-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
179 lines (124 loc) · 5.16 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import torch
from torch import nn,optim
from torch.utils.data import DataLoader,Dataset
from torchsummary import summary
from torch.autograd import Function
from torch.optim.lr_scheduler import StepLR
import torchvision.transforms.functional as TF
import torchvision
from torchvision import transforms
from PIL import Image
import pickle
from tqdm import tqdm
import random
from sklearn import metrics
from skimage import io, filters
import joblib
import json
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import glob
import data_loader as dl
import model
from argparse import ArgumentParser
from torch.utils.tensorboard import SummaryWriter
parser = ArgumentParser()
parser.add_argument("-s", "--source", help="source domain path")
parser.add_argument("-t", "--target",help="target domain path")
parser.add_argument("-o", "--write_weight",help="write weight to")
parser.add_argument("-e", "--epoch",help="number of epoch")
parser.add_argument("-w", "--weight",help="model weight")
args = parser.parse_args()
SOURCE_DATA = args.source
TARGET_DATA = args.target
weight_path = args.write_weight
EPOCHS = int(args.epoch)
weight = args.weight
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
writer = SummaryWriter()
transf = transforms.Compose([transforms.ToTensor(), transforms.ToPILImage(), transforms.Resize((256,256)), transforms.ToTensor()])
SOURCE_TRAIN_SIZE = 0.8
TARGET_TRAIN_SIZE = 1
TRAINING_BATCH = 8
source_data_keys = dl.get_keys_from_pickle_dict(SOURCE_DATA)
target_data_keys = dl.get_keys_from_pickle_dict(TARGET_DATA)
random.shuffle(source_data_keys)
random.shuffle(target_data_keys)
source_ds_size = len(source_data_keys)
target_ds_size = len(target_data_keys)
source_train_keys,source_valid_keys = source_data_keys[:int(source_ds_size*SOURCE_TRAIN_SIZE)],source_data_keys[int(source_ds_size*SOURCE_TRAIN_SIZE):]
target_train_keys,target_valid_keys = target_data_keys[:int(target_ds_size*TARGET_TRAIN_SIZE)],target_data_keys[int(target_ds_size*TARGET_TRAIN_SIZE):]
train_ds = dl.DataFromPickle(SOURCE_DATA,TARGET_DATA,source_ds=source_train_keys,target_ds=target_train_keys,transform=transf)
valid_ds = dl.DataFromPickle(SOURCE_DATA,TARGET_DATA,source_ds=source_valid_keys,target_ds=[],transform=transf)
train_ds_loader = DataLoader(train_ds,batch_size=TRAINING_BATCH,drop_last=True,shuffle=False)
valid_ds_loader = DataLoader(valid_ds,batch_size=8,drop_last=True,shuffle=False)
counter_model = model.CountEstimate()
if weight!=None:
counter_model.load_state_dict(torch.load(weight))
counter_model.to(device)
criterion1 = nn.MSELoss(reduction='none')
criterion2 = nn.BCELoss()
learning_rate = 1e-3
optimizer = optim.Adam([
{'params': counter_model.upsample.parameters(),'lr':1e-3},
{'params': counter_model.downsample.parameters(),'lr':1e-3},
{'params': counter_model.adapt.parameters(),'lr':1e-4},
],
lr=learning_rate)
max_batches = len(train_ds)//TRAINING_BATCH
train_loss = []
valid_loss = []
cost_1z = []
cost_2z = []
ctr=0
for epoch in tqdm(range(EPOCHS)):
counter_model.train()
epoch_loss,steps = 0,0
for x,y,z in train_ds_loader:
x,y,z = x.to(device),y.to(device),z.to(device)
optimizer.zero_grad()
p = float(steps + epoch * max_batches) / (EPOCHS * max_batches)
grl_lambda = 2. / (1. + np.exp(-10 * p)) - 1
pred_density_map, is_source = counter_model(x,grl_lambda)
cost1 = criterion1(pred_density_map,y).mean(axis=[-1,-2])
cost1 = torch.dot(z,cost1.flatten())
cost2 = criterion2(is_source.flatten(),z)
cost = torch.log(cost1 + 1e-9) + cost2
cost_1z.append(cost1)
cost_2z.append(cost2)
writer.add_scalar('Loss/cost1', torch.log(cost1 + 1e-9), epoch)
writer.add_scalar('Loss/cost2', cost2, epoch)
epoch_loss+=((cost1))
steps+=1
cost.backward()
optimizer.step()
cur_train_loss = epoch_loss/steps
train_loss.append(cur_train_loss)
prv_x = x
img_grid0 = torchvision.utils.make_grid(prv_x)
writer.add_image('input',img_grid0 ,epoch)
pred_out,_ = counter_model(prv_x.to(device))
pred_out = (pred_out-pred_out.min())/(pred_out.max()-pred_out.min())
img_grid = torchvision.utils.make_grid(pred_out)
writer.add_image('target prediction',img_grid,epoch)
# if epoch == 0:
# with open('imgz_for_plot.pkl','wb') as fp:
# pickle.dump(x,fp)
v_loss = 0
steps = 0
with torch.no_grad():
counter_model.eval()
for x,y,z in valid_ds_loader:
x,y,z = x.to(device), y.to(device),z.to(device)
pred_density_map,is_source = counter_model(x)
cost1 = criterion1(pred_density_map,y).mean(axis=[-1,-2])
cost1 = torch.dot(z,cost1.flatten())
cost = torch.log(cost1 + 1e-9)
v_loss+= cost
steps+=1
cur_val_loss = v_loss/steps
valid_loss.append(cur_val_loss)
writer.add_scalar('Loss/train', cur_train_loss, epoch)
writer.add_scalar('Loss/valid', cur_val_loss, epoch)
torch.save(counter_model.state_dict(),weight_path)