'cor_raw_%d.png' % idx_rel))
plt.savefig(os.path.join(args.evalf, 'cor_raw_%d.pdf' % idx_rel))
plt.show()
# store data for plotting
if args.env in ['Ball']:
# edge_acc_over_time: n_roll x n_timestep
record_names = ['edge_acc_over_time', 'edge_cor_over_time', 'fwd_loss_mse']
if args.baseline == 1:
record_path = os.path.join(args.evalf, 'rec_%d_baseline.h5' % args.n_kp)
else:
record_path = os.path.join(args.evalf, 'rec_%d.h5' % args.n_kp)
store_data(
record_names,
[edge_acc_over_time_record, edge_cor_over_time_record, fwd_loss_mse],
record_path)
print()
print('Edge Accuracy')
print('%.2f%%, std: %.6f' % (
np.mean(edge_acc_over_time_record[:, -1]) * 100.,
np.std(edge_acc_over_time_record[:, -1])))
print()
print('Correlation on Attributes')
for i in range(len(edge_cor_over_time_record)):
print('#%d:' % i, edge_cor_over_time_record[i][-1])
elif args.env in ['Cloth']:
record_names = ['fwd_loss_mse']
if args.baseline == 1:
record_path = os.path.join(args.evalf, 'rec_%d_baseline.h5' % args.n_kp)
else:
record_path = os.path.join(args.evalf, 'rec_%d.h5' % args.n_kp)
store_data(record_names, [fwd_loss_mse], record_path)