forked from HumanBrainProject/neuroglancer-scripts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstl_to_precomputed.py
82 lines (68 loc) · 3.07 KB
/
stl_to_precomputed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
#! /usr/bin/env python3
#
# Copyright (c) 2017, Forschungszentrum Juelich GmbH
# Author: Pavel Chervakov <[email protected]>
#
# This software is made available under the MIT licence, see LICENCE.txt.
"""
Convert a mesh from STL ASCII to Neuroglancer pre-computed mesh format
Currently STL triangles are just written to the output as is, i.e. normals are not considered
and equal vertices are not reused.
"""
import gzip
import struct
import sys
from functools import partial
# import numpy as np
__VERTEX_STR_PREFIX = ' vertex '
def __get_vertex(vstr: str, voxel_size):
assert vstr.startswith(__VERTEX_STR_PREFIX)
return list(map(lambda v: float(v) * 1e6 * voxel_size, vstr[len(__VERTEX_STR_PREFIX):-1].split()))
def __get_vertices(septuple, voxel_size):
assert len(septuple) == 7
assert septuple[0].startswith(' facet normal')
assert septuple[1] == ' outer loop\n'
assert septuple[5] == ' endloop\n'
assert septuple[6] == ' endfacet\n'
return [__get_vertex(septuple[2], voxel_size), __get_vertex(septuple[3], voxel_size), __get_vertex(septuple[4], voxel_size)]
def stl_file_to_precomputed(input_filename, output_filename, voxel_size=1.0, compress=True):
with open(input_filename) as input_file:
lines = input_file.readlines()
assert lines[0] == 'solid ascii\n'
assert lines[-1] == 'endsolid\n'
assert (len(lines) - 2) % 7 == 0
gv = partial(__get_vertices, voxel_size=voxel_size)
triples = list(map(gv, [lines[(i * 7) + 1 : ((i + 1) * 7) + 1] for i in range((len(lines) - 2) // 7)]))
vertices = [vertex for triple in triples for vertex in triple]
num_vertices = len(vertices)
buf = bytearray()
buf += struct.pack("<I", num_vertices)
for vertex in vertices:
buf += struct.pack("<fff", vertex[0], vertex[1], vertex[2])
assert len(buf) == 4 + 4 * 3 * num_vertices
for i in range(num_vertices):
buf += struct.pack("<I", i)
if compress:
with gzip.open(output_filename + ".gz", "wb") as output_file:
output_file.write(bytes(buf))
else:
with open(output_filename, "wb") as output_file:
output_file.write(bytes(buf))
if __name__ == "__main__": print('done')
def parse_command_line(argv):
"""Parse the script's command line."""
import argparse
parser = argparse.ArgumentParser(description="""Convert a mesh from STL ASCII to Neuroglancer pre-computed mesh format""")
parser.add_argument("input_filename")
parser.add_argument("output_filename")
parser.add_argument("--voxel-size", help="Voxel size in mm. Only isotropic voxels are supported for now. Default is 1.0",
type=float, default=1.0)
parser.add_argument("--no-compression", help="Don't gzip the output.", action="store_false", dest="compress")
args = parser.parse_args(argv[1:])
return args
def main(argv):
"""The script's entry point."""
args = parse_command_line(argv)
return stl_file_to_precomputed(args.input_filename, args.output_filename, args.voxel_size, args.compress) or 0
if __name__ == "__main__":
sys.exit(main(sys.argv))