forked from mosheman5/DNP
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpyramidnet.py
107 lines (96 loc) · 4.05 KB
/
pyramidnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import torch
import torch.nn as nn
import torch.nn.functional as F
class Unet(nn.Module):
def __init__(self, nlayers=12, nefilters=12):
super(Unet, self).__init__()
print('pyramid unet')
# nlayers = 12
self.num_layers = nlayers
self.nefilters = nefilters
filter_size = 15
merge_filter_size = 5
self.encoder = nn.ModuleList()
self.decoder = nn.ModuleList()
self.ebatch = nn.ModuleList()
self.dbatch = nn.ModuleList()
echannelin = [1] + [(i + 1) * nefilters for i in range(nlayers-1)]
echannelout = [(i + 1) * nefilters for i in range(nlayers)]
dchannelout = echannelout[::-1]
dchannelin = [dchannelout[0]*2]+[(i) * nefilters + (i - 1) * nefilters for i in range(nlayers,1,-1)]
for i in range(self.num_layers):
self.encoder.append(nn.Conv1d(echannelin[i],echannelout[i],filter_size,padding=filter_size//2))
self.decoder.append(nn.Conv1d(dchannelin[i],dchannelout[i],merge_filter_size,padding=merge_filter_size//2))
self.ebatch.append(nn.BatchNorm1d(echannelout[i]))
self.dbatch.append(nn.BatchNorm1d(dchannelout[i]))
rates = [1, 2, 3, 4]
self.aspp1 = ASPP(echannelout[-1], echannelout[-1]//4, rate=rates[0])
self.aspp2 = ASPP(echannelout[-1], echannelout[-1]//4, rate=rates[1])
self.aspp3 = ASPP(echannelout[-1], echannelout[-1]//4, rate=rates[2])
self.aspp4 = ASPP(echannelout[-1], echannelout[-1]//4, rate=rates[3])
self.global_avg_pool = nn.Sequential(nn.AdaptiveAvgPool1d(1),
nn.Conv1d(echannelout[-1], echannelout[-1]//4, 1, bias=False),
#nn.BatchNorm1d(echannelout[-1]//4),
nn.LeakyReLU(0.1))
self.middle = nn.Sequential(
nn.Conv1d(echannelout[-1]//4*5, echannelout[-1], 1, bias=False),
nn.BatchNorm1d(echannelout[-1]),
nn.LeakyReLU(0.1)
)
self.out = nn.Sequential(
nn.Conv1d(nefilters + 1, 1, 1),
nn.Tanh()
)
def forward(self,x):
encoder = list()
input = x
for i in range(self.num_layers):
x = self.encoder[i](x)
x = self.ebatch[i](x)
x = F.leaky_relu(x,0.1)
encoder.append(x)
x = x[:,:,::2]
x1 = self.aspp1(x)
x2 = self.aspp2(x)
x3 = self.aspp3(x)
x4 = self.aspp4(x)
x5 = self.global_avg_pool(x)
x5 = F.interpolate(x5, size=x4.size()[2:], mode='linear', align_corners=True)
x = torch.cat((x1, x2, x3, x4, x5), dim=1)
x = self.middle(x)
for i in range(self.num_layers):
x = F.interpolate(x,scale_factor=2,mode='linear', align_corners=False)
x = torch.cat([x,encoder[self.num_layers - i - 1]],dim=1)
x = self.decoder[i](x)
x = self.dbatch[i](x)
x = F.leaky_relu(x,0.1)
x = torch.cat([x,input],dim=1)
x = self.out(x)
return x
class ASPP(nn.Module):
def __init__(self, inplanes, planes, rate):
super(ASPP, self).__init__()
if rate == 1:
kernel_size = 1
padding = 0
else:
kernel_size = 3
padding = rate
self.convbnre = nn.Sequential(
nn.Conv1d(inplanes, planes, kernel_size=kernel_size,
stride=1, padding=padding, dilation=rate, bias=False),
nn.BatchNorm1d(planes),
nn.LeakyReLU(0.1)
)
self.__init_weight()
def forward(self, x):
return self.convbnre(x)
def __init_weight(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
# n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
# m.weight.data.normal_(0, math.sqrt(2. / n))
torch.nn.init.kaiming_normal_(m.weight)
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()