forked from vbelz/Speech-enhancement
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprediction_denoise.py
55 lines (48 loc) · 2.43 KB
/
prediction_denoise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import librosa
import tensorflow as tf
from tensorflow.keras.models import model_from_json
from data_tools import scaled_in, inv_scaled_ou
from data_tools import audio_files_to_numpy, numpy_audio_to_matrix_spectrogram, matrix_spectrogram_to_numpy_audio
def prediction(weights_path, name_model, audio_dir_prediction, dir_save_prediction, audio_input_prediction,
audio_output_prediction, sample_rate, min_duration, frame_length, hop_length_frame, n_fft, hop_length_fft):
""" This function takes as input pretrained weights, noisy voice sound to denoise, predict
the denoise sound and save it to disk.
"""
# load json and create model
json_file = open(weights_path+'/'+name_model+'.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
loaded_model = model_from_json(loaded_model_json)
# load weights into new model
loaded_model.load_weights(weights_path+'/'+name_model+'.h5')
print("Loaded model from disk")
# Extracting noise and voice from folder and convert to numpy
audio = audio_files_to_numpy(audio_dir_prediction, audio_input_prediction, sample_rate,
frame_length, hop_length_frame, min_duration)
#Dimensions of squared spectrogram
dim_square_spec = int(n_fft / 2) + 1
print(dim_square_spec)
# Create Amplitude and phase of the sounds
m_amp_db_audio, m_pha_audio = numpy_audio_to_matrix_spectrogram(
audio, dim_square_spec, n_fft, hop_length_fft)
#global scaling to have distribution -1/1
X_in = scaled_in(m_amp_db_audio)
#Reshape for prediction
X_in = X_in.reshape(X_in.shape[0],X_in.shape[1],X_in.shape[2],1)
#Prediction using loaded network
X_pred = loaded_model.predict(X_in)
#Rescale back the noise model
inv_sca_X_pred = inv_scaled_ou(X_pred)
#Remove noise model from noisy speech
X_denoise = m_amp_db_audio - inv_sca_X_pred[:,:,:,0]
#Reconstruct audio from denoised spectrogram and phase
print(X_denoise.shape)
print(m_pha_audio.shape)
print(frame_length)
print(hop_length_fft)
audio_denoise_recons = matrix_spectrogram_to_numpy_audio(X_denoise, m_pha_audio, frame_length, hop_length_fft)
#Number of frames
nb_samples = audio_denoise_recons.shape[0]
#Save all frames in one file
denoise_long = audio_denoise_recons.reshape(1, nb_samples * frame_length)*10
librosa.output.write_wav(dir_save_prediction + audio_output_prediction, denoise_long[0, :], sample_rate)