From 0a8679e32ed3b6cdc6b1aeb1a946248708901ad9 Mon Sep 17 00:00:00 2001 From: Kai Date: Fri, 28 Jun 2024 16:49:56 +0530 Subject: [PATCH] change fair-predictor fit from train to val --- examples/quickstart_xgboost.ipynb | 1975 +++++++++++++---------------- 1 file changed, 892 insertions(+), 1083 deletions(-) diff --git a/examples/quickstart_xgboost.ipynb b/examples/quickstart_xgboost.ipynb index a4a3418..c89dea1 100644 --- a/examples/quickstart_xgboost.ipynb +++ b/examples/quickstart_xgboost.ipynb @@ -37,24 +37,8 @@ { "cell_type": "code", "execution_count": 1, - "metadata": { - "execution": { - "iopub.execute_input": "2024-06-17T19:20:41.442722Z", - "iopub.status.busy": "2024-06-17T19:20:41.442599Z", - "iopub.status.idle": "2024-06-17T19:20:49.841551Z", - "shell.execute_reply": "2024-06-17T19:20:49.840928Z" - } - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/opt/miniconda3/envs/ag/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", - " from .autonotebook import tqdm as notebook_tqdm\n" - ] - } - ], + "metadata": {}, + "outputs": [], "source": [ "# Load and train a baseline classifier\n", "\n", @@ -72,14 +56,7 @@ { "cell_type": "code", "execution_count": 2, - "metadata": { - "execution": { - "iopub.execute_input": "2024-06-17T19:20:49.844308Z", - "iopub.status.busy": "2024-06-17T19:20:49.844131Z", - "iopub.status.idle": "2024-06-17T19:20:49.848616Z", - "shell.execute_reply": "2024-06-17T19:20:49.848139Z" - } - }, + "metadata": {}, "outputs": [ { "data": { @@ -99,14 +76,7 @@ { "cell_type": "code", "execution_count": 3, - "metadata": { - "execution": { - "iopub.execute_input": "2024-06-17T19:20:49.850974Z", - "iopub.status.busy": "2024-06-17T19:20:49.850786Z", - "iopub.status.idle": "2024-06-17T19:20:49.875719Z", - "shell.execute_reply": "2024-06-17T19:20:49.875176Z" - } - }, + "metadata": {}, "outputs": [ { "name": "stderr", @@ -118,7 +88,7 @@ ], "source": [ "# Modify predictor to enforce fairness over the val_data with respect to groups given by the column 'sex'\n", - "fpredictor = FairPredictor(predictor,train_data, 'sex')\n", + "fpredictor = FairPredictor(predictor,val_data, 'sex')\n", "# Maximize accuracy while enforcing that the demographic parity (the difference in positive decision rates between men and women is at most 0.02)\n", "fpredictor.fit(gm.accuracy,gm.demographic_parity,0.02)\n" ] @@ -126,19 +96,12 @@ { "cell_type": "code", "execution_count": 4, - "metadata": { - "execution": { - "iopub.execute_input": "2024-06-17T19:20:49.878359Z", - "iopub.status.busy": "2024-06-17T19:20:49.878167Z", - "iopub.status.idle": "2024-06-17T19:20:49.886881Z", - "shell.execute_reply": "2024-06-17T19:20:49.886133Z" - } - }, + "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([0, 0, 0, ..., 0, 0, 0])" + "array([0, 0, 0, ..., 1, 0, 0])" ] }, "execution_count": 4, @@ -154,14 +117,7 @@ { "cell_type": "code", "execution_count": 5, - "metadata": { - "execution": { - "iopub.execute_input": "2024-06-17T19:20:49.889405Z", - "iopub.status.busy": "2024-06-17T19:20:49.889209Z", - "iopub.status.idle": "2024-06-17T19:20:49.919984Z", - "shell.execute_reply": "2024-06-17T19:20:49.919264Z" - } - }, + "metadata": {}, "outputs": [ { "data": { @@ -191,38 +147,38 @@ " \n", " \n", " Accuracy\n", - " 0.863156\n", - " 0.845222\n", + " 0.869871\n", + " 0.852756\n", " \n", " \n", " Balanced Accuracy\n", - " 0.789951\n", - " 0.759749\n", + " 0.797063\n", + " 0.761652\n", " \n", " \n", " F1 score\n", - " 0.694348\n", - " 0.648176\n", + " 0.707420\n", + " 0.656083\n", " \n", " \n", " MCC\n", - " 0.609134\n", - " 0.553450\n", + " 0.627367\n", + " 0.570455\n", " \n", " \n", " Precision\n", - " 0.745776\n", - " 0.710612\n", + " 0.765644\n", + " 0.743712\n", " \n", " \n", " Recall\n", - " 0.649555\n", - " 0.595825\n", + " 0.657426\n", + " 0.586927\n", " \n", " \n", " ROC AUC\n", - " 0.920422\n", - " 0.813340\n", + " 0.924595\n", + " 0.821728\n", " \n", " \n", "\n", @@ -230,13 +186,13 @@ ], "text/plain": [ " original updated\n", - "Accuracy 0.863156 0.845222\n", - "Balanced Accuracy 0.789951 0.759749\n", - "F1 score 0.694348 0.648176\n", - "MCC 0.609134 0.553450\n", - "Precision 0.745776 0.710612\n", - "Recall 0.649555 0.595825\n", - "ROC AUC 0.920422 0.813340" + "Accuracy 0.869871 0.852756\n", + "Balanced Accuracy 0.797063 0.761652\n", + "F1 score 0.707420 0.656083\n", + "MCC 0.627367 0.570455\n", + "Precision 0.765644 0.743712\n", + "Recall 0.657426 0.586927\n", + "ROC AUC 0.924595 0.821728" ] }, "execution_count": 5, @@ -252,14 +208,7 @@ { "cell_type": "code", "execution_count": 6, - "metadata": { - "execution": { - "iopub.execute_input": "2024-06-17T19:20:49.922055Z", - "iopub.status.busy": "2024-06-17T19:20:49.921915Z", - "iopub.status.idle": "2024-06-17T19:20:49.946433Z", - "shell.execute_reply": "2024-06-17T19:20:49.945879Z" - } - }, + "metadata": {}, "outputs": [ { "data": { @@ -289,43 +238,43 @@ " \n", " \n", " Statistical Parity\n", - " 0.194998\n", - " 0.008199\n", + " 0.183936\n", + " 0.026034\n", " \n", " \n", " Predictive Parity\n", - " 0.030115\n", - " 0.359417\n", + " 0.002504\n", + " 0.336268\n", " \n", " \n", " Equal Opportunity\n", - " 0.114899\n", - " 0.281616\n", + " 0.094851\n", + " 0.249449\n", " \n", " \n", " Average Group Difference in False Negative Rate\n", - " 0.114899\n", - " 0.281616\n", + " 0.094851\n", + " 0.249449\n", " \n", " \n", " Equalized Odds\n", - " 0.098056\n", - " 0.173844\n", + " 0.081254\n", + " 0.150011\n", " \n", " \n", " Conditional Use Accuracy\n", - " 0.058129\n", - " 0.253697\n", + " 0.044046\n", + " 0.240197\n", " \n", " \n", " Average Group Difference in Accuracy\n", - " 0.104928\n", - " 0.048980\n", + " 0.096361\n", + " 0.061360\n", " \n", " \n", " Treatment Equality\n", - " 0.332490\n", - " 5.507195\n", + " 0.202847\n", + " 3.607847\n", " \n", " \n", "\n", @@ -333,14 +282,14 @@ ], "text/plain": [ " original updated\n", - "Statistical Parity 0.194998 0.008199\n", - "Predictive Parity 0.030115 0.359417\n", - "Equal Opportunity 0.114899 0.281616\n", - "Average Group Difference in False Negative Rate 0.114899 0.281616\n", - "Equalized Odds 0.098056 0.173844\n", - "Conditional Use Accuracy 0.058129 0.253697\n", - "Average Group Difference in Accuracy 0.104928 0.048980\n", - "Treatment Equality 0.332490 5.507195" + "Statistical Parity 0.183936 0.026034\n", + "Predictive Parity 0.002504 0.336268\n", + "Equal Opportunity 0.094851 0.249449\n", + "Average Group Difference in False Negative Rate 0.094851 0.249449\n", + "Equalized Odds 0.081254 0.150011\n", + "Conditional Use Accuracy 0.044046 0.240197\n", + "Average Group Difference in Accuracy 0.096361 0.061360\n", + "Treatment Equality 0.202847 3.607847" ] }, "execution_count": 6, @@ -356,14 +305,7 @@ { "cell_type": "code", "execution_count": 7, - "metadata": { - "execution": { - "iopub.execute_input": "2024-06-17T19:20:49.948771Z", - "iopub.status.busy": "2024-06-17T19:20:49.948616Z", - "iopub.status.idle": "2024-06-17T19:20:49.998948Z", - "shell.execute_reply": "2024-06-17T19:20:49.998544Z" - } - }, + "metadata": {}, "outputs": [ { "data": { @@ -419,116 +361,116 @@ " \n", " original\n", " Overall\n", - " 0.863156\n", - " 0.789951\n", - " 0.694348\n", - " 0.609134\n", - " 0.745776\n", - " 0.649555\n", - " 0.920422\n", + " 0.869871\n", + " 0.797063\n", + " 0.707420\n", + " 0.627367\n", + " 0.765644\n", + " 0.657426\n", + " 0.924595\n", " 2922.0\n", " 9289.0\n", " 0.239292\n", - " 0.208419\n", + " 0.205470\n", " \n", " \n", " 0\n", - " 0.933300\n", - " 0.766035\n", - " 0.643799\n", - " 0.618555\n", - " 0.772152\n", - " 0.552036\n", - " 0.938214\n", + " 0.934289\n", + " 0.777508\n", + " 0.657216\n", + " 0.629122\n", + " 0.763473\n", + " 0.576923\n", + " 0.940204\n", " 442.0\n", " 3606.0\n", " 0.109190\n", - " 0.078063\n", + " 0.082510\n", " \n", " \n", " 1\n", - " 0.828372\n", - " 0.782878\n", - " 0.702485\n", - " 0.584003\n", - " 0.742037\n", - " 0.666935\n", - " 0.900383\n", + " 0.837927\n", + " 0.791104\n", + " 0.715789\n", + " 0.605652\n", + " 0.765977\n", + " 0.671774\n", + " 0.906924\n", " 2480.0\n", " 5683.0\n", " 0.303810\n", - " 0.273061\n", + " 0.266446\n", " \n", " \n", " Maximum difference\n", - " 0.104928\n", - " 0.016844\n", - " 0.058685\n", - " 0.034551\n", - " 0.030115\n", - " 0.114899\n", - " 0.037831\n", + " 0.096361\n", + " 0.013597\n", + " 0.058573\n", + " 0.023470\n", + " 0.002504\n", + " 0.094851\n", + " 0.033280\n", " 2038.0\n", " 2077.0\n", " 0.194620\n", - " 0.194998\n", + " 0.183936\n", " \n", " \n", " updated\n", " Overall\n", - " 0.845222\n", - " 0.759749\n", - " 0.648176\n", - " 0.553450\n", - " 0.710612\n", - " 0.595825\n", - " 0.813340\n", + " 0.852756\n", + " 0.761652\n", + " 0.656083\n", + " 0.570455\n", + " 0.743712\n", + " 0.586927\n", + " 0.821728\n", " 2922.0\n", " 9289.0\n", " 0.239292\n", - " 0.200639\n", + " 0.188846\n", " \n", " \n", " 0\n", - " 0.877964\n", - " 0.859046\n", - " 0.599026\n", - " 0.565086\n", - " 0.467089\n", - " 0.834842\n", - " 0.938214\n", + " 0.893775\n", + " 0.852039\n", + " 0.621479\n", + " 0.582617\n", + " 0.508646\n", + " 0.798643\n", + " 0.940204\n", " 442.0\n", " 3606.0\n", " 0.109190\n", - " 0.195158\n", + " 0.171443\n", " \n", " \n", " 1\n", - " 0.828984\n", - " 0.751274\n", - " 0.662802\n", - " 0.574224\n", - " 0.826506\n", - " 0.553226\n", - " 0.900383\n", + " 0.832415\n", + " 0.752601\n", + " 0.665689\n", + " 0.583639\n", + " 0.844913\n", + " 0.549194\n", + " 0.906924\n", " 2480.0\n", " 5683.0\n", " 0.303810\n", - " 0.203357\n", + " 0.197476\n", " \n", " \n", " Maximum difference\n", - " 0.048980\n", - " 0.107772\n", - " 0.063776\n", - " 0.009138\n", - " 0.359417\n", - " 0.281616\n", - " 0.037831\n", + " 0.061360\n", + " 0.099438\n", + " 0.044210\n", + " 0.001021\n", + " 0.336268\n", + " 0.249449\n", + " 0.033280\n", " 2038.0\n", " 2077.0\n", " 0.194620\n", - " 0.008199\n", + " 0.026034\n", " \n", " \n", "\n", @@ -537,25 +479,25 @@ "text/plain": [ " Accuracy Balanced Accuracy F1 score MCC \\\n", " Groups \n", - "original Overall 0.863156 0.789951 0.694348 0.609134 \n", - " 0 0.933300 0.766035 0.643799 0.618555 \n", - " 1 0.828372 0.782878 0.702485 0.584003 \n", - " Maximum difference 0.104928 0.016844 0.058685 0.034551 \n", - "updated Overall 0.845222 0.759749 0.648176 0.553450 \n", - " 0 0.877964 0.859046 0.599026 0.565086 \n", - " 1 0.828984 0.751274 0.662802 0.574224 \n", - " Maximum difference 0.048980 0.107772 0.063776 0.009138 \n", + "original Overall 0.869871 0.797063 0.707420 0.627367 \n", + " 0 0.934289 0.777508 0.657216 0.629122 \n", + " 1 0.837927 0.791104 0.715789 0.605652 \n", + " Maximum difference 0.096361 0.013597 0.058573 0.023470 \n", + "updated Overall 0.852756 0.761652 0.656083 0.570455 \n", + " 0 0.893775 0.852039 0.621479 0.582617 \n", + " 1 0.832415 0.752601 0.665689 0.583639 \n", + " Maximum difference 0.061360 0.099438 0.044210 0.001021 \n", "\n", " Precision Recall ROC AUC Positive Count \\\n", " Groups \n", - "original Overall 0.745776 0.649555 0.920422 2922.0 \n", - " 0 0.772152 0.552036 0.938214 442.0 \n", - " 1 0.742037 0.666935 0.900383 2480.0 \n", - " Maximum difference 0.030115 0.114899 0.037831 2038.0 \n", - "updated Overall 0.710612 0.595825 0.813340 2922.0 \n", - " 0 0.467089 0.834842 0.938214 442.0 \n", - " 1 0.826506 0.553226 0.900383 2480.0 \n", - " Maximum difference 0.359417 0.281616 0.037831 2038.0 \n", + "original Overall 0.765644 0.657426 0.924595 2922.0 \n", + " 0 0.763473 0.576923 0.940204 442.0 \n", + " 1 0.765977 0.671774 0.906924 2480.0 \n", + " Maximum difference 0.002504 0.094851 0.033280 2038.0 \n", + "updated Overall 0.743712 0.586927 0.821728 2922.0 \n", + " 0 0.508646 0.798643 0.940204 442.0 \n", + " 1 0.844913 0.549194 0.906924 2480.0 \n", + " Maximum difference 0.336268 0.249449 0.033280 2038.0 \n", "\n", " Negative Count Positive Label Rate \\\n", " Groups \n", @@ -570,14 +512,14 @@ "\n", " Positive Prediction Rate \n", " Groups \n", - "original Overall 0.208419 \n", - " 0 0.078063 \n", - " 1 0.273061 \n", - " Maximum difference 0.194998 \n", - "updated Overall 0.200639 \n", - " 0 0.195158 \n", - " 1 0.203357 \n", - " Maximum difference 0.008199 " + "original Overall 0.205470 \n", + " 0 0.082510 \n", + " 1 0.266446 \n", + " Maximum difference 0.183936 \n", + "updated Overall 0.188846 \n", + " 0 0.171443 \n", + " 1 0.197476 \n", + " Maximum difference 0.026034 " ] }, "execution_count": 7, @@ -593,14 +535,7 @@ { "cell_type": "code", "execution_count": 8, - "metadata": { - "execution": { - "iopub.execute_input": "2024-06-17T19:20:50.001279Z", - "iopub.status.busy": "2024-06-17T19:20:50.001111Z", - "iopub.status.idle": "2024-06-17T19:20:54.692206Z", - "shell.execute_reply": "2024-06-17T19:20:54.691715Z" - } - }, + "metadata": {}, "outputs": [], "source": [ "train_data, val_data, test_data = dataset_loader.adult('sex')\n", @@ -610,14 +545,7 @@ { "cell_type": "code", "execution_count": 9, - "metadata": { - "execution": { - "iopub.execute_input": "2024-06-17T19:20:54.694914Z", - "iopub.status.busy": "2024-06-17T19:20:54.694743Z", - "iopub.status.idle": "2024-06-17T19:21:20.557631Z", - "shell.execute_reply": "2024-06-17T19:21:20.556715Z" - } - }, + "metadata": {}, "outputs": [ { "name": "stderr", @@ -636,14 +564,7 @@ { "cell_type": "code", "execution_count": 10, - "metadata": { - "execution": { - "iopub.execute_input": "2024-06-17T19:21:20.561396Z", - "iopub.status.busy": "2024-06-17T19:21:20.561247Z", - "iopub.status.idle": "2024-06-17T19:21:20.593515Z", - "shell.execute_reply": "2024-06-17T19:21:20.593088Z" - } - }, + "metadata": {}, "outputs": [ { "data": { @@ -673,43 +594,43 @@ " \n", " \n", " Statistical Parity\n", - " 0.125058\n", - " 0.073183\n", + " 0.101532\n", + " 0.013839\n", " \n", " \n", " Predictive Parity\n", - " 0.013161\n", - " 0.134499\n", + " 0.081097\n", + " 0.120251\n", " \n", " \n", " Equal Opportunity\n", - " 0.190932\n", - " 0.079689\n", + " 0.216640\n", + " 0.216882\n", " \n", " \n", " Average Group Difference in False Negative Rate\n", - " 0.190932\n", - " 0.079689\n", + " 0.216640\n", + " 0.216882\n", " \n", " \n", " Equalized Odds\n", - " 0.114792\n", - " 0.047310\n", + " 0.132354\n", + " 0.116069\n", " \n", " \n", " Conditional Use Accuracy\n", - " 0.035533\n", - " 0.101868\n", + " 0.066816\n", + " 0.100688\n", " \n", " \n", " Average Group Difference in Accuracy\n", - " 0.055388\n", - " 0.041906\n", + " 0.066625\n", + " 0.055585\n", " \n", " \n", " Treatment Equality\n", - " 0.220158\n", - " 1.118408\n", + " 0.450762\n", + " 2.258786\n", " \n", " \n", "\n", @@ -717,14 +638,14 @@ ], "text/plain": [ " original updated\n", - "Statistical Parity 0.125058 0.073183\n", - "Predictive Parity 0.013161 0.134499\n", - "Equal Opportunity 0.190932 0.079689\n", - "Average Group Difference in False Negative Rate 0.190932 0.079689\n", - "Equalized Odds 0.114792 0.047310\n", - "Conditional Use Accuracy 0.035533 0.101868\n", - "Average Group Difference in Accuracy 0.055388 0.041906\n", - "Treatment Equality 0.220158 1.118408" + "Statistical Parity 0.101532 0.013839\n", + "Predictive Parity 0.081097 0.120251\n", + "Equal Opportunity 0.216640 0.216882\n", + "Average Group Difference in False Negative Rate 0.216640 0.216882\n", + "Equalized Odds 0.132354 0.116069\n", + "Conditional Use Accuracy 0.066816 0.100688\n", + "Average Group Difference in Accuracy 0.066625 0.055585\n", + "Treatment Equality 0.450762 2.258786" ] }, "execution_count": 10, @@ -740,14 +661,7 @@ { "cell_type": "code", "execution_count": 11, - "metadata": { - "execution": { - "iopub.execute_input": "2024-06-17T19:21:20.595709Z", - "iopub.status.busy": "2024-06-17T19:21:20.595582Z", - "iopub.status.idle": "2024-06-17T19:21:20.615596Z", - "shell.execute_reply": "2024-06-17T19:21:20.615276Z" - } - }, + "metadata": {}, "outputs": [ { "data": { @@ -777,43 +691,43 @@ " \n", " \n", " Statistical Parity\n", - " 0.095165\n", - " 0.016903\n", + " 0.102841\n", + " 0.017995\n", " \n", " \n", " Predictive Parity\n", - " 0.106777\n", - " 0.142254\n", + " 0.062764\n", + " 0.176582\n", " \n", " \n", " Equal Opportunity\n", - " 0.191597\n", - " 0.177972\n", + " 0.198661\n", + " 0.159256\n", " \n", " \n", " Average Group Difference in False Negative Rate\n", - " 0.191597\n", - " 0.177972\n", + " 0.198661\n", + " 0.159256\n", " \n", " \n", " Equalized Odds\n", - " 0.118433\n", - " 0.099354\n", + " 0.117458\n", + " 0.094345\n", " \n", " \n", " Conditional Use Accuracy\n", - " 0.070180\n", - " 0.100921\n", + " 0.055220\n", + " 0.126215\n", " \n", " \n", " Average Group Difference in Accuracy\n", - " 0.053687\n", - " 0.048322\n", + " 0.055219\n", + " 0.039814\n", " \n", " \n", " Treatment Equality\n", - " 0.394770\n", - " 1.736889\n", + " 0.352693\n", + " 1.856197\n", " \n", " \n", "\n", @@ -821,14 +735,14 @@ ], "text/plain": [ " original updated\n", - "Statistical Parity 0.095165 0.016903\n", - "Predictive Parity 0.106777 0.142254\n", - "Equal Opportunity 0.191597 0.177972\n", - "Average Group Difference in False Negative Rate 0.191597 0.177972\n", - "Equalized Odds 0.118433 0.099354\n", - "Conditional Use Accuracy 0.070180 0.100921\n", - "Average Group Difference in Accuracy 0.053687 0.048322\n", - "Treatment Equality 0.394770 1.736889" + "Statistical Parity 0.102841 0.017995\n", + "Predictive Parity 0.062764 0.176582\n", + "Equal Opportunity 0.198661 0.159256\n", + "Average Group Difference in False Negative Rate 0.198661 0.159256\n", + "Equalized Odds 0.117458 0.094345\n", + "Conditional Use Accuracy 0.055220 0.126215\n", + "Average Group Difference in Accuracy 0.055219 0.039814\n", + "Treatment Equality 0.352693 1.856197" ] }, "execution_count": 11, @@ -843,18 +757,11 @@ { "cell_type": "code", "execution_count": 12, - "metadata": { - "execution": { - "iopub.execute_input": "2024-06-17T19:21:20.617231Z", - "iopub.status.busy": "2024-06-17T19:21:20.617123Z", - "iopub.status.idle": "2024-06-17T19:21:21.137764Z", - "shell.execute_reply": "2024-06-17T19:21:21.137302Z" - } - }, + "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHFCAIAAACVbdGXAABT+0lEQVR4nO3deVwT194G8JMESADZ12ARUFuBIlZBEBStqOBS1Hq9Yl2xoNVqAVGrXFBQUVy7YcFKUayiUm1dS1Fcq6hVUdygKAiCGkRQAUFZkrl/zO00N0AIS4DB5/u5n/dNZs7M/GZK8/TMnJnhUBRFAAAA2Ibb3gUAAAA0BwIMAABYCQEGAACshAADAABWQoABAAArIcAAAICVEGAAAMBKCDAAAGAlBBgAALASAgyAEELi4+M5dSxevLjVN1RZWRkeHn727Nm6W8/Ly2utrZw9e7bu7kycOLG11q+4Vt81AIZKexcA0IHs2LHD2tqa+WpmZtbqm6isrFy5ciUh5MMPP2Qmjhkz5tKlS0KhsHW3tXbt2qFDhzJfDQwMWnf9AO0LAQbwDzs7O0dHRzkNampqOByOikor/4tjZGRkZGTUvGUrKys1NDTqnfXuu+8OGDCgBXUBdGg4hQggD30ubteuXYsWLeratSufz8/OziaEbN++vU+fPgKBQF9f/+OPP87MzGQW8fHx6dKlS3Z29ujRo7t06WJubr5o0aKqqipCSF5eHh1UK1eupE/r+fj4kPrOs508eXLYsGHa2toaGhoDBw48deoUMys8PJzD4Vy/fn3ixIl6eno9evRo6k5duHBh2LBhWlpaGhoarq6uv/32m8zKpRvL1GZpafnRRx8lJyf369dPXV3d2tp6+/bt0u0vX748cOBAgUBgZmYWHBxcU1PT1PIAFIQAA/iHWCyulcJMDw4Ozs/P37p169GjR42NjSMjI319fd9///1ff/3122+/vXXrlouLy/3795n2NTU1Y8eOHTZs2OHDhz/99NOvv/56/fr1hBChUJicnEwI8fX1vXTp0qVLl5YvX163jN27d3t4eGhra+/cufPnn3/W19f39PSUzjBCyIQJE3r27Ll///6tW7c2tDsSiaTu7pw7d87d3b20tDQuLm7v3r1aWlpeXl6JiYmKH6WbN28uWrRo4cKFhw8ftre39/X1/eOPP+hZGRkZw4YNe/nyZXx8/NatW2/cuBEREaH4mgGahgIAitqxY0fdfztqamrOnDlDCBk8eDDT8sWLF+rq6qNHj2am5Ofn8/n8KVOm0F9nzpxJCPn555+ZBqNHj+7Vqxf9+dmzZ4SQsLCwulvPzc2lKKqiokJfX9/Ly4uZKxaL+/Tp4+TkRH8NCwsjhKxYsULO7tBly7h//z5FUQMGDDA2Ni4vL6db1tbW2tnZvfPOOxKJhFl5Q7VRFGVhYSEQCB4+fEh/ff36tb6+/meffUZ/9fb2VldXLywsZFZOX1NkFgdoReiBAfzjp59+uiqFudb1r3/9i2lz6dKl169f06f+aObm5u7u7tI9JA6H4+XlxXy1t7d/+PChgjVcvHjx+fPnM2fOZHpOEolk5MiRV69eraioYJpJl9SQ9evXS++Oubl5RUXFn3/+OXHixC5dutBteDze9OnTHz16lJWVpWCFH3zwQbdu3ejPAoHgvffeY/buzJkzw4YNMzExYVbu7e2t4GoBmgqDOAD+YWNjU+8gDunxgSUlJTJTCCFmZmYpKSnMVw0NDYFAwHzl8/lv3rxRsIanT58SQuod8v78+XNNTc26JTWke/fuMrvz7NkziqLqFk/+3i9FyIxm5PP5r1+/pj+XlJSYmppKz5X5CtCKEGAAjZMe10D/fItEIukGT548MTQ0bJVt0euJioqqO4CQ6dnIlKQ4PT09Lpdbt3hmu3TuVlVV8fl8em5xcbHi6zcwMCgsLJSeIvMVoBXhFCJA07i4uKirq+/evZuZ8ujRo9OnTw8bNkyRxelgYLosdQ0cOFBXVzcjI8OxDjU1tRYWr6mp6ezs/OuvvzIFSCSS3bt3v/POO++99x4hxNLSkhBy69YtZpGjR48qvv6hQ4eeOnWK7kQSQsRicZOGhwA0CXpgAE2jq6u7fPny//znPzNmzPjkk09KSkpWrlwpEAjo4Q+N0tLSsrCwOHz48LBhw/T19Q0NDenMYHTp0iUqKmrmzJnPnz+fOHGisbHxs2fPbt68+ezZs5iYmJbXHxkZOWLEiKFDhy5evFhNTS06OvrOnTt79+6lu3SjR4/W19f39fVdtWqViopKfHx8QUGB4isPDQ09cuSIu7v7ihUrNDQ0vv/+e+nrdgCtCz0wgCYLDg7+8ccfb968OX78+AULFrz//vsXL1589913FVw8Li5OQ0Nj7Nix/fv3Dw8Pr9tg2rRpZ86cefXq1WeffTZ8+PCAgIDr168r2MNr1JAhQ06fPq2pqenj4zN58uTS0tIjR44wQy20tbWTk5O1tLSmTZs2d+5cOzu7kJAQxVduZ2d38uRJbW3tmTNnzpkzx97evt77BABaBYeiqPauAQAAoMnQAwMAAFZCgAEAACshwAAAgJUQYAAAwEpKD7Do6GgrKyuBQODg4HD+/Pl62yQkJPTp00dDQ0MoFM6aNUv6iQDffPNNr1691NXVzc3NFy5cqPjjDAAAoHNTboAlJiYGBgaGhITcuHHDzc1t1KhR+fn5Mm0uXLgwY8YMX1/fu3fv7t+//+rVq35+fvSshISEZcuWhYWFZWZmxsXFJSYmBgcHK7VgAABgC+UOo3d2du7Xrx9z96WNjc348eMjIyOl22zatCkmJiYnJ4f+GhUVtWHDBvreyQULFmRmZjLPSF20aNGVK1ca6sbRJBLJkydPtLS0mvegHQAA6CAoiiovLzczM+NyG+hrKe9B91VVVTwe79dff2Wm+Pv7S7+Wgpaamqqmpvbbb79JJJLCwsLBgwczr2bYu3evjo7On3/+SVFUTk6OtbV1ZGRk3Q29efOm9G8ZGRlte4QBAECJCgoKGkoZJT5Kqri4WCwWSz9+1MTEpO6TPV1dXRMSEry9vd+8eVNbWzt27NioqCh61uTJk589ezZo0CCKompra+fNm7ds2bK6G4qMjFy5cqX0lIKCAm1t7dbeIQAAaDtlZWXm5uZaWloNNVD6sxClT+VRFFX3zF5GRoa/v/+KFSs8PT1FItGSJUvmzp0bFxdHCDl79uyaNWuio6OdnZ2zs7MDAgKEQmHdJ9MEBwcHBQXRn+kd1tbWRoABAHQCcq4HKTHADA0NeTyedJerqKhIukNGi4yMHDhw4JIlSwgh9vb2mpqabm5uERERdFZNnz6dHtPRu3fvioqKOXPmhISEyJwP5fP5zKsfAADgLaHEUYhqamoODg7Sb/lLSUlxdXWVaVZZWSkdSDwejxBCUVS9s+jznsqrGQAA2EK5pxCDgoKmT5/u6Ojo4uKybdu2/Pz8uXPnEkKCg4MfP378008/EUK8vLxmz54dExNDn0IMDAx0cnKiXxHr5eX11Vdf9e3blz6FuHz58rFjx9IJBwAAbznlBpi3t3dJScmqVatEIpGdnV1SUpKFhQUhRCQSMTeE+fj4lJeXb9myZdGiRbq6uu7u7uvXr6dnhYaGcjic0NDQx48fGxkZeXl5rVmzRqkFAwAAW3S216mUlZXp6OiUlpZiEAcAAKs1+nuOZyECAAArIcAAAICVEGAAAMBKCDAAAGAlpT+JAwCUSiyhruQ+Lyp/Y6wlcLLS53E5is9t3joBOggEGEBrUuSnvxXjIfmOaOXRDFHp/96TJ9QRhHnZjrQTKjK3eesE6DgwjB6gcXTkFJa+Ln5V9fJ1DYdwXHoYDOhuIJM9ivz0t2I8JN8Rzdt9XfpfYLqamGn9RtoJ5c9t3jqbUSRAszX6e44Ag7dLM064yUQOQ1dDdd2E3tLdnUZ/+lsxHsQSatD603Wr4hBiqiM4t2TokI1nGpp7Yal7Q11DOetsaCmA+tW8Jpe+Jy7ziap681bQ6O85TiFCp8V0m55XVOt34ZtqC15UVK/+rWkn3AghMpHDeFlZM3f39a3T+o20E4ol1MqjGTLNKEI4hKw8mjHC1pTH5SjSRvG9u5L7vG7S0CsUlb7ZdSlPztwruc9dehg0dZ0NLQVQv4wj5PRqotuN2E9S0hYQYNARSfeEHCz00h6+kHPFqN7GecWVe6/kF5bV83PMKCx9M2/39YZOuBWWvpm7+7quhqr8cxR09ijy09+68VBULm/XHj6vbMay8tcpfy6ArLsH//d/EWDQydR7sq66VrLrUt4f94uv578of1NLt+RyiOTvDKl7xUim2yTduFFM78fd2qTevhEh5GVljfyV0NmjyE9/68aDsZZAzlwLfY1mLCt/nfLnAhBCyKsicul7IqklhJCcU4QQkn2SHA8hhBCuCnFZQLoYteLWEGBvr4dlDytqKiQS6s6TshcVVXqafDszbS6Xo6mqaaFt0aRViSXU5ZySSw+KSQOjG2TUe7LuRv6L2PO5deNHeop0n4nUd0lJ8fSiyT/hpiA6huU0oOe2bjw4WekLdQSFpW9k9pi+XjXdxfLHC7kNzXWy0m/GOhtaCuAf5YXkcgwRVxEO939XeCVicjmaUBLC4xO7fyHAoBU8LHv40cGPZKem/+//H/v4mOIZlnxHtOzX20xPZcuZbJnRDXXb13uyTpFtSV8xIoTU7TY1j/wTbo2iO5GN/vS3bjzwuJwwL9t5u69z/u4skr+HhIR52aqpcOXMbeg/L+SvEyM4oHFCe/LZOfLzDFKSTSgxIYRQYsLhEsP3yKSfiLFN624NT+JgH7GESr1fvOn4X5uOZ6VmF4v/v9MhllCXckoOpz++lFMibrg/kvLXQzmbqKipULCY5Duiubuvy5xno0c3JN8R1Vt8QyfrFMRcMWroklIzyD/hJp9Q53+nQOkRH9K/8TI//Yq0aZKRdsKYaf1Mdf7pupnqCJjuqfy5zVsnQOOMbYjvCdmJvidaPb0IemAdUEPjvOnpKRmFP1979Krqf9eHZLo7Ct5jlHxHtDbpL02rBmuQKHYmTiyhwo/cbWhuvSPrWit1WmtAQaMn3HQ0VEsra+QcDiZ76J9+6eNvWuf4K9KmSUbaCekhJPUOcpE/t3nrBGjcw4uEkvzzlZKQh5eI9ehW3w4CrB3IuWLUUAI1dCsSkRrMTeoM+Ja5YsRsfeXRDPkV3nlSZqfAmeoruc8Ly6oamlvvyLrWCp5WGVCgyAm3dRN6E0LqPfh6GqqR/3+mVJGf/laPBx6XI2f4ovy5rbsUwP9kHiGEkG4uZMRqciKUFFwmmUcQYOxTtzsl54pRvReH5u2+Pmew1bY/cuX3icKP3CWEo8g9RnQfiCv39/9FRYOxJK3RNKrboOXBI33FqN5LSoqT7v3I7xvRkdPokziIYj/9iAfo5IR9iZENcf2CcHlkVhK5GEVUlDKEFQHWaurNKpnu1Ng+wh/+yJVZkO5CRU/pu/q3zHovDsWebyS9CCEN9YTq3mOkSB9IT5PfaBuiQBrVbdDQQAYFyVwxqtttkk+oI1g+xkZPk9/UE26IHIAmGDD3n89cHhkUqKTtIMCaTJGnDdFZJdNtEpW+qZtejNDDd55X1H/LUVOHhtclHVqK9IHszBR6EJeTlb6pNr+h7BTWN7KuoXFucnZR+tYumStGdbtN/9dYm/+JU7du+hrMkzgaPV+HoAJgEQRY0yj4tCH5WVWvhtKrVUiHFt0HKpJ7jpCr2FUZHpcTPvb9hkbANzSyrqGTdTL3gXEIcbc28nPrIf9JHDLdpkYf2wEAnQYe5tsE9T6JlSJEV0O10ec1KJupNp8QztOy+u8xknkMa/Id0eeJJzR7bmpobS25D4zUN7qhLjlP4nj4vNJCX2O6i6WaCm7zAHh74Wn0raahB3W3In1NtRcV1XX/eXA5hKIauczDjEIkdcbR1XsTT/IdUVjSuWeVZfRXLb7K2D5m3v3N2+ZJHAAAjUKAtZpLOSWfxF5u3XVKE+oIlo+xnb+nngSiRyGSBi4USXd3mvSuKbx1FwA6MrxOpdUo+1HcdNLEcOsfyd23m570dD0NFZfuBt2NtGS6O026xwgDFgCA1RBgimreDUx1b4ydM9gq8dqjhq4YNZRAiicTYgkA3hI4hago+hqYnKcNkfqy6shNUd0TerhiBADQKFwDa030KERS3ygJ8v9PG5LOKlxnAgBoBgRYK5MzSgJZBQDQihBgrQ9BBQDQBhr9PceNok2D9AIA6CAwCrEJmnSXFQAAKBV6YIqiR3BIP4mDftdJve8dBgAAZUOAKYR+CWS97zpZeTRD3PLHxQMAQBMhwBRCvwSy7nTmbVttXxIAwFsOAaYQ+c+RUvZTpgAAoC4EmELkP0eqeU+ZAgCAlkCAKYR+CWTdIfOcBt47DAAAyoYAUwiPy6HfvCydYfTnht47DAAASoUAU9RIO2HMtH6mOv+cLTTVEdT7rkgAAGgDuJG5CZr0ti0AAFAqBFjT4G1bAAAdBE4hAgAAKyHAAACAlRBgAADASggwAABgJQQYAACwEgIMAABYCQEGAACspPQAi46OtrKyEggEDg4O58+fr7dNQkJCnz59NDQ0hELhrFmzSkpKmFkvX76cP3++UCgUCAQ2NjZJSUnKLhgAAFhBuQGWmJgYGBgYEhJy48YNNze3UaNG5efny7S5cOHCjBkzfH197969u3///qtXr/r5+dGzqqurR4wYkZeXd+DAgaysrNjY2K5duyq1YAAAYAsORSnxbcLOzs79+vWLiYmhv9rY2IwfPz4yMlK6zaZNm2JiYnJycuivUVFRGzZsKCgoIIRs3bp148aNf/31l6qqqoJbLCsr09HRKS0t1dbWbr39AACAttbo77kSe2DV1dVpaWkeHh7MFA8Pj4sXL8o0c3V1ffToUVJSEkVRT58+PXDgwJgxY+hZR44ccXFxmT9/vomJiZ2d3dq1a8Vicd0NVVVVlUlR3h4BAEDHocQAKy4uFovFJiYmzBQTE5PCwkKZZq6urgkJCd7e3mpqaqamprq6ulFRUfSsBw8eHDhwQCwWJyUlhYaGbt68ec2aNXU3FBkZqfM3c3Nz5e0RAAB0HEofxMHh/PO8doqipL/SMjIy/P39V6xYkZaWlpycnJubO3fuXHqWRCIxNjbetm2bg4PD5MmTQ0JCmLOR0oKDg0v/Rp97BACATk+JT6M3NDTk8XjSXa6ioiLpDhktMjJy4MCBS5YsIYTY29tramq6ublFREQIhUKhUKiqqsrj8eiWNjY2hYWF1dXVampq0mvg8/l8Pl95OwIAAB2QEntgampqDg4OKSkpzJSUlBRXV1eZZpWVlVzuP2XQcUUPLRk4cGB2drZEIqFn3bt3TygUyqQXAAC8nZR7CjEoKOjHH3/cvn17ZmbmwoUL8/Pz6dODwcHBM2bMoNt4eXn9+uuvMTExDx48SE1N9ff3d3JyMjMzI4TMmzevpKQkICDg3r17v/3229q1a+fPn6/UggEAgC2U+0JLb2/vkpKSVatWiUQiOzu7pKQkCwsLQohIJGJuCPPx8SkvL9+yZcuiRYt0dXXd3d3Xr19PzzI3Nz9x4sTChQvt7e27du0aEBCwdOlSpRYMAABsodz7wNoe7gMDAOgc2vM+MAAAAOVBgAEAACshwAAAgJUQYAAAwEoIMAAAYCUEGAAAsBICDAAAWAkBBgAArIQAAwAAVkKAAQAAKyHAAACAlRBgAADASggwAABgJQQYAACwEgIMAABYCQEGAACshAADAABWQoABAAArIcAAAICVEGAAAMBKCDAAAGAlBBgAALASAgwAAFgJAQYAAKyEAAMAAFZCgAEAACshwAAAgJUQYAAAwEoIMAAAYCUEGAAAsBICDAAAWAkBBgAArIQAAwAAVkKAAQAAKyHAAACAlRBgAADASggwAABgJQQYAACwEgIMAABYCQEGAACshAADAABWQoABAAArIcAAAICVEGAAAMBKCDAAAGAlBBgAALASAgwAAFgJAQYAAKyk9ACLjo62srISCAQODg7nz5+vt01CQkKfPn00NDSEQuGsWbNKSkpkGuzbt4/D4YwfP17Z1QIAAFsoN8ASExMDAwNDQkJu3Ljh5uY2atSo/Px8mTYXLlyYMWOGr6/v3bt39+/ff/XqVT8/P+kGDx8+XLx4sZubm1JLBQAAdlFugH311Ve+vr5+fn42NjbffPONubl5TEyMTJvLly9bWlr6+/tbWVkNGjTos88+u3btGjNXLBZPnTp15cqV3bt3V2qpAADALkoMsOrq6rS0NA8PD2aKh4fHxYsXZZq5uro+evQoKSmJoqinT58eOHBgzJgxzNxVq1YZGRn5+vrK2VBVVVWZlNbdCwAA6JiUGGDFxcVisdjExISZYmJiUlhYKNPM1dU1ISHB29tbTU3N1NRUV1c3KiqKnpWamhoXFxcbGyt/Q5GRkTp/Mzc3b929AACAjknpgzg4HA7zmaIo6a+0jIwMf3//FStWpKWlJScn5+bmzp07lxBSXl4+bdq02NhYQ0ND+ZsIDg4u/VtBQUGr7wIAAHRAKspbtaGhIY/Hk+5yFRUVSXfIaJGRkQMHDlyyZAkhxN7eXlNT083NLSIi4unTp3l5eV5eXnQziURCCFFRUcnKyurRo4f0Gvh8Pp/PV96OAABAB6TEHpiampqDg0NKSgozJSUlxdXVVaZZZWUll/tPGTwejxBCUZS1tfXt27fT/zZ27NihQ4emp6fjJCEAABCl9sAIIUFBQdOnT3d0dHRxcdm2bVt+fj59ejA4OPjx48c//fQTIcTLy2v27NkxMTGenp4ikSgwMNDJycnMzIwQYmdnx6xKV1dXZgoAALzNlBtg3t7eJSUlq1atEolEdnZ2SUlJFhYWhBCRSMTcEObj41NeXr5ly5ZFixbp6uq6u7uvX79eqVUBAEAnwKEoqr1raE1lZWU6OjqlpaXa2trtXQsAADRfo7/neBYiAACwEgIMAABYCQEGAACshAADAABWQoABAAArIcAAAICVEGAAAMBKCDAAAGAlBBgAALASAgwAAFgJAQYAAKyEAAMAAFZCgAEAACshwAAAgJUQYAAAwEoIMAAAYCUEGAAAsBICDAAAWAkBBgAArIQAAwAAVkKAAQAAKyHAAACAlRBgAADASggwAABgJQQYAACwEgIMAABYCQEGAACshAADAABWQoABAAArIcAAAICVFAowS0vLVatW5efnK7saAAAABSkUYIsWLTp8+HD37t1HjBixb9++qqoqZZcFAAAgn0IB9sUXX6SlpaWlpdna2vr7+wuFwgULFly/fl3ZxQEAADSEQ1FUkxaoqamJjo5eunRpTU2NnZ1dQEDArFmzOByOkuprqrKyMh0dndLSUm1t7fauBQAAmq/R33MVxddVU1Nz8ODBHTt2pKSkDBgwwNfX98mTJyEhISdPntyzZ08rFQwAAKAQhQLs+vXrO3bs2Lt3L4/Hmz59+tdff21tbU3P8vDwGDx4sDIrBAAAqIdCAda/f/8RI0bExMSMHz9eVVVVepatre3kyZOVUxsAAECDFAqwBw8eWFhY1DtLU1Nzx44drVoSAABA4xQahVhUVPTnn39KT/nzzz+vXbumnJIAAAAap1CAzZ8/v6CgQHrK48eP58+fr5ySAAAAGqdQgGVkZPTr1096St++fTMyMpRTEgAAQOMUCjA+n//06VPpKSKRSEWlCUPwAQAAWpdCATZixIjg4ODS0lL668uXL//zn/+MGDFCmYUBAADIo1AvavPmzYMHD7awsOjbty8hJD093cTEZNeuXUquDQAAoEEKBVjXrl1v3bqVkJBw8+ZNdXX1WbNmffLJJzI3hAEAALQlRa9jaWpqzpkzR6mlAAAAKK4JAzEyMjLy8/Orq6uZKWPHjlVCSQAAAI1T9EkcH3/88e3btzmc/z29nn78vFgsVm51AAAADVBoFGJAQICVldXTp081NDTu3r37xx9/ODo6nj17VpFlo6OjraysBAKBg4PD+fPn622TkJDQp08fDQ0NoVA4a9askpISenpsbKybm5uenp6ent7w4cOvXLmi2E4BAEDnp1CAXbp0adWqVUZGRlwul8vlDho0KDIy0t/fv9EFExMTAwMDQ0JCbty44ebmNmrUqPz8fJk2Fy5cmDFjhq+v7927d/fv33/16lU/Pz961tmzZz/55JMzZ85cunSpW7duHh4ejx8/buoeAgBA50QpQFdXNycnh6Ko7t27nz59mqKo7OxsdXX1Rhd0cnKaO3cu89Xa2nrZsmUybTZu3Ni9e3fm63fffffOO+/UXVVtba2WltbOnTvlb5G+Wa20tLTR2gAAoCNr9PdcoR6YnZ3drVu3CCHOzs4bNmxITU1dtWpV9+7d5S9VXV2dlpbm4eHBTPHw8Lh48aJMM1dX10ePHiUlJVEU9fTp0wMHDowZM6bu2iorK2tqavT19evOqqqqKpOiyB4BAADbKRRgoaGhEomEEBIREfHw4UM3N7ekpKTvvvtO/lLFxcVisdjExISZYmJiUlhYKNPM1dU1ISHB29tbTU3N1NRUV1c3Kiqq7tqWLVvWtWvX4cOH150VGRmp8zdzc3NF9ggAANhOoQDz9PScMGECIaR79+4ZGRnFxcVFRUXu7u6KLEuPV6RRFCX9lZaRkeHv779ixYq0tLTk5OTc3Ny5c+fKtNmwYcPevXt//fVXgUBQdxP0Y65oMk/NBwCAzqrxYfS1tbUCgSA9Pd3Ozo6eUu95vLoMDQ15PJ50l6uoqEi6Q0aLjIwcOHDgkiVLCCH29vaamppubm4RERFCoZBusGnTprVr1548edLe3r7eDfH5fD6fr0hJAADQaTTeA1NRUbGwsGjGLV9qamoODg4pKSnMlJSUFFdXV5lmlZWVXO4/ZfB4PEIIRVH0140bN65evTo5OdnR0bGpBQAAQCem6DWw4ODg58+fN3XtQUFBP/744/bt2zMzMxcuXJifn0+fHgwODp4xYwbdxsvL69dff42JiXnw4EFqaqq/v7+Tk5OZmRkhZMOGDaGhodu3b7e0tCwsLCwsLHz16lVTawAAgE5JoSdxfPfdd9nZ2WZmZhYWFpqamsz069evy1/Q29u7pKRk1apVIpHIzs4uKSnJwsKCECISiZgbwnx8fMrLy7ds2bJo0SJdXV13d/f169fTs6Kjo6urqydOnMisMCwsLDw8vCk7CAAAnROHOVknx8qVK+udHhYW1tr1tFRZWZmOjk5paam2tnZ71wIAAM3X6O+5QgHGIggwAIDOodHfc4WugQEAAHQ0Cl0D43K5de/fIngaPQAAtB+FAuzgwYPM55qamhs3buzcubOhC2MAAABtoJnXwPbs2ZOYmHj48OFWL6iFcA0MAKBzUNY1MGdn55MnT7agMAAAgBZpToC9fv06KirqnXfeafVqAAAAFKTQNTA9PT1mEAdFUeXl5RoaGrt371ZmYQAAAPIoFGBff/01E2BcLtfIyMjZ2VlPT0+ZhQEAAMijUID5+PgouQwAAICmUega2I4dO/bv3y89Zf/+/Tt37lROSQAAAI1TKMDWrVtnaGgoPcXY2Hjt2rXKKQkAAKBxCgXYw4cPrayspKdYWFgwj5MHAABoewoFmLGx8a1bt6Sn3Lx508DAQDklAQAANE6hAJs8ebK/v/+ZM2fEYrFYLD59+nRAQMDkyZOVXRwAAEBDFBqFGBER8fDhw2HDhqmoqBBCJBLJjBkzcA0MAADaUROehXj//v309HR1dfXevXvTL1bugPAsRACAzqHR33OFemC0d9999913322lwgAAAFpEoWtgEydOXLdunfSUjRs3/vvf/1ZOSQAAAI1TKMDOnTs3ZswY6SkjR478448/lFMSAABA4xQKsFevXqmpqUlPUVVVLSsrU05JAAAAjVMowOzs7BITE6Wn7Nu3z9bWVjklAQAANE6hQRzLly//17/+lZOT4+7uTgg5derUnj17Dhw4oOTaAAAAGqRQgI0dO/bQoUNr1649cOCAurp6nz59Tp8+jXHqAADQjppwHxjt5cuXCQkJcXFxN2/eFIvFSiqr2XAfGABA59Do77lC18Bop0+fnjZtmpmZ2ZYtW0aPHn3t2rVWKhIAAKDJGj+F+OjRo/j4+O3bt1dUVEyaNKmmpuaXX37BCA4AAGhfjfTARo8ebWtrm5GRERUV9eTJk6ioqLYpCwAAQL5GemAnTpzw9/efN28eHiIFAAAdSiM9sPPnz5eXlzs6Ojo7O2/ZsuXZs2dtUxYAAIB8jQSYi4tLbGysSCT67LPP9u3b17VrV4lEkpKSUl5e3jb1AQAA1Ktpw+izsrLi4uJ27dr18uXLESNGHDlyRHmVNQ+G0QMAdA6tOYyeENKrV68NGzY8evRo7969rVEeAABAMzX5RuYODj0wAIDOoZV7YAAAAB0EAgwAAFgJAQYAAKyEAAMAAFZCgAEAACshwAAAgJUQYAAAwEoIMAAAYCUEGAAAsBICDAAAWAkBBgAArIQAAwAAVkKAAQAAKyHAAACAlZQeYNHR0VZWVgKBwMHB4fz58/W2SUhI6NOnj4aGhlAonDVrVklJCTPrl19+sbW15fP5tra2Bw8eVHa1AADAFsoNsMTExMDAwJCQkBs3bri5uY0aNSo/P1+mzYULF2bMmOHr63v37t39+/dfvXrVz8+PnnXp0iVvb+/p06ffvHlz+vTpkyZN+vPPP5VaMAAAsIVyX2jp7Ozcr1+/mJgY+quNjc348eMjIyOl22zatCkmJiYnJ4f+GhUVtWHDhoKCAkKIt7d3WVnZ77//Ts8aOXKknp6e/JdB44WWAACdQ3u+0LK6ujotLc3Dw4OZ4uHhcfHiRZlmrq6ujx49SkpKoijq6dOnBw4cGDNmDD3r0qVL0ot7enrWXZwQUlVVVSZFCbsCAAAdjhIDrLi4WCwWm5iYMFNMTEwKCwtlmrm6uiYkJHh7e6upqZmamurq6kZFRdGzCgsLG12cEBIZGanzN3NzcyXsCgAAdDhKH8TB4XCYzxRFSX+lZWRk+Pv7r1ixIi0tLTk5OTc3d+7cuYovTggJDg4u/Rt97hEAADo9FeWt2tDQkMfjSfeZioqKpHtUtMjIyIEDBy5ZsoQQYm9vr6mp6ebmFhERIRQKTU1NG12cEMLn8/l8vnJ2AgAAOigl9sDU1NQcHBxSUlKYKSkpKa6urjLNKisrudx/yuDxeIQQemiJi4uL9OInTpyouzgAALydlNgDI4QEBQVNnz7d0dHRxcVl27Zt+fn59OnB4ODgx48f//TTT4QQLy+v2bNnx8TEeHp6ikSiwMBAJycnMzMzQkhAQMDgwYPXr18/bty4w4cPnzx58sKFC0otGAAA2EK5Aebt7V1SUrJq1SqRSGRnZ5eUlGRhYUEIEYlEzA1hPj4+5eXlW7ZsWbRoka6urru7+/r16+lZrq6u+/btCw0NXb58eY8ePRITE52dnZVaMAAAsIVy7wNre7gPDACgc2jP+8AAAACUBwEGAACshAADAABWQoABAAArIcAAAICVEGAAAMBKCDAAAGAlBBgAALASAgwAAFgJAQYAAKyEAAMAAFZCgAEAACshwAAAgJUQYAAAwEoIMAAAYCUEGAAAsBICDAAAWAkBBgAArIQAAwAAVkKAAQAAKyHAAACAlRBgAADASggwAABgJQQYAACwEgIMAABYCQEGAACshAADAABWQoABAAArIcAAAICVEGAAAMBKCDAAAGAlBBgAALASAgwAAFgJAQYAAKyEAAMAAFZCgAEAACshwAAAgJUQYAAAwEoIMAAAYCUEGAAAsBICDAAAWAkBBgAArIQAAwAAVkKAAQAAKyHAAACAlRBgAADASggwAABgJQQYAACwktIDLDo62srKSiAQODg4nD9/vm4DHx8fzv97//33mbnffPNNr1691NXVzc3NFy5c+ObNG2UXDAAArKDcAEtMTAwMDAwJCblx44abm9uoUaPy8/Nl2nz77beivxUUFOjr6//73/+mZyUkJCxbtiwsLCwzMzMuLi4xMTE4OFipBQMAAFtwKIpS3tqdnZ379esXExNDf7WxsRk/fnxkZGRD7Q8dOjRhwoTc3FwLCwtCyIIFCzIzM0+dOkXPXbRo0ZUrV+rtxjHKysp0dHRKS0u1tbVbbz8AAKCtNfp7rqK8bVdXV6elpS1btoyZ4uHhcfHiRTmLxMXFDR8+nE4vQsigQYN279595coVJyenBw8eJCUlzZw5s+5SVVVVVVVV9OeysrLW2wMAUC6xWFxTU9PeVUD7U1NT43KbfEZQiQFWXFwsFotNTEyYKSYmJoWFhQ21F4lEv//++549e5gpkydPfvbs2aBBgyiKqq2tnTdvnnQcMiIjI1euXNm6xQOAUlEUVVhY+PLly/YuBDoELpdrZWWlpqbWpKWUGGA0DofDfKYoSvqrjPj4eF1d3fHjxzNTzp49u2bNmujoaGdn5+zs7ICAAKFQuHz5cpkFg4ODg4KC6M9lZWXm5uatuQMAoAR0ehkbG2toaMj5WYC3gUQiefLkiUgk6tatW5P+GJQYYIaGhjweT7rLVVRUJN0hk0ZR1Pbt26dPny6dwMuXL58+fbqfnx8hpHfv3hUVFXPmzAkJCZHpafL5fD6fr5ydAIDWJxaL6fQyMDBo71qgQzAyMnry5Eltba2qqqriSylxFKKampqDg0NKSgozJSUlxdXVtd7G586dy87O9vX1lZ5YWVkpnVU8Ho+iKKWOOgGANkBf99LQ0GjvQqCjoLsuYrG4SUsp9xRiUFDQ9OnTHR0dXVxctm3blp+fP3fuXEJIcHDw48ePf/rpJ6ZlXFycs7OznZ2d9OJeXl5fffVV37596VOIy5cvHzt2LI/HU2rNANA2cOYQGM37Y1BugHl7e5eUlKxatUokEtnZ2SUlJdEjDEUikfQNYaWlpb/88su3334rs3hoaCiHwwkNDX38+LGRkZGXl9eaNWuUWjAAALCFcu8Da3u4Dwyg43vz5k1ubi79jJ72rqWNhIeHHzp0KD09vb0L6aDq/ZNo9Pccz0IEgLda3afZZWdnt3y1HA7n0KFDzNfFixczz2SA1qL0YfQAAK1FLKGu5D4vKn9jrCVwstLncVvnKtrIkSN37NjBfDUyMmI+V1dXN/XmpHp16dKlS5cuTVqkpqamSUPy3kLogQEAOyTfEQ1af/qT2MsB+9I/ib08aP3p5DuiVlkzn883lTJs2LAFCxYEBQUZGhqOGDGCEHLu3DknJyc+ny8UCpctW1ZbW0sv+OGHH/r7+3/55Zf6+vqmpqbh4eH0dEtLS0LIxx9/zOFw6M/h4eEffPABs8UdO3bY2NgIBAJra+vo6Gh6Yl5eHofD+fnnnz/88EOBQLB79+5W2btODAEGACyQfEc0b/d1Uek/76MoLH0zb/f11sowGTt37lRRUUlNTf3hhx8eP348evTo/v3737x5MyYmJi4uLiIiQrqlpqbmn3/+uWHDhlWrVtE3Dl29epUQsmPHDpFIRH+WFhsbGxISsmbNmszMzLVr1y5fvnznzp3M3KVLl/r7+2dmZnp6eipj1zoTnEIEgI5OLKFWHs2QGW9GEcIhZOXRjBG2pi08l3js2DHm/N6oUaMIIT179tywYQM9JSQkxNzcfMuWLRwOx9ra+smTJ0uXLl2xYgV9l6q9vX1YWBgh5N13392yZcupU6dGjBhBn4TU1dU1NTWtu7nVq1dv3rx5woQJhBArK6uMjIwffviBedBrYGAgPQsahQADgI7uSu5z6b4XgyJEVPrmSu5zlx4teqLH0KFDmZdmaGpqfvLJJ46OjszczMxMFxcX5kalgQMHvnr16tGjR926dSOE2NvbMy2FQmFRUZH8bT179qygoMDX13f27Nn0lNraWh0dHaaB9KZBPgQYAHR0ReXy3mQrf64iNDU1e/bsKTOF+SzzEFf61iNmivQ4Cw6HI5FI5G+LbhAbG+vs7MxMlH4+g/SmQT4EGAB0dMZa8m4Xkz+35WxtbX/55Rcmxi5evKilpdW1a1f5S6mqqtb7YCQTE5OuXbs+ePBg6tSpSin3bYJBHADQ0TlZ6Qt1BHUvc3EIEeoInKz0lbr1zz//vKCg4Isvvvjrr78OHz4cFhYWFBTU6MurLC0tT506VVhY+OLFC5lZ4eHhkZGR33777b17927fvr1jx46vvvpKaeV3ZggwRYkl1KWcksPpjy/llIglnerxJQAdHI/LCfOyJYRIZxj9OczLtrXuBmtI165dk5KSrly50qdPn7lz5/r6+oaGhja61ObNm1NSUszNzfv27Sszy8/P78cff4yPj+/du/eQIUPi4+OtrKyUU3snh0dJKST5jmjl0QzmMrJQRxDmZTvSTtiKmwB4ezTvUVL417ATa96jpHANrHH0DSjSOU/fgBIzrR/+5QFoMyPthCNsTZXxJA5gKQRYI5R9AwoAKI7H5bRwxDx0JrgG1ohGb0Bp+5IAAIAgwBql7BtQAACgeRBgjWjfG1AAAKAhCLBGtO8NKAAA0BAEWCPa9wYUAABoCAKscSPthDHT+pnq/HO20FRHgDH0AADtCwGmkJF2wgtL3ffOHvDt5A/2zh5wYak70gvg7US/djI9PV1+s/j4eF1dXWVvpbVwOJxDhw61/XZbCAGmKPoGlHEfdHXpYYAzhwCdCf1+EzMzMzU1NQsLi4CAgJKSkoYam5ubi0QiOzs7+ev09va+d+9ea1eqdIrsnY+Pz/jx49uqInkQYADwVnvw4IGjo+O9e/f27t2bnZ29devWU6dOubi4PH9ez12e1dXVPB7P1NRURaWRp0Coq6sbGxsrp2SF1NTUNGMpBfeuGaqrq1t9nQgwAGCVmtfkj02k5nVrrW/+/PlqamonTpwYMmRIt27dRo0adfLkycePH4eEhNANLC0tIyIifHx8dHR0Zs+eLXOS7ciRI++++666uvrQoUN37tzJ4XBevnxJ/v8UYnh4+AcffLBr1y5LS0sdHZ3JkyeXl5fTs5KTkwcNGqSrq2tgYPDRRx/l5OQ0WrClpeXq1aunTJnSpUsXMzOzqKgoZhaHw9m6deu4ceM0NTUjIiIIIUePHnVwcBAIBN27d1+5cmVtbS3d8v79+4MHDxYIBLa2tikpKcwaZPbu7t27Y8aM0dbW1tLScnNzy8nJCQ8P37lz5+HDhzkcDofDOXv2LCHk9u3b7u7u6urqBgYGc+bMefXqFb043VeLjIw0MzN77733mvzPpjEIMABglYwj5PRqknm0VVb2/Pnz48ePf/755+rq6sxEU1PTqVOnJiYmMs8637hxo52dXVpa2vLly6UXz8vLmzhx4vjx49PT0z/77DMm8+rKyck5dOjQsWPHjh07du7cuXXr1tHTKyoqgoKCrl69eurUKS6X+/HHHzf6Sky6Hnt7++vXrwcHBy9cuFA6gcLCwsaNG3f79u1PP/30+PHj06ZN8/f3z8jI+OGHH+Lj49esWUMIkUgkEyZM4PF4ly9f3rp169KlS+vdyuPHj+mQO336dFpa2qefflpbW7t48eJJkyaNHDlSJBKJRCJXV9fKysqRI0fq6eldvXp1//79J0+eXLBgAbOSU6dOZWZmpqSkHDt2rNH9ajKqcyktLSWElJaWtnchANCg169fZ2RkvH79ujkLJ3hTYdrUnsmtUsnly5cJIQcPHpSZTr+g6+nTpxRFWVhYjB8/npmVm5tLCLlx4wZFUUuXLrWzs2Nm0QH24sULiqJ27Niho6NDTw8LC9PQ0CgrK6O/LlmyxNnZuW4xRUVFhJDbt2/LbEWGhYXFyJEjma/e3t6jRo2iPxNCAgMDmVlubm5r165lvu7atUsoFFIUdfz4cR6PV1BQQE///fffmYMgvd3g4GArK6vq6mqZAmbOnDlu3Djm67Zt2/T09F69ekV//e2337hcbmFhId3SxMSkqqqq7l7IqPdPotHfczzMFwA6vFdF5NL3RFJLCCE5pwghJPskOR5CCCFcFeKygHQxat0N0mFAv4KZEOLo6Fhvs6ysrP79+zNfnZycGlqhpaWllpYW/VkoFNJZRQjJyclZvnz55cuXi4uL6b5Xfn5+oyNEXFxcpD9/8803zFfpUtPS0q5evUr3ugghYrH4zZs3lZWVmZmZ3bp1e+edd+quTVp6erqbm5uqqqr8YjIzM/v06aOpqUl/HThwoEQiycrKMjExIYT07t1bTU1N/hqaDQEGAB1eeSG5HEPEVYTD/d+DBCRicjmaUBLC4xO7fzU7wHr27MnhcDIyMmSG1f311196enqGhob0V+bXWQZFUUzIkb9jr17SMcDhcJjzhF5eXubm5rGxsWZmZhKJxM7OrhmDHaRrkC5VIpGsXLlywoQJ0o0FAoFMndKLS5M+rSqHzEGQWWdDh65V4BoYAHR4Qnvy2Tli+B4hhFDif/6v4Xvks3NEaN/sFRsYGIwYMSI6Ovr1639GhRQWFiYkJHh7ezf0y86wtra+evUq8/XatWtN2npJSUlmZmZoaOiwYcNsbGxevHih4IL0mU/ms7W1db3N+vXrl5WV1fP/cblcW1vb/Pz8J0+e0M0uXbpU7+L29vbnz5+vO5pRTU1NLBYzX21tbdPT0ysqKuivqampXC5XGUM26kKAAQAbGNsQ3xOyE31PEGObFq54y5YtVVVVnp6ef/zxR0FBQXJy8ogRI7p27cqceZPjs88+++uvv5YuXXrv3r2ff/45Pj6eNNyhqUtPT8/AwGDbtm3Z2dmnT58OCgpScMHU1NQNGzbcu3fv+++/379/f0BAQL3NVqxY8dNPP4WHh9+9ezczMzMxMTE0NJQQMnz48F69es2YMePmzZvnz59vaOzJggULysrKJk+efO3atfv37+/atSsrK4sQYmlpeevWraysrOLi4pqamqlTpwoEgpkzZ965c+fMmTNffPHF9OnT6fOHyoYAAwCWeHiRUFIj9CgJeVh/16FJ3n333WvXrvXo0cPb27tHjx5z5swZOnTopUuX9PUbf1S3lZXVgQMHfv31V3t7+5iYGDoJ+Hy+gpvmcrn79u1LS0uzs7NbuHDhxo0bFVxw0aJFaWlpffv2Xb169ebNmz09Pett5unpeezYsZSUlP79+w8YMOCrr76ysLCgt3vw4MGqqionJyc/P7+GotrAwOD06dOvXr0aMmSIg4NDbGwsfSJ09uzZvXr1cnR0NDIySk1N1dDQOH78+PPnz/v37z9x4sRhw4Zt2bJFwR1pIY6ck7ZsVFZWpqOjU1paqq2t3d61AED93rx5k5uba2VlJRA05YVEBz8jN/eRbi5kxGpyIpQUXCZ9PiEfb1VamU22Zs2arVu3FhQUKHUrlpaWgYGBgYGBSt1KG6v3T6LR33MM4gAAlhD2JUY2xPULwuWRWUnkYhRRaf8X8kVHR/fv39/AwCA1NXXjxo3St0CBsiHAAIAlBsz95zOXRwYFtlslUu7fvx8REfH8+fNu3botWrQoODi4vSt6iyDAAACa7+uvv/7666/bcot5eXltubmODIM4AACAlRBgAADASggwAABgJQQYAACwEgIMAABYCQEGAACshAADAGgF9NuHlbRymRclKxuHwzl06FDbb7epEGAA8Fb78MMPZR7LdOjQIcUfyNskHTwP6jI3NxeJRPLfT6bU5JYPAQYA0PnVfSuKIng8nqmpqYpK6z/yohmvPasLAQYALPCw7GFGSUbd/z0se6jU7YaHh3/wwQc//PCDubm5hobGv//975cvX9KzxGJxUFCQrq6ugYHBl19+Kf1g9OTk5EGDBtGzPvroo5ycHHq6lZUVIaRv374cDufDDz+kJ+7YscPGxkYgEFhbW0dHRzMruXLlSt++fQUCgaOj440bNxqq0NLScvXq1VOmTOnSpYuZmVlUVBQzi8PhbN26ddy4cZqamhEREYSQo0ePOjg4CASC7t27r1y5sra2lm55//79wYMHCwQCW1vblJQUZg0yXca7d++OGTNGW1tbS0vLzc0tJycnPDx8586dhw8f5nA4HA7n7NmzhJDbt2+7u7urq6sbGBjMmTPn1atX9OJ0Xy0yMtLMzKxVXhiGR0kBQEf3sOzhRwc/amjusY+PWWhbKG/r2dnZP//889GjR8vKynx9fefPn5+QkEAI2bx58/bt2+Pi4mxtbTdv3nzw4EF3d3d6kYqKiqCgoN69e1dUVKxYseLjjz9OT0/ncrlXrlxxcnI6efLk+++/r6amRgiJjY0NCwvbsmVL3759b9y4MXv2bE1NzZkzZ1ZUVHz00Ufu7u67d+/Ozc1t6I1ftI0bN/7nP/8JDw8/fvz4woULra2tR4wYQc8KCwuLjIz8+uuveTze8ePHp02b9t1339HZM2fOHLqBRCKZMGGCoaHh5cuXy8rKGnrO/ePHjwcPHvzhhx+ePn1aW1s7NTW1trZ28eLFmZmZZWVlO3bsIITo6+tXVlaOHDlywIABV69eLSoq8vPzW7BgAf2mNELIqVOntLW1U1JSWudFKFTnUlpaSggpLS1t9hpqxZKL2cWHbjy6mF1cK5a0Ym0AQHv9+nVGRsbr168VbH+3+K5dvF1D/7tbfLclxQwZMiQgIEB6ysGDB5nfxrCwMB6PV1BQQH/9/fffuVyuSCSiKEooFK5bt46eXlNT884774wbN67u+ouKigght2/fpigqNzeXEHLjxg1mrrm5+Z49e5ivq1evdnFxoSjqhx9+0NfXr6iooKfHxMTILMiwsLAYOXIk89Xb23vUqFH0Z0JIYGAgM8vNzW3t2rXM1127dgmFQoqijh8/LrOPhJCDBw/KFBwcHGxlZVVdXS1TwMyZM6V3fNu2bXp6eq9evaK//vbbb1wut7CwkG5pYmJSVVVVdy/q/ZNo9PccPbD/k3xHtPJohqj0Df1VqCMI87IdaSds36oAoB1169btnXfeoT+7uLhIJJKsrCx1dXWRSOTi4kJPV1FRcXR0pP7uVeTk5Cxfvvzy5cvFxcUSiYQQkp+fX3coxLNnzwoKCnx9fWfPnk1Pqa2t1dHRIYRkZmb26dNHQ0OD2a6cCqXnuri4fPPNN8xXR0dH5nNaWtrVq1eZ11eKxeI3b95UVlZmZmbK7GO9W0lPT3dzc6PfaSkHXbmmpib9deDAgfQRo9/R3Lt3b7rr2SoQYP9IviOat/u6dLe2sPTNvN3XY6b1Q4YBdFba2tr0f+kzXr582dAbFOnRiY2OUfTy8jI3N4+NjTUzM5NIJHZ2dvWOWaCzLTY21tnZmZnI4/EIIVQLzrBJl8cECb25lStXTpgwQbqxQCCQ2VZDe6eurq7I1imKqrsGZop0PS2n9EEc0dHR9Es2HRwczp8/X7eBj48P5/+9//77zNyXL1/Onz9fKBQKBAIbG5ukpCQl1SmWUCuPZsj8ydBfVx7NEEs61XurAYBhbW197do16SlXr17t1asX8zU/P//Jkyf050uXLnG53Pfee09HR0coFF6+fJmeXltbm5aWRn8uKSnJzMwMDQ0dNmyYjY3NixcvmFXRnQ+xWEx/NTEx6dq164MHD3pKoQd62Nra3rx58/Xr13RLZkP1kp57+fJla2vrepv169cvKyur5//jcrm2trYy+1jv4vb29ufPn687mlFNTY3ZI7ry9PT0iooK+mtqaip9xOTU32zKDbDExMTAwMCQkJAbN264ubmNGjUqPz9fps23334r+ltBQYG+vv6///1velZ1dfWIESPy8vIOHDiQlZUVGxvbtWtXJZV6Jfc5c+ZQGkWIqPTNldznStouALSvzz//PCcnZ/78+Tdv3rx37973338fFxe3ZMkSpoFAIJg5c+bNmzfPnz/v7+8/adIkU1NTQkhAQMC6desOHjz4119/ff7558zoRD09PQMDg23btmVnZ58+fTooKIhZlbGxsbq6enJy8tOnT+luX3h4eGRk5Lfffnvv3r3bt2/v2LHjq6++IoRMmTKFy+X6+vpmZGQkJSVt2rRJzi6kpqZu2LCBLn7//v0NjfhYsWLFTz/9FB4efvfu3czMzMTExNDQUELI8OHDe/XqNWPGDHofQ0JC6l18wYIFZWVlkydPvnbt2v3793ft2pWVlUUIsbS0vHXrVlZWVnFxcU1NzdSpU+kjdufOnTNnznzxxRfTp0+nzx+2OuUG2FdffeXr6+vn52djY/PNN9+Ym5vTlyKl6ejomP7t2rVrL168mDVrFj1r+/btz58/P3To0MCBAy0sLAYNGtSnTx8llVpUXk96KTgXANjL0tLy/PnzOTk5Hh4e/fv3j4+Pj4+PZ/4zmhDSs2fPCRMmjB492sPDw87OjhnpvmjRohkzZvj4+Li4uGhpaX388cf0dC6Xu2/fvrS0NDs7u4ULF27cuJFZlYqKynfffffDDz+YmZmNGzeOEOLn5/fjjz/Gx8f37t17yJAh8fHxdA+sS5cuR48ezcjI6Nu3b0hIyPr16+XswqJFi9LS0vr27bt69erNmzd7enrW28zT0/PYsWMpKSn9+/cfMGDAV199ZWFhQRd88ODBqqoqJycnPz8/5iKZDAMDg9OnT7969WrIkCEODg6xsbH09bDZs2f36tXL0dHRyMgoNTVVQ0Pj+PHjz58/79+//8SJE4cNG7ZlyxaF/2k0DaclZ1rlq66u1tDQ2L9/P/PPNSAgID09/dy5cw0t4uXlVVVVdeLECfrr6NGj9fX1NTQ0Dh8+bGRkNGXKlKVLl9IniKVVVVVVVVXRn8vKyszNzUtLSxs6hd2QSzkln8Q22EnfO3uASw+DJq0QABry5s2b3Nxc+uKCIu0zSjK8j3k3NDfxo0RbA9vWq+7/hIeHHzp0qCM/O8PS0jIwMLChse9sUe+fRFlZmY6OjpzfcyX2wIqLi8VisXTP0cTEpLCwsKH2IpHo999/9/PzY6Y8ePDgwIEDYrE4KSkpNDR08+bN9f6nQWRkpM7fzM3Nm1etk5W+UEdQ99olhxChjsDJSr95qwWAltNUlXflX/5c6MSUPgpRejhKvaNTGPHx8bq6utLP1JJIJMbGxtu2bePxeA4ODk+ePNm4ceOKFStkFgwODmbOMtM9sGbUyeNywrxs5+2+zvl77AYhhK41zMuWx1XKg9EAQBEW2hbHPj5WUVNRd5amqqZS72KGjkyJAWZoaMjj8aS7XEVFRQ1dyqMoavv27dOnT5e+RUAoFKqqqjLnDG1sbAoLC6urq2VuI+Dz+Xw+v+UFj7QTxkzrJ30fmCnuAwPoGNorpcLDw8PDw9tl0wrKy8tr7xLajRIDTE1NzcHBISUlhbkGlpKSQl+3rOvcuXPZ2dm+vr7SEwcOHLhnzx6JRMLlcgkh9+7dEwqFrXgTXF0j7YQjbE2v5D4vKn9jrCVwstJH3wsAoGNS7ijEoKCgH3/8cfv27ZmZmQsXLszPz587dy4hJDg4eMaMGdIt4+LinJ2dZe5UnzdvXklJSUBAwL1793777be1a9fOnz9fqQUTQnhcjksPg3EfdHXpYYD0AgDosJR7Dczb27ukpGTVqlX0G2WSkpLoUZsikUj6hrDS0tJffvnl22+/lVnc3Nz8xIkTCxcutLe379q1a0BAwNKlS5VaMAC0GeUNgQbWad4fgxKH0beLRoddAkC7E4vF9+7dMzY2NjDA3SlACCGlpaVPnjzp2bOn9LMWG/09x7MQAaCt8Xg8XV1d+jHtGhoaSnr9MbCFRCJ59uyZhoZGU9+ciQADgHZAP42JzjAALpfbrVu3pv6nDAIMANoBh8MRCoXGxsbNe9U9dDJqamr0aPMmQYABQLvh8Xh1Hw4HoCClv04FAABAGRBgAADASggwAABgpc52DYy+ra2srKy9CwEAgBahf8nl3Kzc2QKsvLycENLsl6oAAECHUl5erqOjU++szvYkDolE8uTJEy0trZbcGkm/k6WgoACP86gLB6chODJy4ODIgYPTEIqiysvLzczMGhph39l6YFwu95133mmVVWlra+PvqSE4OA3BkZEDB0cOHJx6NdT3omEQBwAAsBICDAAAWAkBVg8+nx8WFtYqb3nufHBwGoIjIwcOjhw4OM3W2QZxAADAWwI9MAAAYCUEGAAAsBICDAAAWAkBBgAArPTWBVh0dLSVlZVAIHBwcDh//ny9bc6dO+fg4CAQCLp3775161bpWb/88outrS2fz7e1tT148GCblNx2WnJwYmNj3dzc9PT09PT0hg8ffuXKlbaquo208C+Htm/fPg6HM378eOXW2rZaeGRevnw5f/58oVAoEAhsbGySkpLapOo20sKD88033/Tq1UtdXd3c3HzhwoVv3rxpk6rZg3qb7Nu3T1VVNTY2NiMjIyAgQFNT8+HDhzJtHjx4oKGhERAQkJGRERsbq6qqeuDAAXrWxYsXeTze2rVrMzMz165dq6Kicvny5TbfCWVp4cGZMmXK999/f+PGjczMzFmzZuno6Dx69KjNd0JZWnhwaHl5eV27dnVzcxs3blzbla5kLTwyVVVVjo6Oo0ePvnDhQl5e3vnz59PT09t8J5SlhQdn9+7dfD4/ISEhNzf3+PHjQqEwMDCwzXeiQ3u7AszJyWnu3LnMV2tr62XLlsm0+fLLL62trZmvn3322YABA+jPkyZNGjlyJDPL09Nz8uTJyqy3TbXw4Eirra3V0tLauXOnkkptey0/OLW1tQMHDvzxxx9nzpzZmQKshUcmJiame/fu1dXVbVBq22vhwZk/f767uzszKygoaNCgQcqsl33eolOI1dXVaWlpHh4ezBQPD4+LFy/KNLt06ZJ0G09Pz2vXrtXU1NQ7q+7iLNXygyOtsrKypqZGX19feQW3pVY5OKtWrTIyMvL19W2DgttMy4/MkSNHXFxc5s+fb2JiYmdnt3btWrFY3DbFK1vLD86gQYPS0tLos/EPHjxISkoaM2ZMm9TOGp3tYb5yFBcXi8ViExMTZoqJiUlhYaFMs8LCQpk2tbW1xcXFQqGw7qy6i7NUyw+OdLNly5Z17dp1+PDhSq25zbT84KSmpsbFxaWnp7dNwW2m5UfmwYMHp0+fnjp1alJS0v379+fPn19bW7tixYo22gFlavnBmTx58rNnz+heV21t7bx585YtW9ZG1bPEWxRgNOnXrFAUVe9bV2TaSE9RZHH2auHBoW3YsGHv3r1nz54VCARKq7QdNPvglJeXT5s2LTY21tDQsA3qbHst+bORSCTGxsbbtm3j8XgODg5PnjzZuHFj5wgwWksOztmzZ9esWRMdHe3s7JydnR0QECAUCpcvX678qlnjLQowQ0NDHo8n/V9ARUVF0v/tQzM1NZVpo6KiYmBgUO+suouzVMsPDm3Tpk1r1649efKkvb29smtuMy08OHfv3s3Ly/Py8qKnSyQSQoiKikpWVlaPHj2UX74StfzPRigUqqqq8ng8epaNjU1hYWF1dbWampryy1eulh+c5cuXT58+3c/PjxDSu3fvioqKOXPmhISENPRyrLfQW3Qg1NTUHBwcUlJSmCkpKSmurq4yzVxcXKTbnDhxwtHRUVVVtd5ZdRdnqZYfHELIxo0bV69enZyc7Ojo2AY1t5kWHhxra+vbt2+n/23s2LFDhw5NT0/vBO8Nb/mfzcCBA7Ozs+lQJ4Tcu3dPKBR2gvQirXFwKisrpbOKx+PRIxeUXDirtP24kXZEj2qNi4vLyMgIDAzU1NTMy8ujKGrZsmXTp0+n29CjWhcuXJiRkREXFyc9qjU1NZXH461bty4zM3PdunWdchh9sw/O+vXr1dTUDhw4IPpbeXl5u+1Ma2vhwZHWyUYhtvDI5Ofnd+nSZcGCBVlZWceOHTM2No6IiGi3nWltLTw4YWFhWlpae/fuffDgwYkTJ3r06DFp0qR225kO6e0KMIqivv/+ewsLCzU1tX79+p07d46eOHPmzCFDhjBtzp4927dvXzU1NUtLy5iYGOnF9+/f36tXL/o/q3/55Ze2rLwNtOTgWFhYyPy3UVhYWNuWr1wt/MthdLIAo1p8ZC5evOjs7Mzn87t3775mzZra2tq2LF7ZWnJwampqwsPDe/ToIRAIzM3NP//88xcvXrRt+R0dXqcCAACs9BZdAwMAgM4EAQYAAKyEAAMAAFZCgAEAACshwAAAgJUQYAAAwEoIMAAAYCUEGEBnEB8fr6urW+8sHx+fNn4HdHh4+AcffNCWW4S3EwIM3iI+Pj4cDofD4aiqqpqYmIwYMWL79u3Mg/g6q2+//TY+Pl7x9tJHqXv37osXL66oqGjSFhcvXnzq1ClmbW0cn/D2QIDB22XkyJEikSgvL+/3338fOnRoQEDARx99VFtb2951/U91dXWrr1NHR6ehzllD6KP04MGDiIiI6OjoxYsXK7ggRVG1tbVdunSRfkcBgJIgwODtwufzTU1Nu3bt2q9fv//85z+HDx/+/fffmQ5KaWnpnDlzjI2NtbW13d3db968SU+nz4lt3769W7duXbp0mTdvnlgs3rBhg6mpqbGx8Zo1a5j15+fnjxs3rkuXLtra2pMmTXr69CkzKyIiwtjYWEtLy8/Pb9myZcxJNrqPEhkZaWZm9t577xFCdu/e7ejoqKWlZWpqOmXKlKKiIrrl2bNnORzOb7/91qdPH4FA4OzsfPv2bem9O378uI2NTZcuXegEkl4//Vkikaxfv75nz558Pr9bt27Sldc9Subm5lOmTJk6deqhQ4carer48eOOjo58Pv/8+fPMKcTw8PCdO3cePnyY7tKdPXvW3d19wYIFzIZKSkr4fP7p06eb8s8Q4H8QYPBWc3d379Onz6+//koIoShqzJgxhYWFSUlJaWlp/fr1GzZs2PPnz+mWOTk5v//+e3Jy8t69e7dv3z5mzJhHjx6dO3du/fr1oaGhly9fptcwfvz458+fnzt3LiUlJScnx9vbm148ISFhzZo169evT0tL69atW0xMjHQZp06dyszMTElJOXbsGCGkurp69erVN2/ePHToUG5uro+Pj3TjJUuWbNq06erVq8bGxmPHjqVfP08Iqays3LRp065du/7444/8/Px6u03BwcHr169fvnx5RkbGnj17FHmhnbq6Or0J+VV9+eWXkZGRmZmZ0q+CW7x48aRJk+g0FYlErq6ufn5+e/bsqaqqYg6LmZnZ0KFDGy0DoB7t+yxhgLZU75Pgvb29bWxsKIo6deqUtrb2mzdvmFk9evT44YcfKIoKCwvT0NAoKyujp3t6elpaWorFYvprr169IiMjKYo6ceIEj8fLz8+np9+9e5cQcuXKFYqinJ2d58+fz6x54MCBffr0YaoyMTGpqqqqt+YrV64QQuh305w5c4YQsm/fPnpWSUmJurp6YmIiRVE7duwghGRnZ9Ozvv/+exMTE5m9Lisr4/P5sbGxih+lP//808DAoO5bPOpWdejQIWZuWFiY9N5JH/M3b97o6+vTNVMU9cEHH4SHh8uvB6Ah6IHB2476+0XvaWlpr169MjAw6PK33NzcnJwcupmlpaWWlhb92cTExNbWlnnZoImJCX0+LTMz09zcnHlTpa2tra6ubmZmJiEkKyvLycmJ2aj0Z0JI7969pd/ieOPGjXHjxllYWGhpaX344YeEkPz8fGaui4sL/UFfX79Xr170+gkhGhoazCuehUIhc4qPkZmZWVVVNWzYsEaPybFjx7p06SIQCFxcXAYPHhwVFdVoVQq+xZTP50+bNm379u2EkPT09Js3b8r05AAUp9LeBQC0s8zMTCsrK0KIRCIRCoVnz56VnssMf2BePE0IoUfoSX+lhzIyWciQniI9i/r/1xhpamoynysqKjw8PDw8PHbv3m1kZJSfn+/p6SlncAezWpmSqDpvSlJXV29oJTKGDh0aExOjqqpqZmZGr7bRqqR3QT4/P78PPvjg0aNH27dvHzZsWN03yQEoCD0weKudPn369u3b//rXvwgh/fr1KywsVFFR6SnF0NBQ8bXZ2trm5+cXFBTQXzMyMkpLS21sbAghvXr1ok+70a5du9bQSv7666/i4uJ169a5ublZW1vX7UjR19sIIS9evLh37561tbWC5b377rvq6urMAHc5NDU1e/bsaWFhwYRio1U1RE1NTSwWS0/p3bu3o6NjbGzsnj17Pv30UwXXA1AXAgzeLlVVVYWFhY8fP75+/fratWvHjRv30UcfzZgxgxAyfPhwFxeX8ePHHz9+PC8v7+LFi6GhoXKSpq7hw4fb29tPnTr1+vXrV65cmTFjxpAhQ+hza1988UVcXNzOnTvv378fERFx69Ytmb4ao1u3bmpqalFRUQ8ePDhy5Mjq1atlGqxaterUqVN37tzx8fExNDRU/C4rgUCwdOnSL7/88qeffsrJybl8+XJcXJyCyzZaVUMsLS1v3bqVlZVVXFzMjDfx8/Nbt26dWCz++OOPFVwPQF0IMHi7JCcnC4VCS0vLkSNHnjlz5rvvvjt8+DCPxyOEcDicpKSkwYMHf/rpp++9997kyZPz8vIUGafH4HA4hw4d0tPTGzx48PDhw7t3756YmEjPmjp1anBw8OLFi/v160cP4RMIBPWuxMjIKD4+fv/+/ba2tuvWrdu0aZNMg3Xr1gUEBDg4OIhEoiNHjkhfPGvU8uXLFy1atGLFChsbG29vb8U7Uo1W1ZDZs2f36tXL0dHRyMgoNTWVnvjJJ5+oqKhMmTKloYMAoIh6TpQDgLKNGDHC1NR0165dTVrq7NmzQ4cOffHiRVNvTO5oCgoKLC0tr1692q9fv/auBVgMgzgA2kJlZeXWrVs9PT15PN7evXtPnjyZkpLS3kW1g5qaGpFItGzZsgEDBiC9oIUQYABtgT4/GRERUVVV1atXr19++WX48OHtXVQ7SE1NHTp06HvvvXfgwIH2rgVYD6cQAQCAlTCIAwAAWAkBBgAArIQAAwAAVkKAAQAAKyHAAACAlRBgAADASggwAABgJQQYAACwEgIMAABY6b8MK1cgMzkzswAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABcPklEQVR4nO3deVxUVeMG8GcYGQYQUJBVEcgFIdwVQs0lNcyi1N5CSwVzSdNSSV/FDZcUMzXLBcsMfV15LXfNNNzSVAzcQdwwyEBcQVAWmfP7wx/zOjIgAzMMeJ/v5zOfmnPPPffcC3Gfzj33XpkQQoCIiIhIQkyM3QEiIiKiysYARERERJLDAERERESSwwBEREREksMARERERJLDAERERESSwwBEREREksMARERERJLDAERERESSwwBERNXK9OnTIZPJjN2NKi0kJATu7u7G7gZRlcYAREQAgFWrVkEmk2n9TJw4sVL78vDhQ0yfPh0HDx6s1O0+qyhsafssX77cqH0jooqpYewOEFHVMnPmTHh4eGiU+fj4VGofHj58iBkzZgAAOnfurLFsypQplR7IIiMjUbNmTY0yPz+/Su0DEekXAxARaXjjjTfQpk2bMtXNzc2FQqGAiUnlDSbXqFEDNWro70/Xw4cPYWFhUWqdf/3rX6hTp47etklExsdLYERUJgcPHoRMJsPGjRsxZcoU1K1bFxYWFsjKygIAbNq0Ca1bt4a5uTnq1KmD/v3748aNGxpthISEoGbNmrhx4wZ69eqFmjVrwt7eHuPGjUNhYSEA4Pr167C3twcAzJgxQ33Jafr06QBKngO0du1a9fZtbW3Rt29fpKamatTp3LkzfHx8EBcXh44dO8LCwgKTJk2q8LEpy7537ty52GhW0TF5er7O9evXIZPJMH/+fHz//fdo0KABzMzM0LZtW5w8ebLY+lu3boWPjw+USiV8fHywZcuWCu8PkRRwBIiINGRmZuL27dsaZU+PfsyaNQsKhQLjxo1DXl4eFAoFVq1ahUGDBqFt27aIiIjAzZs38c033+Do0aM4deoUatWqpV6/sLAQAQEB8PPzw/z58/Hbb79hwYIFaNCgAUaMGAF7e3tERkZixIgR6N27N/r06QMAaNasWYl9nj17NqZOnYr3338fQ4YMwa1bt7B48WJ07Nix2Pbv3LmDN954A3379kX//v3h6Oj43GNy9+5dje9yuRy1a9cGAJ32XRfr16/HgwcP8PHHH0Mmk2HevHno06cPrl27BlNTUwDA3r178e6778Lb2xsRERG4c+cOBg0ahHr16pVrm0SSIoiIhBBRUVECgNaPEEIcOHBAABAvvfSSePjwoXq9/Px84eDgIHx8fMSjR4/U5Tt37hQAxLRp09RlwcHBAoCYOXOmxrZbtmwpWrdurf5+69YtAUCEh4cX62d4eLh4+k/X9evXhVwuF7Nnz9aod+7cOVGjRg2N8k6dOgkAYvny5WU6JkXbevbj5uam87536tRJdOrUqdg2goOD1e0JIURycrIAIOzs7MTdu3fV5du2bRMAxI4dO9RlLVq0EM7OzuL+/fvqsr1792r0kYi04wgQEWlYunQpGjduXOLy4OBgmJubq7//+eefyMjIwPTp06FUKtXlb775Jpo0aYJdu3apJzQXGT58uMb3V199FWvWrClXfzdv3gyVSoX3339fY+TKyckJjRo1woEDBzQuc5mZmWHQoEE6bePnn3+GtbW1+nvR/pdn38sqKChIPcoEPDlGAHDt2jUAQFpaGk6fPo2JEyfCxsZGXa979+7w9vZGTk5OubZLJBUMQESkwdfXt9RJ0M/eIfbXX38BADw9PYvVbdKkCY4cOaJRplQq1XN8itSuXRv37t0rV38vX74MIQQaNWqkdXnR5aIidevWhUKh0GkbHTt21DoJWtd910X9+vU1vheFoaLjVLRtbfvt6emJ+Pj4cm+bSAoYgIhIJ0+P/pSHXC7XU0+eUKlUkMlk+OWXX7S2/ezt6xXtf3nJZDIIIYqVF03+flZJx0lbG0SkOwYgIqoQNzc3AEBSUhJee+01jWVJSUnq5brQ5UnPDRo0gBACHh4epV66MwRd9r127drqy1dPKxrJKe+2L1++XGxZUlJSudokkhLeBk9EFdKmTRs4ODhg+fLlyMvLU5f/8ssvSExMxJtvvqlzm0XP5bl///5z6/bp0wdyuRwzZswoNjoihMCdO3d03n5Z6bLvDRo0wMWLF3Hr1i112ZkzZ3D06NFybdvZ2RktWrTA6tWrkZmZqS7ft28fEhISytUmkZRwBIiIKsTU1BRffvklBg0ahE6dOqFfv37qW8Hd3d0xduxYnds0NzeHt7c3oqOj0bhxY9ja2sLHx0frE6kbNGiAL774AmFhYbh+/Tp69eoFKysrJCcnY8uWLRg2bBjGjRunj10tRpd9/+ijj7Bw4UIEBARg8ODByMjIwPLly/Hyyy+rn6Wkq4iICLz55pvo0KEDPvroI9y9exeLFy/Gyy+/jOzsbH3tJtELiSNARFRhISEhiI6ORn5+PiZMmIDvvvsOvXv3xpEjR8r9HJwffvgBdevWxdixY9GvXz/89NNPJdadOHEifv75Z5iYmGDGjBkYN24ctm/fjtdffx1vv/12OfeqbMq6715eXvjPf/6DzMxMhIaGYvv27VizZg1atWpV7m336NEDmzZtQmFhIcLCwrB582ZERUWV+UneRFImE5xRR0RERBLDESAiIiKSHAYgIiIikhwGICIiIpIcBiAiIiKSHAYgIiIikhwGICIiIpIcPghRC5VKhX/++QdWVlY6PZKfiIiIjEcIgQcPHsDFxQUmJqWP8TAAafHPP//A1dXV2N0gIiKickhNTUW9evVKrcMApIWVlRWAJwfQ2trayL0hIiKissjKyoKrq6v6PF4aBiAtii57WVtbMwARERFVM2WZvsJJ0ERERCQ5DEBEREQkOQxAREREJDkMQERERCQ5DEBEREQkOQxAREREJDkMQERERCQ5DEBEREQkOQxAREREJDl8EjQREZVboUogNvkuMh7kwsFKCV8PW8hNyv4S6YquT9VPVfmZMwAREelRdQ8EJW1fW/m+hHTM2JGAtMxc9frONkqEB3qjh4/zc7e153xahdan6qcq/cxlQghRqVusBrKysmBjY4PMzEy+C4zISHQ5EWsLCMYIIhX9427sk0NJ23+7uTO2n0nTKK9lYYr7DwuKtVF0hCL7tyq1z3vOp2HE2ng8ewIq6/pU/VTGz1yX8zcDkBYMQERlV9FAkv9YhTXHruOvuw/hZmuBAf7u2H/xZplPxNoCgjGCSEX/uBs7EJS0/fKQAXCyUeLIhNdK/F3o8OV+jeOry/pU/VTWz5wBqIIYgKiq0XU0pLJGScoaFEqq51PXGjGJGVA99VdIBuh0En42IBgjiFT0j7uxA8Hztl9eG4a+Av8GdsXKj129g34rjpd7fap+Kutnrsv5m3OAiPTseaFC19Cy53wapm9PQHrW/05OTtZKvNNC+2hIZY6SaAsK6Zm5GLE2/rmBJC0zV+sJV9f/IxN4EhBm7EjAa00cMWNHgtY2nq7X3dupxCBSnvVjk++WGh4EnuxvbPJdrX/cK7p+RT1v++WV8UB7myWVl7ceVX1V8WfOAESE0kPLs8tau9VG3F/3kJ75CHdz8mFb0wxO1mWbFKrLHIui8u8OJxfrb3pWrtbytEzt5WUNJc/WK+14lSUolBZI9KkoIKw5dt0oQaSif9yNfXIwVLsOVkqdystbTy8KHgHHlgL+IwFT88rbrkRUxZ85AxBJzrOB5nZ2HsK3X8DdnHx1naLQAqBYYDGRQeOSTZGSJoUWhYphHT3w/eFkrSMhuoSZ8tDnKAlQ9qDwvECib3/dfVimevoOIhX9427sk4O+2y26ZOfrYat1ua+HLZxtlEjPzNX6e/i89Q0iYTuwfxZQqz7Q7P3K265EVMWfOQMQvXC0jeYAT07aey+k4af4G3iQ+7jUNtIyczF8bbzWZdrCDwCt4Qf43yWdFb8XDz+VSV+jJEDZg0JZA4m+uNlalKmevoNIRf+4G/vk8Lzt66IoMocHepcYoOUmMoQHemPE2vhic77Ksr5BXNjyv38yAOldVfyZMwBRtVHSpajnPZekloUpgJIDSmUpKThVtoqOkgBlDwplDSQVVRQQBvi744cjyZUeRCr6x93YJ4fStl+SonrPjnw6lXEeWQ8fZ0T2b1Xsv9eyrl9h2RlPLnmp/v9/hq7GPPnnld+AXyc/+XeTGoD/KKCmvWH7IhFG/5k/gwGIqoSicFM0r6aWhQL3Hz6ZX+NQ0wwnr9/Fqj+u4/6j//2hffZSVEmXoIwdfKqaio6SAGUPCs8LJPrwdEBQ1DAxWhCp6B93Y58cStp+SXPUivrV3dup3HcS9vBxrtD6FfIgHTgeCRTmATITqH/CqkLg+DJAqAC5GeDzLgOQHhn1Z/4M3gavBW+Dr7iiQJNw+yoslYXwcrZGYloW7uXkobalGXxcrGFiIoOlqSUSUxTF/uiS/hWFkkPju6DTVweeG16ed8t10URqQHtQeHbC9bP1nsdSIUdOfqH6e1V/DlARKT0Juto/oycjEfjvQODOlSeBp4jMBLBrCLz/H8DBy3j9I53xOUAVxABUMUUnj/SHf6Nmw/nPrZ9zZRxUBXUqoWfGZSIDhND9Nm99KGso0fWhe4Z4DpCJDBj6qgf+3cOr2j0JmqqhR/eAeS8VD0D/vgaY1zZev6hcGIAqSEoBqCx/5HU54SzZfwVf/3YJAGCivAFLj8XP7UNO8qdQ5dbVzw5VQUVHquguMEC3ORalefayX2WOkhQxxJOgFTVMyrx9ogq5uAvY+EHx8r4bgCY9K78/VCF8EKKE6RpWoo4ma8yrefYEqMv/4U/ffgHpWXkG3Dvj0PXJxKVNCm1Zv7bOcywAFDu2TtZmmP72yyVeSy9p9ORp+roWLzeRlenhfCXVU9QwweBXX9Jpm0R6k7j9yT/r+wPdZwF7pwCpx5+UMwC90DgCpEV1GgF6OvBcv/0QG2JTNJ4YXFJYmbj53HNfZAigTK8EKOmhetV9BOjjjh5aA0tJzwFyLuOk0PLMseDlGCIDOb4ceJwLtPsUMJE/mQT9x2KghhJ4Zbixe0c64iWwCqqKAejZu6Rsa5oh5U7xwPMsbWGlpOfbPL2Oo7UZAFmJbT87oVbbBObqGoBsLU3xxTs+6NnMBYBuT4JmKCEiMh5eAqumSnsXVHnvktL2BOCyrPO8S1nGetJvaUp6LklpzwGytTTFzMCXYWelLHF0RdulG76gkYioemMAqiJKe0eUttcn6MKQYUUfT/ot75iJ7P/vqipS2nNJABQbQeOoDRGRdDEAVQGlvS1bX++CAgzzWgJ9POk3rGcTrIwpKHM4q2VuikHt3TGic8NiT4IuCjPaRmg4akNEREUYgIystLdq65suYcXp/+cA3cwq/5N+RaFZmbbVvYkbBrWpX+qToCEDbmfnlSnoEBERPQ8DkJE9763a+qDrawlkAKa//TIAPPeVAKW9ekAU1EH2lXHo7++If7VxLfFJ0G7WbgAYZoiIqPIwABlZWd+qXV5lDStFaluYIqJPU/Vt82V5N1Fp7xAKD3xdXa+5gyH2kIiISHe8DV6LyrwN/tjVO+i34rjB2i/rE4CL5tWMeq1RhZ4EzWfVEBGRsfA5QBVUmQGoUCXQ4cv9entbtpO1Gfr51od7HUuGFSIikhQ+B6gakZvISrws9fQ7pJ59TUKRsgYebdvlnBsiIpIqjgBpYYwnQT/vnVvangTN59gQERH9Dy+BVZCxXoXBy1JERETlx0tg1RQvSxEREVUOE2N3gIiIiKiyGT0ALV26FO7u7lAqlfDz80NsbGyp9RctWgRPT0+Ym5vD1dUVY8eORW6u5uTgGzduoH///rCzs4O5uTmaNm2KP//805C7QURERNWIUS+BRUdHIzQ0FMuXL4efnx8WLVqEgIAAJCUlwcGh+FPz1q9fj4kTJ+LHH39Eu3btcOnSJYSEhEAmk2HhwoUAgHv37qF9+/bo0qULfvnlF9jb2+Py5cuoXbt2Ze8eERERVVFGnQTt5+eHtm3bYsmSJQAAlUoFV1dXfPrpp5g4cWKx+qNGjUJiYiJiYmLUZZ9//jlOnDiBI0eOAAAmTpyIo0eP4vfffy93v4w1CZqIiIjKT5fzt9EugeXn5yMuLg7dunX7X2dMTNCtWzccO3ZM6zrt2rVDXFyc+jLZtWvXsHv3bvTs2VNdZ/v27WjTpg3ee+89ODg4oGXLllixYkWpfcnLy0NWVpbGh4iIiF5cRgtAt2/fRmFhIRwdHTXKHR0dkZ6ernWdDz74ADNnzkSHDh1gamqKBg0aoHPnzpg0aZK6zrVr1xAZGYlGjRrh119/xYgRI/DZZ59h9erVJfYlIiICNjY26o+rq6t+dpKIiIiqJKNPgtbFwYMHMWfOHCxbtgzx8fHYvHkzdu3ahVmzZqnrqFQqtGrVCnPmzEHLli0xbNgwDB06FMuXLy+x3bCwMGRmZqo/qamplbE7AJ48++fY1TvYdvoGjl29g0IVH8tERERkaEabBF2nTh3I5XLcvHlTo/zmzZtwcnLSus7UqVMxYMAADBkyBADQtGlT5OTkYNiwYZg8eTJMTEzg7OwMb29vjfW8vLzw888/l9gXMzMzmJmZVXCPdPe8pz8TERGRYRhtBEihUKB169YaE5pVKhViYmLg7++vdZ2HDx/CxESzy3K5HABQNJe7ffv2SEpK0qhz6dIluLm56bP7FbbnfBpGrI0v9n6v9MxcjFgbjz3n04zUMyIiohefUS+BhYaGYsWKFVi9ejUSExMxYsQI5OTkYNCgQQCAgQMHIiwsTF0/MDAQkZGR2LhxI5KTk7Fv3z5MnToVgYGB6iA0duxYHD9+HHPmzMGVK1ewfv16fP/99xg5cqRR9lGbQpXAjB0JWt/+XlQ2Y0cCL4cREREZiFGfAxQUFIRbt25h2rRpSE9PR4sWLbBnzx71xOiUlBSNEZ8pU6ZAJpNhypQpuHHjBuzt7REYGIjZs2er67Rt2xZbtmxBWFgYZs6cCQ8PDyxatAgffvhhpe9fSWKT72p9s3sRASAtMxexyXf5agwiIiID4MtQtTD0c4C2nb6B0RtPP7feN31b4J0WdfW+fSIiohdRtXgOkJQ5WCn1Wo+IiIh0wwBkBL4etnC2UUJWwnIZntwN5uthW5ndIiIikgwGICOQm8gQHvjkVv1nQ1DR9/BAb8hNSopIREREVBEMQEbSw8cZkf1bwclG8zKXk40Skf1b8TlAREREBmTUu8CkroePM7p7OyE2+S4yHuTCwerJZS+O/BARERkWA5CRyU1kvNWdiIiokvESGBEREUkOAxARERFJDgMQERERSQ4DEBEREUkOAxARERFJDgMQERERSQ4DEBEREUkOAxARERFJDgMQERERSQ4DEBEREUkOAxARERFJDgMQERERSQ4DEBEREUkOAxARERFJDgMQERERSQ4DEBEREUkOAxARERFJDgMQERERSQ4DEBEREUkOAxARERFJDgMQERERSQ4DEBEREUkOAxARERFJDgMQERERSQ4DEBEREUkOAxARERFJDgMQERERSQ4DEBEREUkOAxARERFJDgMQERERSQ4DEBEREUkOAxARERFJDgMQERERSQ4DEBEREUkOAxARERFJDgMQERERSQ4DEBEREUkOAxARERFJDgMQERERSQ4DEBEREUkOAxARERFJDgMQERERSQ4DEBEREUkOAxARERFJDgMQERERSU6VCEBLly6Fu7s7lEol/Pz8EBsbW2r9RYsWwdPTE+bm5nB1dcXYsWORm5urte7cuXMhk8kwZswYA/SciIiIqiOjB6Do6GiEhoYiPDwc8fHxaN68OQICApCRkaG1/vr16zFx4kSEh4cjMTERK1euRHR0NCZNmlSs7smTJ/Hdd9+hWbNmht4NIiIiqkaMHoAWLlyIoUOHYtCgQfD29sby5cthYWGBH3/8UWv9P/74A+3bt8cHH3wAd3d3vP766+jXr1+xUaPs7Gx8+OGHWLFiBWrXrl0Zu0JERETVhFEDUH5+PuLi4tCtWzd1mYmJCbp164Zjx45pXaddu3aIi4tTB55r165h9+7d6Nmzp0a9kSNH4s0339RouyR5eXnIysrS+BAREdGLq4YxN3779m0UFhbC0dFRo9zR0REXL17Uus4HH3yA27dvo0OHDhBC4PHjxxg+fLjGJbCNGzciPj4eJ0+eLFM/IiIiMGPGjPLvCBEREVUrRr8EpquDBw9izpw5WLZsGeLj47F582bs2rULs2bNAgCkpqZi9OjRWLduHZRKZZnaDAsLQ2ZmpvqTmppqyF0gIiIiIzPqCFCdOnUgl8tx8+ZNjfKbN2/CyclJ6zpTp07FgAEDMGTIEABA06ZNkZOTg2HDhmHy5MmIi4tDRkYGWrVqpV6nsLAQhw8fxpIlS5CXlwe5XK7RppmZGczMzPS8d0RERFRVGXUESKFQoHXr1oiJiVGXqVQqxMTEwN/fX+s6Dx8+hImJZreLAo0QAl27dsW5c+dw+vRp9adNmzb48MMPcfr06WLhh4iIiKTHqCNAABAaGorg4GC0adMGvr6+WLRoEXJycjBo0CAAwMCBA1G3bl1EREQAAAIDA7Fw4UK0bNkSfn5+uHLlCqZOnYrAwEDI5XJYWVnBx8dHYxuWlpaws7MrVk5ERETSZPQAFBQUhFu3bmHatGlIT09HixYtsGfPHvXE6JSUFI0RnylTpkAmk2HKlCm4ceMG7O3tERgYiNmzZxtrF4iIiKiakQkhhLE7UdVkZWXBxsYGmZmZsLa2NnZ3iIiIqAx0OX9Xu7vAiIiIiCqKAYiIiIgkhwGIiIiIJIcBiIiIiCSHAYiIiIgkhwGIiIiIJIcBiIiIiCSHAYiIiIgkhwGIiIiIJIcBiIiIiCSHAYiIiIgkhwGIiIiIJIcBiIiIiCSHAYiIiIgkhwGIiIiIJIcBiIiIiCSHAYiIiIgkhwGIiIiIJIcBiIiIiCSHAYiIiIgkhwGIiIiIJIcBiIiIiCSHAYiIiIgkhwGIiIiIJIcBiIiIiCSHAYiIiIgkhwGIiIiIJIcBiIiIiCSHAYiIiIgkhwGIiIiIJIcBiIiIiCSHAYiIiIgkhwGIiIiIJIcBiIiIiCSHAYiIiIgkhwGIiIiIJIcBiIiIiCSHAYiIiIgkhwGIiIiIJIcBiIiIiCSHAYiIiIgkR+cA5O7ujpkzZyIlJcUQ/SEiIiIyOJ0D0JgxY7B582a89NJL6N69OzZu3Ii8vDxD9I2IiIjIIMoVgE6fPo3Y2Fh4eXnh008/hbOzM0aNGoX4+HhD9JGIiIhIr2RCCFGRBgoKCrBs2TJMmDABBQUFaNq0KT777DMMGjQIMplMX/2sVFlZWbCxsUFmZiasra2N3R0iIiIqA13O3zXKu5GCggJs2bIFUVFR2LdvH1555RUMHjwYf//9NyZNmoTffvsN69evL2/zRERERAajcwCKj49HVFQUNmzYABMTEwwcOBBff/01mjRpoq7Tu3dvtG3bVq8dJSIiItIXnQNQ27Zt0b17d0RGRqJXr14wNTUtVsfDwwN9+/bVSweJiIiI9E3nAHTt2jW4ubmVWsfS0hJRUVHl7hQRERGRIel8F1hGRgZOnDhRrPzEiRP4888/9dIpIiIiIkPSOQCNHDkSqampxcpv3LiBkSNH6qVTRERERIakcwBKSEhAq1atipW3bNkSCQkJ5erE0qVL4e7uDqVSCT8/P8TGxpZaf9GiRfD09IS5uTlcXV0xduxY5ObmqpdHRESgbdu2sLKygoODA3r16oWkpKRy9Y2IiIhePDoHIDMzM9y8ebNYeVpaGmrU0P2u+ujoaISGhiI8PBzx8fFo3rw5AgICkJGRobX++vXrMXHiRISHhyMxMRErV65EdHQ0Jk2apK5z6NAhjBw5EsePH8e+fftQUFCA119/HTk5OTr3j4iIiF48Oj8IsV+/fkhLS8O2bdtgY2MDALh//z569eoFBwcH/Pe//9WpA35+fmjbti2WLFkCAFCpVHB1dcWnn36KiRMnFqs/atQoJCYmIiYmRl32+eef48SJEzhy5IjWbdy6dQsODg44dOgQOnbs+Nw+8UGIRERE1Y8u52+dR4Dmz5+P1NRUuLm5oUuXLujSpQs8PDyQnp6OBQsW6NRWfn4+4uLi0K1bt/91yMQE3bp1w7Fjx7Su065dO8TFxakvk127dg27d+9Gz549S9xOZmYmAMDW1lbr8ry8PGRlZWl8iIiI6MWl8zWrunXr4uzZs1i3bh3OnDkDc3NzDBo0CP369dP6TKDS3L59G4WFhXB0dNQod3R0xMWLF7Wu88EHH+D27dvo0KEDhBB4/Pgxhg8frnEJ7GkqlQpjxoxB+/bt4ePjo7VOREQEZsyYoVPfiYiIqPoq16swLC0tMWzYMH33pUwOHjyIOXPmYNmyZfDz88OVK1cwevRozJo1C1OnTi1Wf+TIkTh//nyJl8cAICwsDKGhoervWVlZcHV1NUj/iYiIyPjK/S6whIQEpKSkID8/X6P87bffLnMbderUgVwuLzap+ubNm3ByctK6ztSpUzFgwAAMGTIEANC0aVPk5ORg2LBhmDx5MkxM/ndVb9SoUdi5cycOHz6MevXqldgPMzMzmJmZlbnfREREVL2V60nQvXv3xrlz5yCTyVA0h7roze+FhYVlbkuhUKB169aIiYlBr169ADy5ZBUTE4NRo0ZpXefhw4caIQcA5HI5AKj7IoTAp59+ii1btuDgwYPw8PDQaR+JiIjoxabzJOjRo0fDw8MDGRkZsLCwwIULF3D48GG0adMGBw8e1LkDoaGhWLFiBVavXo3ExESMGDECOTk5GDRoEABg4MCBCAsLU9cPDAxEZGQkNm7ciOTkZOzbtw9Tp05FYGCgOgiNHDkSa9euxfr162FlZYX09HSkp6fj0aNHOvePiIiIXjw6jwAdO3YM+/fvR506dWBiYgITExN06NABERER+Oyzz3Dq1Cmd2gsKCsKtW7cwbdo0pKeno0WLFtizZ496YnRKSorGiM+UKVMgk8kwZcoU3LhxA/b29ggMDMTs2bPVdSIjIwEAnTt31thWVFQUQkJCdN1lIiIiesHo/Byg2rVrIz4+Hh4eHmjQoAF++OEHdOnSBVevXkXTpk3x8OFDQ/W10vA5QERERNWPLudvnUeAfHx8cObMGXh4eMDPzw/z5s2DQqHA999/j5deeqncnSYiIiKqLDoHoClTpqhfKTFz5ky89dZbePXVV2FnZ4fo6Gi9d5CIiIhI33S+BKbN3bt3Ubt2bfWdYNUdL4ERERFVPwZ7FUZBQQFq1KiB8+fPa5Tb2tq+MOGHiIiIXnw6BSBTU1PUr19fp2f9EBEREVU1Oj8HaPLkyZg0aRLu3r1riP4QERERGZzOk6CXLFmCK1euwMXFBW5ubrC0tNRYHh8fr7fOERERERmCzgGo6JUVRERERNWVXu4Ce9HwLjAiIqLqx2B3gRERERG9CHS+BGZiYlLqLe+8Q4yIiIiqOp0D0JYtWzS+FxQU4NSpU1i9ejVmzJiht44RERERGYre5gCtX78e0dHR2LZtmz6aMyrOASIiIqp+jDIH6JVXXkFMTIy+miMiIiIyGL0EoEePHuHbb79F3bp19dEcERERkUHpPAfo2ZeeCiHw4MEDWFhYYO3atXrtHBEREZEh6ByAvv76a40AZGJiAnt7e/j5+aF27dp67RwRERGRIegcgEJCQgzQDSIiIqLKo/McoKioKGzatKlY+aZNm7B69Wq9dIqIiIjIkHQOQBEREahTp06xcgcHB8yZM0cvnSIiIiIyJJ0DUEpKCjw8PIqVu7m5ISUlRS+dIiIiIjIknQOQg4MDzp49W6z8zJkzsLOz00uniIiIiAxJ5wDUr18/fPbZZzhw4AAKCwtRWFiI/fv3Y/To0ejbt68h+khERESkVzrfBTZr1ixcv34dXbt2RY0aT1ZXqVQYOHAg5wARERFRtVDud4FdvnwZp0+fhrm5OZo2bQo3Nzd9981o+C4wIiKi6keX87fOI0BFGjVqhEaNGpV3dSIiIiKj0XkO0Lvvvosvv/yyWPm8efPw3nvv6aVTRERERIakcwA6fPgwevbsWaz8jTfewOHDh/XSKSIiIiJD0jkAZWdnQ6FQFCs3NTVFVlaWXjpFREREZEg6B6CmTZsiOjq6WPnGjRvh7e2tl04RERERGZLOk6CnTp2KPn364OrVq3jttdcAADExMVi/fj1++uknvXeQiIiISN90DkCBgYHYunUr5syZg59++gnm5uZo3rw59u/fD1tbW0P0kYiIiEivyv0coCJZWVnYsGEDVq5cibi4OBQWFuqrb0bD5wARERFVP7qcv3WeA1Tk8OHDCA4OhouLCxYsWIDXXnsNx48fL29zRERERJVGp0tg6enpWLVqFVauXImsrCy8//77yMvLw9atWzkBmoiIiKqNMo8ABQYGwtPTE2fPnsWiRYvwzz//YPHixYbsGxEREZFBlHkE6JdffsFnn32GESNG8BUYREREVK2VeQToyJEjePDgAVq3bg0/Pz8sWbIEt2/fNmTfiIiIiAyizAHolVdewYoVK5CWloaPP/4YGzduhIuLC1QqFfbt24cHDx4Ysp9EREREelOh2+CTkpKwcuVKrFmzBvfv30f37t2xfft2ffbPKHgbPBERUfVTKbfBA4CnpyfmzZuHv//+Gxs2bKhIU0RERESVpsIPQnwRcQSIiIio+qm0ESAiIiKi6ogBiIiIiCSHAYiIiIgkhwGIiIiIJIcBiIiIiCSHAYiIiIgkhwGIiIiIJIcBiIiIiCSnSgSgpUuXwt3dHUqlEn5+foiNjS21/qJFi+Dp6Qlzc3O4urpi7NixyM3NrVCbREREJB1GD0DR0dEIDQ1FeHg44uPj0bx5cwQEBCAjI0Nr/fXr12PixIkIDw9HYmIiVq5ciejoaEyaNKncbRIREZG0GP1VGH5+fmjbti2WLFkCAFCpVHB1dcWnn36KiRMnFqs/atQoJCYmIiYmRl32+eef48SJEzhy5Ei52nwWX4VBRERU/VSbV2Hk5+cjLi4O3bp1U5eZmJigW7duOHbsmNZ12rVrh7i4OPUlrWvXrmH37t3o2bNnudskIiIiaalhzI3fvn0bhYWFcHR01Ch3dHTExYsXta7zwQcf4Pbt2+jQoQOEEHj8+DGGDx+uvgRWnjbz8vKQl5en/p6VlVWR3SIiIqIqzuhzgHR18OBBzJkzB8uWLUN8fDw2b96MXbt2YdasWeVuMyIiAjY2NuqPq6urHntMREREVY1RR4Dq1KkDuVyOmzdvapTfvHkTTk5OWteZOnUqBgwYgCFDhgAAmjZtipycHAwbNgyTJ08uV5thYWEIDQ1Vf8/KymIIIiIieoEZdQRIoVCgdevWGhOaVSoVYmJi4O/vr3Wdhw8fwsREs9tyuRwAIIQoV5tmZmawtrbW+BAREdGLy6gjQAAQGhqK4OBgtGnTBr6+vli0aBFycnIwaNAgAMDAgQNRt25dREREAAACAwOxcOFCtGzZEn5+frhy5QqmTp2KwMBAdRB6XptEREQkbUYPQEFBQbh16xamTZuG9PR0tGjRAnv27FFPYk5JSdEY8ZkyZQpkMhmmTJmCGzduwN7eHoGBgZg9e3aZ2yQiIiJpM/pzgKoiPgeIiIio+qk2zwEiIiIiMgYGICIiIpIcBiAiIiKSHAYgIiIikhwGICIiIpIcBiAiIiKSHAYgIiIikhwGICIiIpIcBiAiIiKSHAYgIiIikhwGICIiIpIcBiAiIiKSHAYgIiIikhwGICIiIpIcBiAiIiKSHAYgIiIikhwGICIiIpIcBiAiIiKSHAYgIiIikhwGICIiIpKcGsbugBQVqgRik+8i40EuHKyU8PWwhdxEZuxuERERSQYDUCXbcz4NM3YkIC0zV13mbKNEeKA3evg4G7FnRERE0sFLYJVoz/k0jFgbrxF+ACA9Mxcj1sZjz/k0I/WMiIhIWhiAKkmhSmDGjgQILcuKymbsSEChSlsNIiIi0icGoEoSm3y32MjP0wSAtMxcxCbfrbxOERERSRQDUCXJeFBy+ClPPSIiIio/BqBK4mCl1Gs9IiIiKj8GoEri62ELZxslSrrZXYYnd4P5ethWZreIiIgkiQGokshNZAgP9AaAYiGo6Ht4oDefB0RERFQJGIAqUQ8fZ0T2bwUnG83LXE42SkT2b8XnABEREVUSPgixkvXwcUZ3byc+CZqIiMiIGICMQG4ig38DO2N3g4iISLJ4CYyIiIgkhwGIiIiIJIcBiIiIiCSHAYiIiIgkhwGIiIiIJIcBiIiIiCSHAYiIiIgkhwGIiIiIJIcBiIiIiCSHAYiIiIgkhwGIiIiIJIcBiIiIiCSHAYiIiIgkhwGIiIiIJIcBiIiIiCSHAYiIiIgkhwGIiIiIJIcBiIiIiCSHAYiIiIgkp0oEoKVLl8Ld3R1KpRJ+fn6IjY0tsW7nzp0hk8mKfd588011nezsbIwaNQr16tWDubk5vL29sXz58srYFSIiIqoGjB6AoqOjERoaivDwcMTHx6N58+YICAhARkaG1vqbN29GWlqa+nP+/HnI5XK899576jqhoaHYs2cP1q5di8TERIwZMwajRo3C9u3bK2u3iIiIqAozegBauHAhhg4dikGDBqlHaiwsLPDjjz9qrW9rawsnJyf1Z9++fbCwsNAIQH/88QeCg4PRuXNnuLu7Y9iwYWjevHmpI0tEREQkHUYNQPn5+YiLi0O3bt3UZSYmJujWrRuOHTtWpjZWrlyJvn37wtLSUl3Wrl07bN++HTdu3IAQAgcOHMClS5fw+uuva20jLy8PWVlZGh8iIiJ6cRk1AN2+fRuFhYVwdHTUKHd0dER6evpz14+NjcX58+cxZMgQjfLFixfD29sb9erVg0KhQI8ePbB06VJ07NhRazsRERGwsbFRf1xdXcu/U0RERFTlGf0SWEWsXLkSTZs2ha+vr0b54sWLcfz4cWzfvh1xcXFYsGABRo4cid9++01rO2FhYcjMzFR/UlNTK6P7REREZCQ1jLnxOnXqQC6X4+bNmxrlN2/ehJOTU6nr5uTkYOPGjZg5c6ZG+aNHjzBp0iRs2bJFfWdYs2bNcPr0acyfP1/jclsRMzMzmJmZVXBviIiql8LCQhQUFBi7G0RlZmpqCrlcrpe2jBqAFAoFWrdujZiYGPTq1QsAoFKpEBMTg1GjRpW67qZNm5CXl4f+/ftrlBcUFKCgoAAmJpqDW3K5HCqVSq/9JyKqjoQQSE9Px/37943dFSKd1apVC05OTpDJZBVqx6gBCHhyy3pwcDDatGkDX19fLFq0CDk5ORg0aBAAYODAgahbty4iIiI01lu5ciV69eoFOzs7jXJra2t06tQJ48ePh7m5Odzc3HDo0CH85z//wcKFCyttv4iIqqqi8OPg4AALC4sKn0iIKoMQAg8fPlQ/JsfZ2blC7Rk9AAUFBeHWrVuYNm0a0tPT0aJFC+zZs0c9MTolJaXYaE5SUhKOHDmCvXv3am1z48aNCAsLw4cffoi7d+/Czc0Ns2fPxvDhww2+P0REVVlhYaE6/Dz7P5BEVZ25uTkAICMjAw4ODhW6HCYTQgh9dexFkZWVBRsbG2RmZsLa2trY3SEi0pvc3FwkJyfD3d1dfTIhqk4ePXqE69evw8PDA0qlUmOZLufvan0XGBERlQ8ve1F1pa/fXQYgIiIikhwGICIiIh1Mnz4dLVq0MHY3qIIYgIiIqFoICQmBTCYr9rly5YrBtimTybB161aNsnHjxiEmJsZg26TKYfS7wIiIqHoqVAnEJt9FxoNcOFgp4ethC7mJYecW9ejRA1FRURpl9vb2Gt/z8/OhUCgM1oeaNWuiZs2aFWqjoKAApqameuoRlQdHgIiISGd7zqehw5f70W/FcYzeeBr9VhxHhy/3Y8/5NINu18zMDE5OThqfrl27YtSoURgzZgzq1KmDgIAAAMChQ4fg6+sLMzMzODs7Y+LEiXj8+LG6rc6dO+Ozzz7Dv//9b9ja2sLJyQnTp09XL3d3dwcA9O7dGzKZTP1d2yWwH374AV5eXlAqlWjSpAmWLVumXnb9+nXIZDJER0ejU6dOUCqVWLdunUGOD5UdAxAREelkz/k0jFgbj7TMXI3y9MxcjFgbb/AQpM3q1auhUChw9OhRLF++HDdu3EDPnj3Rtm1bnDlzBpGRkVi5ciW++OKLYutZWlrixIkTmDdvHmbOnIl9+/YBAE6ePAkAiIqKQlpamvr7s9atW4dp06Zh9uzZSExMxJw5czB16lSsXr1ao97EiRMxevRoJCYmqkMaGQ8vgRERUZkVqgRm7EiAtgfICQAyADN2JKC7t5NBLoft3LlT4/LTG2+8AQBo1KgR5s2bpy6fPHkyXF1dsWTJEshkMjRp0gT//PMPJkyYgGnTpqkfsNusWTOEh4er21iyZAliYmLQvXt39aW1olcvlCQ8PBwLFixAnz59AAAeHh5ISEjAd999h+DgYHW9MWPGqOuQ8TEAERFRmcUm3y028vM0ASAtMxexyXfh30D/T5ru0qULIiMj1d8tLS3Rr18/tG7dWqNeYmIi/P39NZ4Z0759e2RnZ+Pvv/9G/fr1ATwJQE9zdnZWv2qhLHJycnD16lUMHjwYQ4cOVZc/fvwYNjY2GnXbtGlT5nbJ8BiAiIiozDIelBx+ylNPV5aWlmjYsKHW8vJ4diKyTCbT6cXZ2dnZAIAVK1bAz89PY9mzr2kobx/JMBiAiIiozByslM+vpEM9Q/Hy8sLPP/8MIYR6FOjo0aOwsrJCvXr1ytyOqakpCgsLS1zu6OgIFxcXXLt2DR9++GGF+02Vh5OgiYiozHw9bOFso0RJs3tkAJxtntwSb0yffPIJUlNT8emnn+LixYvYtm0bwsPDERoaWuwF26Vxd3dHTEwM0tPTce/ePa11ZsyYgYiICHz77be4dOkSzp07h6ioKCxcuFBfu0MGwABERERlJjeRITzQGwCKhaCi7+GB3gZ/HtDz1K1bF7t370ZsbCyaN2+O4cOHY/DgwZgyZYpO7SxYsAD79u2Dq6srWrZsqbXOkCFD8MMPPyAqKgpNmzZFp06dsGrVKnh4eOhjV8hA+DZ4Lfg2eCJ6URW9DV7bm7R1sed8GmbsSNCYEO1so0R4oDd6+Djro6tEWpX2O6zL+ZtzgIiISGc9fJzR3dup0p8ETaQvDEBERFQuchOZQW51J6oMnANEREREksMARERERJLDAERERESSwwBEREREksMARERERJLDAERERESSwwBERESScP36dchkMpw+fbrM66xatQq1atUyej8MTSaTYevWrQCqZv8MgQGIiIiqjdTUVHz00UdwcXGBQqGAm5sbRo8ejTt37jx3XVdXV6SlpcHHx6fM2wsKCsKlS5cq0uVqR9fjFBISgl69ehm2UwbAAERERNXCtWvX0KZNG1y+fBkbNmzAlStXsHz5csTExMDf3x93794tcd38/HzI5XI4OTmhRo2yPwPY3NwcDg4O+ui+wRUUFOilnfIcJ33Iz8+v1O0xABERUfkVPAIOz3/yTwMbOXIkFAoF9u7di06dOqF+/fp444038Ntvv+HGjRuYPHmyuq67uztmzZqFgQMHwtraGsOGDdN6aWf79u1o1KgRlEolunTpgtWrV0Mmk+H+/fsAil8Cmz59Olq0aIE1a9bA3d0dNjY26Nu3Lx48eKCus2fPHnTo0AG1atWCnZ0d3nrrLVy9elWnfS3qf79+/WBpaYm6deti6dKlGnVkMhkiIyPx9ttvw9LSErNnzwYAbNu2Da1atYJSqcRLL72EGTNm4PHjx+r1Ll++jI4dO0KpVMLb2xv79u3TaFfbcbpw4QLeeustWFtbw8rKCq+++iquXr2K6dOnY/Xq1di2bRtkMhlkMhkOHjwIADh37hxee+01mJubw87ODsOGDUN2dra6zaKRo9mzZ8PFxQWenp46HaOKYgAiIqLyS9gO7J8FJO4w6Gbu3r2LX3/9FZ988gnMzc01ljk5OeHDDz9EdHQ0nn6/9/z589G8eXOcOnUKU6dOLdZmcnIy/vWvf6FXr144c+YMPv74Y40QVZKrV69i69at2LlzJ3bu3IlDhw5h7ty56uU5OTkIDQ3Fn3/+iZiYGJiYmKB3795QqVQ67fNXX32l7v/EiRMxevToYmFl+vTp6N27N86dO4ePPvoIv//+OwYOHIjRo0cjISEB3333HVatWqUORyqVCn369IFCocCJEyewfPlyTJgwodR+3LhxAx07doSZmRn279+PuLg4fPTRR3j8+DHGjRuH999/Hz169EBaWhrS0tLQrl075OTkICAgALVr18bJkyexadMm/Pbbbxg1apRG2zExMUhKSsK+ffuwc+dOnY5PhQkqJjMzUwAQmZmZxu4KEZFePXr0SCQkJIhHjx7pp8F1QUKEWwuxvq9+2ivB8ePHBQCxZcsWrcsXLlwoAIibN28KIYRwc3MTvXr10qiTnJwsAIhTp04JIYSYMGGC8PHx0agzefJkAUDcu3dPCCFEVFSUsLGxUS8PDw8XFhYWIisrS102fvx44efnV2Lfb926JQCIc+fOae2HNm5ubqJHjx4aZUFBQeKNN95QfwcgxowZo1Gna9euYs6cORpla9asEc7OzkIIIX799VdRo0YNcePGDfXyX375RePYPtu/sLAw4eHhIfLz87X2NTg4WLzzzjsaZd9//72oXbu2yM7OVpft2rVLmJiYiPT0dPV6jo6OIi8vr8TjoE1pv8O6nL/5MlQiIiq77Azg2FJA9f+XVK7GPPnnld+AX/9/9MSkBuA/Cqhpr/fNi6dGeJ6nTZs2pS5PSkpC27ZtNcp8fX2f2667uzusrKzU352dnZGRkaH+fvnyZUybNg0nTpzA7du31SM/KSkpOk3A9vf3L/Z90aJFGmXP7uOZM2dw9OhR9YgPABQWFiI3NxcPHz5EYmIiXF1d4eLiUuJ2nnX69Gm8+uqrMDU1LXPfExMT0bx5c1haWqrL2rdvD5VKhaSkJDg6OgIAmjZtCoVCUeZ29YkBiIiIyu5BOnA8EijMA2QmAGRPylWFwPFlgFABcjPA5129BqCGDRtCJpMhMTERvXv3LrY8MTERtWvXhr39/7b59MlXn54NAjKZTOPyVmBgINzc3LBixQq4uLhApVLBx8fHIJN8n93H7OxszJgxA3369ClWV6lUlmsbz15y1CdD/YzKgnOAiIio7JybAR8fAuo0fvJdFGr+s07jJ8udm+l1s3Z2dujevTuWLVuGR480J1ynp6dj3bp1CAoKgkwmK3Obnp6e+PPPPzXKTp48WaF+3rlzB0lJSZgyZQq6du0KLy8v3Lt3r1xtHT9+vNh3Ly+vUtdp1aoVkpKS0LBhw2IfExMTeHl5ITU1FWlpaSVu51nNmjXD77//XuJdZgqFAoWFhRplXl5eOHPmDHJyctRlR48ehYmJSaVPdi4JAxAREenGwQsYvFf7ssF7nyw3gCVLliAvLw8BAQE4fPgwUlNTsWfPHnTv3h1169bVuOxTFh9//DEuXryICRMm4NKlS/jvf/+LVatWAYBOQepptWvXhp2dHb7//ntcuXIF+/fvR2hoaLnaOnr0KObNm4dLly5h6dKl2LRpE0aPHl3qOtOmTcN//vMfzJgxAxcuXEBiYiI2btyIKVOmAAC6deuGxo0bIzg4GGfOnMHvv//+3Info0aNQlZWFvr27Ys///wTly9fxpo1a5CUlATgySXBs2fPIikpCbdv30ZBQQE+/PBDKJVKBAcH4/z58zhw4AA+/fRTDBgwQH35y9gYgIiISHd//fHkctfThAr465jBNtmoUSP8+eefeOmll/D++++jQYMGGDZsGLp06YJjx47B1tZWp/Y8PDzw008/YfPmzWjWrBkiIyPVYcDMzKxcfTQxMcHGjRsRFxcHHx8fjB07Fl999VW52vr888/x559/omXLlvjiiy+wcOFCBAQElLpOQEAAdu7cib1796Jt27Z45ZVX8PXXX8PNzU3dvy1btuDRo0fw9fXFkCFDnhsc7ezssH//fmRnZ6NTp05o3bo1VqxYob4UOHToUHh6eqJNmzawt7fH0aNHYWFhgV9//RV3795F27Zt8a9//Qtdu3bFkiVLynUsDEEmdJlRJhFZWVmwsbFBZmYmrK2tjd0dIiK9yc3NRXJyMjw8PMo9JwQAsOVj4MxGoL4/0H0WsHcKkHocaN4P6L1cfx2uZLNnz8by5cuRmppq1H64u7tjzJgxGDNmjFH7URWV9jusy/mbk6CJiEh3zi0Bey+g3aeAiRwYtBv4YzFQowKhygiWLVuGtm3bws7ODkePHsVXX31V7Fk19GJiACIiIt29Mlzzu4kc6DDGKF2piMuXL+OLL77A3bt3Ub9+fXz++ecICwszdreoEjAAERGRZH399df4+uuvjd2NYq5fv27sLrzwOAmaiIiIJIcBiIiIiCSHAYiIiIgkhwGIiIiIJIcBiIiIiCSHAYiIiIgkhwGIiIgIQOfOnY325OWDBw9CJpPh/v37Rtn+s65fvw6ZTIbTp08DqHr90wcGICIiqhZKCiirVq1CrVq1Kr0/L2IoKEm7du2QlpYGGxubMtU3ZpgsKwYgIiKiF1RBQYFe2lEoFHBycoJMJtNLe2WVn59vsLYZgIiISCd/Zf2FhDsJJX7+yvrLqP0LCQlBr169MGPGDNjb28Pa2hrDhw/XOJnm5ORg4MCBqFmzJpydnbFgwYJi7axZswZt2rSBlZUVnJyc8MEHHyAjIwPAk0tEXbp0AQDUrl0bMpkMISEhAACVSoWIiAh4eHjA3NwczZs3x08//aTR9u7du9G4cWOYm5ujS5cuZXrys0wmQ2RkJN544w2Ym5vjpZde0mi36LJVdHQ0OnXqBKVSiXXr1gEAfvjhB3h5eUGpVKJJkyZYtmyZRtuxsbFo2bIllEol2rRpg1OnTmks1zbadfToUXTu3BkWFhaoXbs2AgICcO/ePYSEhODQoUP45ptvIJPJIJPJ1Pt36NAh+Pr6wszMDM7Ozpg4cSIeP36sbrNz584YNWoUxowZgzp16iAgIOC5x6W8+CoMIiIqs7+y/sJbW956br2dvXfCzdqtEnqkXUxMDJRKJQ4ePIjr169j0KBBsLOzw+zZswEA48ePx6FDh7Bt2zY4ODhg0qRJiI+PR4sWLdRtFBQUYNasWfD09ERGRgZCQ0MREhKC3bt3w9XVFT///DPeffddJCUlwdraGubm5gCAiIgIrF27FsuXL0ejRo1w+PBh9O/fH/b29ujUqRNSU1PRp08fjBw5EsOGDcOff/6Jzz//vEz7NXXqVMydOxfffPMN1qxZg759++LcuXPw8vJS15k4cSIWLFigDjTr1q3DtGnTsGTJErRs2RKnTp3C0KFDYWlpieDgYGRnZ+Ott95C9+7dsXbtWiQnJ2P06NGl9uP06dPo2rUrPvroI3zzzTeoUaMGDhw4gMLCQnzzzTe4dOkSfHx8MHPmTACAvb09bty4gZ49eyIkJAT/+c9/cPHiRQwdOhRKpRLTp09Xt7169WqMGDECR48eLdMxKTdBxWRmZgoAIjMzU6/tPi5UiT+u3BZbT/0t/rhyWzwuVOm1fSKi53n06JFISEgQjx49Ktf6F25fED6rfJ77uXD7gp57LkSnTp3E6NGji5VHRUUJGxsb9ffg4GBha2srcnJy1GWRkZGiZs2aorCwUDx48EAoFArx3//+V738zp07wtzcXGv7RU6ePCkAiAcPHgghhDhw4IAAIO7du6euk5ubKywsLMQff/yhse7gwYNFv379hBBChIWFCW9vb43lEyZMKNbWswCI4cOHa5T5+fmJESNGCCGESE5OFgDEokWLNOo0aNBArF+/XqNs1qxZwt/fXwghxHfffSfs7Ow0ficiIyMFAHHq1Cmt+9qvXz/Rvn37Evuq7Wc1adIk4enpKVSq/537li5dqv65FK3XsmXLEtsVovTfYV3O3xwBqiR7zqdhxo4EpGXmqsucbZQID/RGDx9nI/aMiOjF07x5c1hYWKi/+/v7Izs7G6mpqbh//z7y8/Ph5+enXm5rawtPT0+NNuLi4jB9+nScOXMG9+7dg0qlAgCkpKTA29tb63avXLmChw8fonv37hrl+fn5aNmyJQAgMTFRY9tF/SuLZ+v5+/ur79Qq0qZNG/W/5+Tk4OrVqxg8eDCGDh2qLn/8+LF6QnNiYiKaNWsGpVJZ5v6cPn0a7733Xpn6XCQxMRH+/v4a84jat2+P7Oxs/P3336hfvz4AoHXr1jq1W14MQJVgz/k0jFgbD/FMeXpmLkasjUdk/1YMQUREz2FtbY3MzMxi5ffv3y/z3UlllZOTg4CAAAQEBGDdunWwt7dHSkoKAgICSp2Ym52dDQDYtWsX6tatq7HMzMxMr30siaWlZbH+rFixoljoksvl5d5G0eU+Q3i6/4ZUJSZBL126FO7u7lAqlfDz80NsbGyJdTt37qyeVPX0580339Sol5iYiLfffhs2NjawtLRE27ZtkZKSYuhdKaZQJTBjR0Kx8ANAXTZjRwIKVdpqEBFREU9PT8THxxcrj4+PR+PGjTXKzpw5g0ePHqm/Hz9+HDVr1oSrqysaNGgAU1NTnDhxQr383r17uHTpkvr7xYsXcefOHcydOxevvvoqmjRpop4AXUShUAAACgsL1WXe3t4wMzNDSkoKGjZsqPFxdXUFAHh5eRU7zx0/frxMx+DZesePH9eY//MsR0dHuLi44Nq1a8X64+Hhoe7P2bNnkZv7vysUz+tPs2bNEBMTU+JyhUKhcVyKtnPs2DEI8b/z3dGjR2FlZYV69eqVuj1DMHoAio6ORmhoKMLDwxEfH4/mzZsjICCg2C9akc2bNyMtLU39OX/+PORyucZQ3NWrV9GhQwc0adIEBw8exNmzZzF16lSN4b3KEpt8V+Oy17MEgLTMXMQm3628ThERVUMjRozApUuX8Nlnn+Hs2bNISkrCwoULsWHDhmKTiPPz8zF48GAkJCRg9+7dCA8Px6hRo2BiYoKaNWti8ODBGD9+PPbv34/z588jJCQEJib/OyXWr18fCoUCixcvxrVr17B9+3bMmjVLYxtubm6QyWTYuXMnbt26hezsbFhZWWHcuHEYO3YsVq9ejatXryI+Ph6LFy/G6tWrAQDDhw/H5cuXMX78eCQlJWH9+vVYtWpVmY7Bpk2b8OOPP+LSpUsIDw9HbGwsRo0aVeo6M2bMQEREBL799ltcunQJ586dQ1RUFBYuXAgA+OCDDyCTyTB06FD18Zo/f36pbYaFheHkyZP45JNPcPbsWVy8eBGRkZG4ffs2AMDd3R0nTpzA9evXcfv2bahUKnzyySdITU3Fp59+iosXL2Lbtm0IDw9HaGioxrGvNM+dJWRgvr6+YuTIkervhYWFwsXFRURERJRp/a+//lpYWVmJ7OxsdVlQUJDo379/ufukz0nQW0/9Ldwm7HzuZ+upvyu8LSKi56nOk6CFECI2NlZ0795d2NvbCxsbG+Hn5ye2bNmiUSc4OFi88847Ytq0acLOzk7UrFlTDB06VOTm5qrrPHjwQPTv319YWFgIR0dHMW/evGITd9evXy/c3d2FmZmZ8Pf3F9u3b9eYGCyEEDNnzhROTk5CJpOJ4OBgIYQQKpVKLFq0SHh6egpTU1Nhb28vAgICxKFDh9Tr7dixQzRs2FCYmZmJV199Vfz4449lmgS9dOlS0b17d2FmZibc3d1FdHS0ennRJOin+1dk3bp1okWLFkKhUIjatWuLjh07is2bN6uXHzt2TDRv3lwoFArRokUL8fPPP5c6CVoIIQ4ePCjatWsnzMzMRK1atURAQIB6eVJSknjllVeEubm5ACCSk5PV67Rt21YoFArh5OQkJkyYIAoKCtRtljTR/Wn6mgQtE0IY7dpLfn4+LCws8NNPP6FXr17q8uDgYNy/fx/btm17bhtNmzaFv78/vv/+ewBPnr9gY2ODf//73zhy5AhOnToFDw8PhIWFaWzjaXl5ecjLy1N/z8rKgqurKzIzM2FtbV2hfTx29Q76rXj+0OaGoa/Av4FdhbZFRPQ8ubm5SE5OhoeHR7lGxRPuJCBoZ9Bz60W/FQ1vO+0ThQ0tJCQE9+/fx9atW42yfUORyWTYsmVLiecyqSjtdzgrKws2NjZlOn8b9RLY7du3UVhYCEdHR41yR0dHpKenP3f92NhYnD9/HkOGDFGXZWRkIDs7G3PnzkWPHj2wd+9e9O7dG3369MGhQ4e0thMREQEbGxv1p+g6rT74etjC2UaJkp6dKcOTu8F8PWz1tk0iIkOxNC3bBNWy1iMylmp9F9jKlSvRtGlT+Pr6qsuKblN85513MHbsWABAixYt8Mcff2D58uXo1KlTsXbCwsIQGhqq/l40AqQPchMZwgO9MWJtPGSAxmToolAUHugNuUnlPl6ciKg83KzdsLP3TuQU5JRYx9LU0qgPQSQqC6MGoDp16kAul+PmzZsa5Tdv3oSTk1Op6+bk5GDjxo3qp0w+3WaNGjWKPaPBy8sLR44c0dqWmZmZQW9P7OHjjMj+rYo9B8iJzwEiomqoqoebsk4orm6MOGPlhWTUAKRQKNC6dWvExMSor2mqVCrExMQ8d1b7pk2bkJeXh/79+xdrs23btkhKStIov3TpEtzcjPcfbQ8fZ3T3dkJs8l1kPMiFg9WTy14c+SEiIqp8Rr8EFhoaiuDgYLRp0wa+vr5YtGgRcnJyMGjQIADAwIEDUbduXURERGist3LlSvTq1Qt2dsUnDo8fPx5BQUHo2LEjunTpgj179mDHjh04ePBgZexSieQmMk50JiIiqgKMHoCCgoJw69YtTJs2Denp6WjRogX27NmjnhidkpJS7PkASUlJOHLkCPbu3au1zd69e2P58uWIiIjAZ599Bk9PT/z888/o0KGDwfeHiKg64OUUqq709btr1NvgqypdbqMjIqpOCgsLcenSJTg4OGgdQSeq6u7cuYOMjAw0bty42Os8dDl/G30EiIiIKo9cLketWrXUT9u3sLDQeDklUVUlhMDDhw+RkZGBWrVqVehdZgADEBGR5BTdZVvSK4eIqrJatWo9907xsmAAIiKSGJlMBmdnZzg4OKCgoMDY3SEqM1NT0wqP/BRhACIikii5XK63kwlRdWP0t8ETERERVTYGICIiIpIcBiAiIiKSHM4B0qLo0UhZWVlG7gkRERGVVdF5uyyPOGQA0uLBgwcAoLc3whMREVHlefDgAWxsbEqtwydBa6FSqfDPP//AyspK7w8Iy8rKgqurK1JTU/mU6afwuBTHY6Idj4t2PC7a8bho96IeFyEEHjx4ABcXl2Kv0XoWR4C0MDExQb169Qy6DWtr6xfql05feFyK4zHRjsdFOx4X7XhctHsRj8vzRn6KcBI0ERERSQ4DEBEREUkOA1AlMzMzQ3h4OMzMzIzdlSqFx6U4HhPteFy043HRjsdFOx4XToImIiIiCeIIEBEREUkOAxARERFJDgMQERERSQ4DEBEREUkOA1AFLV26FO7u7lAqlfDz80NsbGyp9Tdt2oQmTZpAqVSiadOm2L17t8ZyIQSmTZsGZ2dnmJubo1u3brh8+bIhd8Eg9HlcCgoKMGHCBDRt2hSWlpZwcXHBwIED8c8//xh6N/RO378vTxs+fDhkMhkWLVqk514bniGOS2JiIt5++23Y2NjA0tISbdu2RUpKiqF2Qe/0fUyys7MxatQo1KtXD+bm5vD29sby5csNuQsGoctxuXDhAt599124u7uX+t+Grse6KtL3cYmIiEDbtm1hZWUFBwcH9OrVC0lJSQbcAyMQVG4bN24UCoVC/Pjjj+LChQti6NCholatWuLmzZta6x89elTI5XIxb948kZCQIKZMmSJMTU3FuXPn1HXmzp0rbGxsxNatW8WZM2fE22+/LTw8PMSjR48qa7cqTN/H5f79+6Jbt24iOjpaXLx4URw7dkz4+vqK1q1bV+ZuVZghfl+KbN68WTRv3ly4uLiIr7/+2sB7ol+GOC5XrlwRtra2Yvz48SI+Pl5cuXJFbNu2rcQ2qxpDHJOhQ4eKBg0aiAMHDojk5GTx3XffCblcLrZt21ZZu1Vhuh6X2NhYMW7cOLFhwwbh5OSk9b8NXdusigxxXAICAkRUVJQ4f/68OH36tOjZs6eoX7++yM7ONvDeVB4GoArw9fUVI0eOVH8vLCwULi4uIiIiQmv9999/X7z55psaZX5+fuLjjz8WQgihUqmEk5OT+Oqrr9TL79+/L8zMzMSGDRsMsAeGoe/jok1sbKwAIP766y/9dLoSGOq4/P3336Ju3bri/Pnzws3NrdoFIEMcl6CgING/f3/DdLgSGOKYvPzyy2LmzJkadVq1aiUmT56sx54blq7H5Wkl/bdRkTarCkMcl2dlZGQIAOLQoUMV6WqVwktg5ZSfn4+4uDh069ZNXWZiYoJu3brh2LFjWtc5duyYRn0ACAgIUNdPTk5Genq6Rh0bGxv4+fmV2GZVY4jjok1mZiZkMhlq1aqll34bmqGOi0qlwoABAzB+/Hi8/PLLhum8ARniuKhUKuzatQuNGzdGQEAAHBwc4Ofnh61btxpsP/TJUL8r7dq1w/bt23Hjxg0IIXDgwAFcunQJr7/+umF2RM/Kc1yM0WZlq6x9yMzMBADY2trqrU1jYwAqp9u3b6OwsBCOjo4a5Y6OjkhPT9e6Tnp6eqn1i/6pS5tVjSGOy7Nyc3MxYcIE9OvXr9q8xM9Qx+XLL79EjRo18Nlnn+m/05XAEMclIyMD2dnZmDt3Lnr06IG9e/eid+/e6NOnDw4dOmSYHdEjQ/2uLF68GN7e3qhXrx4UCgV69OiBpUuXomPHjvrfCQMoz3ExRpuVrTL2QaVSYcyYMWjfvj18fHz00mZVwLfBU7VSUFCA999/H0IIREZGGrs7RhUXF4dvvvkG8fHxkMlkxu5OlaFSqQAA77zzDsaOHQsAaNGiBf744w8sX74cnTp1Mmb3jGbx4sU4fvw4tm/fDjc3Nxw+fBgjR46Ei4tLsdEjoqeNHDkS58+fx5EjR4zdFb3iCFA51alTB3K5HDdv3tQov3nzJpycnLSu4+TkVGr9on/q0mZVY4jjUqQo/Pz111/Yt29ftRn9AQxzXH7//XdkZGSgfv36qFGjBmrUqIG//voLn3/+Odzd3Q2yH/pmiONSp04d1KhRA97e3hp1vLy8qsVdYIY4Jo8ePcKkSZOwcOFCBAYGolmzZhg1ahSCgoIwf/58w+yInpXnuBijzcpm6H0YNWoUdu7ciQMHDqBevXoVbq8qYQAqJ4VCgdatWyMmJkZdplKpEBMTA39/f63r+Pv7a9QHgH379qnre3h4wMnJSaNOVlYWTpw4UWKbVY0hjgvwv/Bz+fJl/Pbbb7CzszPMDhiIIY7LgAEDcPbsWZw+fVr9cXFxwfjx4/Hrr78abmf0yBDHRaFQoG3btsVu2b106RLc3Nz0vAf6Z4hjUlBQgIKCApiYaP7Jl8vl6hGzqq48x8UYbVY2Q+2DEAKjRo3Cli1bsH//fnh4eOiju1WLkSdhV2sbN24UZmZmYtWqVSIhIUEMGzZM1KpVS6SnpwshhBgwYICYOHGiuv7Ro0dFjRo1xPz580ViYqIIDw/Xeht8rVq1xLZt28TZs2fFO++8Uy1vg9fnccnPzxdvv/22qFevnjh9+rRIS0tTf/Ly8oyyj+VhiN+XZ1XHu8AMcVw2b94sTE1Nxffffy8uX74sFi9eLORyufj9998rff/KwxDHpFOnTuLll18WBw4cENeuXRNRUVFCqVSKZcuWVfr+lZeuxyUvL0+cOnVKnDp1Sjg7O4tx48aJU6dOicuXL5e5zerAEMdlxIgRwsbGRhw8eFDjb+7Dhw8rff8MhQGoghYvXizq168vFAqF8PX1FcePH1cv69SpkwgODtao/9///lc0btxYKBQK8fLLL4tdu3ZpLFepVGLq1KnC0dFRmJmZia5du4qkpKTK2BW90udxSU5OFgC0fg4cOFBJe6Qf+v59eVZ1DEBCGOa4rFy5UjRs2FAolUrRvHlzsXXrVkPvhl7p+5ikpaWJkJAQ4eLiIpRKpfD09BQLFiwQKpWqMnZHb3Q5LiX97ejUqVOZ26wu9H1cSvqbGxUVVXk7ZWAyIYSozBEnIiIiImPjHCAiIiKSHAYgIiIikhwGICIiIpIcBiAiIiKSHAYgIiIikhwGICIiIpIcBiAiIiKSHAYgIiIAq1atQq1atUqtExISgl69elVKf3RRVftFVJUxABFJQEhICGQyGWQyGUxNTeHo6Iju3bvjxx9/rDbvgqoKvvnmG6xatarc6z/9c1AoFGjYsCFmzpyJx48f67VfnTt3xpgxYyrUJtGLjgGISCJ69OiBtLQ0XL9+Hb/88gu6dOmC0aNH46233qrwCdhY8vPzK3V7NjY2zx0lep6in8Ply5fx+eefY/r06fjqq6/K1VZhYSFUKpVe+kUkNQxARBJhZmYGJycn1K1bF61atcKkSZOwbds2/PLLLxqjB/fv38eQIUNgb28Pa2trvPbaazhz5ox6+fTp09GiRQv8+OOPqF+/PmrWrIlPPvkEhYWFmDdvHpycnODg4IDZs2drbD8lJQXvvPMOatasCWtra7z//vu4efOmRp0vvvgCDg4OsLKywpAhQzBx4kS0aNFCvbzoUs/s2bPh4uICT09PAMCaNWvQpk0bWFlZwcnJCR988AEyMjLU6x08eBAymQy7du1Cs2bNoFQq8corr+D8+fPFjtOvv/4KLy8v1KxZUx1Wnt1+EZVKhXnz5qFhw4YwMzND/fr1i+13ST8HNzc3jBgxAt26dcP27dsBAAsXLkTTpk1haWkJV1dXfPLJJ8jOzlavW3SZbvv27fD29oaZmRlSUlI0+hUSEoJDhw7hm2++UY82JScno2HDhpg/f75GX06fPg2ZTIYrV66U2meiFxEDEJGEvfbaa2jevDk2b96sLnvvvfeQkZGBX375BXFxcWjVqhW6du2Ku3fvqutcvXoVv/zyC/bs2YMNGzZg5cqVePPNN/H333/j0KFD+PLLLzFlyhScOHECwJOg8M477+Du3bs4dOgQ9u3bh2vXriEoKEjd5rp16zB79mx8+eWXiIuLQ/369REZGVmszzExMUhKSsK+ffuwc+dOAEBBQQFmzZqFM2fOYOvWrbh+/TpCQkKKrTt+/HgsWLAAJ0+ehL29PQIDA1FQUKBe/vDhQ8yfPx9r1qzB4cOHkZKSgnHjxpV4/MLCwjB37lxMnToVCQkJWL9+PRwdHcv+AwBgbm6uHskyMTHBt99+iwsXLmD16tXYv38//v3vf2vUf/jwIb788kv88MMPuHDhAhwcHDSWf/PNN/D398fQoUORlpaGtLQ01K9fHx999BGioqI06kZFRaFjx45o2LChTn0meiEY+22sRGR4wcHB4p133tG6LCgoSHh5eQkhhPj999+FtbW1yM3N1ajToEED8d133wkhhAgPDxcWFhYiKytLvTwgIEC4u7uLwsJCdZmnp6eIiIgQQgixd+9eIZfLRUpKinr5hQsXBAARGxsrhBDCz89PjBw5UmO77du3F82bN9fYD0dHR5GXl1fq/p48eVIAEA8ePBBCCHHgwAEBQGzcuFFd586dO8Lc3FxER0cLIYSIiooSAMSVK1fUdZYuXSocHR01tl90HLOysoSZmZlYsWJFqX152tPrq1QqsW/fPmFmZibGjRuntf6mTZuEnZ2d+ntRH0+fPl1iu0I8efv36NGjNercuHFDyOVyceLECSGEEPn5+aJOnTpi1apVZe4/0YuEI0BEEieEgEwmAwCcOXMG2dnZsLOzQ82aNdWf5ORkXL16Vb2Ou7s7rKys1N8dHR3h7e0NExMTjbKiy1CJiYlwdXWFq6urerm3tzdq1aqFxMREAEBSUhJ8fX01+vbsdwBo2rQpFAqFRllcXBwCAwNRv359WFlZoVOnTgCeXHZ7mr+/v/rfbW1t4enpqd4+AFhYWKBBgwbq787OzhqX0p6WmJiIvLw8dO3aVevykuzcuRM1a9aEUqnEG2+8gaCgIEyfPh0A8Ntvv6Fr166oW7curKysMGDAANy5cwcPHz5Ur69QKNCsWTOdtgkALi4uePPNN/Hjjz8CAHbs2IG8vDy89957OrdF9CKoYewOEJFxJSYmwsPDAwCQnZ0NZ2dnHDx4sFi9pyfZmpqaaiwrurvs2TJD3GFmaWmp8T0nJwcBAQEICAjAunXrYG9vj5SUFAQEBOg8SVrbPgghtNY1NzfXreP/r0uXLoiMjIRCoYCLiwtq1HjyZ/j69et46623MGLECMyePRu2trY4cuQIBg8ejPz8fFhYWKi3WxRYdTVkyBAMGDAAX3/9NaKiohAUFKRul0hqOAJEJGH79+/HuXPn8O677wIAWrVqhfT0dNSoUQMNGzbU+NSpU6fc2/Hy8kJqaipSU1PVZQkJCbh//z68vb0BAJ6enjh58qTGes9+1+bixYu4c+cO5s6di1dffRVNmjQpcdTm+PHj6n+/d+8eLl26BC8vr/LsEho1agRzc3PExMTotJ6lpSUaNmyI+vXrq8MP8GQUS6VSYcGCBXjllVfQuHFj/PPPP+Xqm0KhQGFhYbHynj17wtLSEpGRkdizZw8++uijcrVP9CLgCBCRROTl5SE9PR2FhYW4efMm9uzZg4iICLz11lsYOHAgAKBbt27w9/dHr169MG/ePPVJeNeuXejduzfatGlTrm1369YNTZs2xYcffohFixbh8ePH+OSTT9CpUyd1m59++imGDh2KNm3aoF27doiOjsbZs2fx0ksvldp2/fr1oVAosHjxYgwfPhznz5/HrFmztNadOXMm7Ozs4OjoiMmTJ6NOnTrlfoCgUqnEhAkT8O9//xsKhQLt27fHrVu3cOHCBQwePFjn9ho2bIiCggIsXrwYgYGBOHr0KJYvX16uvrm7u+PEiRO4fv06atasCVtbW5iYmEAulyMkJARhYWFo1KiRxiVBIqnhCBCRROzZswfOzs5wd3dHjx49cODAAXz77bfYtm0b5HI5gCeXfHbv3o2OHTti0KBBaNy4Mfr27Yu//vpL57ubniaTybBt2zbUrl0bHTt2RLdu3fDSSy8hOjpaXefDDz9EWFgYxo0bh1atWiE5ORkhISFQKpWltm1vb49Vq1Zh06ZN8Pb2xty5c4vd7l1k7ty5GD16NFq3bo309HTs2LGj2HwiXUydOhWff/45pk2bBi8vLwQFBZU4+vQ8zZs3x8KFC/Hll1/Cx8cH69atQ0RERLnaGjduHORyOby9vdWXBIsUXVIbNGhQudomelHIREkXuImIjKx79+5wcnLCmjVrKtTOwYMH0aVLF9y7d0/yDwz8/fff0bVrV6SmplYo1BJVd7wERkRVwsOHD7F8+XIEBARALpdjw4YN+O2337Bv3z5jd+2FkJeXh1u3bmH69Ol47733GH5I8ngJjIiqhKcvv7Vu3Ro7duzAzz//jG7duhm7ay+EDRs2wM3NDffv38e8efOM3R0io+MlMCIiIpIcjgARERGR5DAAERERkeQwABEREZHkMAARERGR5DAAERERkeQwABEREZHkMAARERGR5DAAERERkeQwABEREZHk/B8Do84A4G+L2gAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -871,18 +778,11 @@ { "cell_type": "code", "execution_count": 13, - "metadata": { - "execution": { - "iopub.execute_input": "2024-06-17T19:21:21.139908Z", - "iopub.status.busy": "2024-06-17T19:21:21.139680Z", - "iopub.status.idle": "2024-06-17T19:21:21.287872Z", - "shell.execute_reply": "2024-06-17T19:21:21.287394Z" - } - }, + "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHFCAIAAACVbdGXAABS+0lEQVR4nO3dd1gUx8MH8DkO7o5eBQ5FilFKEAtEAohGFGxBjclPjAqiWKMBRBPlRQUrlhQTFVQCiiVK7MYQFGsUsWEXgoIgiIcoREBQyrHvH5tsLkc7ygEL38+TJ8/t7OzuDOp9md3ZXQ5FUQQAAIBtFNq6AQAAAE2BAAMAAFZCgAEAACshwAAAgJUQYAAAwEoIMAAAYCUEGAAAsBICDAAAWAkBBgAArIQAAyCEkF27dnFqWLRoUYsfqKysLDQ09MKFCzWPnpWV1VJHuXDhQs3ufPbZZy21f9m1eNcAGIpt3QCAdmTnzp2WlpbMopGRUYsfoqysbMWKFYSQjz76iCkcPXp0UlKSUChs2WOtXbt2yJAhzKKurm7L7h+gbSHAAP5lY2Njb29fT4XKykoOh6Oo2ML/cLp06dKlS5embVtWVqaiolLrqp49e3744YfNaBdAu4ZTiAD1oc/F7dmzZ+HChV27duXz+enp6YSQ6OjoPn36CAQCHR2dTz75JDU1ldnEx8dHTU0tPT191KhRampqxsbGCxcuLC8vJ4RkZWXRQbVixQr6tJ6Pjw+p7TzbmTNnhg4dqqGhoaKi4uzsfPbsWWZVaGgoh8O5devWZ599pq2t3aNHj8Z26vLly0OHDlVXV1dRUXFycvrtt9+kdi5ZWaptpqamH3/8cXx8fP/+/ZWVlS0tLaOjoyXrX7161dnZWSAQGBkZBQUFVVZWNrZ5ADJCgAH8SywWV0lgyoOCgrKzs7dt2/brr7/q6+uHhYX5+vq+//77R44c+eGHH+7du+fo6Pj48WOmfmVl5ZgxY4YOHXr8+PHp06d///3369evJ4QIhcL4+HhCiK+vb1JSUlJS0rJly2o2Y+/eve7u7hoaGjExMb/88ouOjs7w4cMlM4wQMn78+Pfee+/gwYPbtm2rqzvV1dU1u3Px4kVXV9eioqKoqKj9+/erq6t7eHjExsbK/lO6e/fuwoULFyxYcPz4cVtbW19f3z/++INelZKSMnTo0NevX+/atWvbtm23b99evXq17HsGaBwKAChq586dNf91VFZWnj9/nhAyaNAgpuZff/2lrKw8atQopiQ7O5vP50+aNIlenDp1KiHkl19+YSqMGjXKwsKC/vzy5UtCSEhISM2jZ2ZmUhRVWlqqo6Pj4eHBrBWLxX369BkwYAC9GBISQghZvnx5Pd2hmy3l8ePHFEV9+OGH+vr6JSUldM2qqiobG5tu3bpVV1czO6+rbRRFmZiYCASCp0+f0otv377V0dGZPXs2vejp6amsrJyXl8fsnL6myGwO0IIwAgP41+7du29IYK51ffrpp0ydpKSkt2/f0qf+aMbGxq6urpIjJA6H4+HhwSza2to+ffpUxjZcuXKlsLBw6tSpzMipurp6xIgRN27cKC0tZapJNqku69evl+yOsbFxaWnptWvXPvvsMzU1NboOl8v18vJ69uxZWlqajC3s27dv9+7d6c8CgaBXr15M786fPz906FADAwNm556enjLuFqCxMIkD4F9WVla1TuKQnB9YUFAgVUIIMTIySkhIYBZVVFQEAgGzyOfz3717J2MbXrx4QQipdcp7YWGhqqpqzSbVxdzcXKo7L1++pCiqZuPJP/2ShdRsRj6f//btW/pzQUGBoaGh5FqpRYAWhAADaJjkvAb661skEklWeP78uZ6eXosci97P5s2ba04gZEY2Uk2Snba2toKCQs3GM8elc7e8vJzP59NrX716Jfv+dXV18/LyJEukFgFaEE4hAjSOo6OjsrLy3r17mZJnz56dO3du6NChsmxOBwMzZKnJ2dlZS0srJSXFvgYej9fMxquqqjo4OBw5coRpQHV19d69e7t169arVy9CiKmpKSHk3r17zCa//vqr7PsfMmTI2bNn6UEkIUQsFjdqeghAo2AEBtA4Wlpay5Yt+7//+z9vb+/PP/+8oKBgxYoVAoGAnv7QIHV1dRMTk+PHjw8dOlRHR0dPT4/ODIaamtrmzZunTp1aWFj42Wef6evrv3z58u7duy9fvoyIiGh++8PCwtzc3IYMGbJo0SIejxceHv7gwYP9+/fTQ7pRo0bp6Oj4+vquXLlSUVFx165dOTk5su986dKlJ06ccHV1Xb58uYqKytatWyWv2wG0LIzAABotKCjop59+unv37rhx4+bPn//+++9fuXKlZ8+eMm4eFRWloqIyZsyYDz74IDQ0tGaFKVOmnD9//s2bN7Nnzx42bJi/v/+tW7dkHOE1aPDgwefOnVNVVfXx8Zk4cWJRUdGJEyeYqRYaGhrx8fHq6upTpkyZM2eOjY1NcHCw7Du3sbE5c+aMhobG1KlTZ82aZWtrW+t9AgAtgkNRVFu3AQAAoNEwAgMAAFZCgAEAACshwAAAgJXkHmDh4eFmZmYCgcDOzu7SpUu11tm3b1+fPn1UVFSEQuG0adMkb6jctGmThYWFsrKysbHxggULZL8bFAAAOjb5BlhsbGxAQEBwcPDt27ddXFxGjhyZnZ0tVefy5cve3t6+vr4PHz48ePDgjRs3ZsyYQa/at2/fkiVLQkJCUlNTo6KiYmNjg4KC5NpgAABgC/nOQnRwcOjfvz9z84qVldW4cePCwsIk63zzzTcREREZGRn04ubNmzds2EDfejJ//vzU1FTmEXMLFy68fv16XcM4AADoVOR4I3NFRUVycvKSJUuYEnd39ytXrkhVc3JyCg4OjouLGzlyZH5+/qFDh0aPHk2vGjhw4N69e69fvz5gwIAnT57ExcXRz/mWUl5eTr9siRBSXV1dWFioq6vbtAftAABAO0FRVElJiZGRkYJCHScL5feg+9zcXEJIYmIiU7JmzZpevXrVrHnw4EE1NTX6yd9jxoypqKhgVv34449KSkr0qrlz59Z6IBmfgAAAAKyTk5NTV8rI/VFSkiMhiqJqDoxSUlL8/PyWL18+fPhwkUj01VdfzZkzJyoqihBy4cKFNWvWhIeHOzg4pKen+/v7C4XCmjf2BwUFBQYG0p+Lioq6d++ek5OjoaEhz24BAIB8FRcXGxsbq6ur11VBjgGmp6fH5XIln0Wdn58v+ThtWlhYmLOz81dffUUIsbW1VVVVdXFxWb16NZ1VXl5e9JyO3r17l5aWzpo1Kzg4WGo4yefzmSdn0zQ0NBBgAAAdQD3Xg+Q4C5HH49nZ2Um+JCkhIcHJyUmqWllZmWQgcblcQghFUbWuooeN8mszAACwhXxPIQYGBnp5ednb2zs6Ou7YsSM7O3vOnDmEkKCgoNzc3N27dxNCPDw8Zs6cGRERQZ9CDAgIGDBgAP2GPQ8Pj++++65fv370KcRly5aNGTOGTjgAAOjk5Btgnp6eBQUFK1euFIlENjY2cXFxJiYmhBCRSMTcEObj41NSUrJly5aFCxdqaWm5urquX7+eXrV06VIOh7N06dLc3NwuXbp4eHisWbNGrg0GAAC26GhPoy8uLtbU1CwqKqr1GphYLK6srGz9VkG7oqSkhHE8QPtX//c56TwvtKQoKi8v7/Xr123dEGgXtLS0DA0NcbMgAKt1lgCj00tfX19FRQVfW50ZRVFlZWX5+fmEEKFQ2NbNAYCm6xQBJhaL6fTS1dVt67ZA21NWViaE5Ofn6+vr41wiAHt1itep0Ne9VFRU2roh0F7QfxlwQRSA1TpFgNFw5hAY+MsA0AF0ilOIAMBSFVXVe5KynhaWmeioeDma8hQb9zu3uJq6nlmYX/JOX10wwEyHq4BfXDoUBFjHFBoaeuzYsTt37rR1QwCaLiwuJfJSZvU/d/qsiUud6WIWNMpaxs3jH4hW/JoiKvr7LbhCTUGIh/UIG8zcaS2Vb0nSVuI4jygpy+kInegUYjvh4+PD+a/09PTm75bD4Rw7doxZXLRoEfMeNYBW9rZCvOzYfa+oa8uO3X9bIW7aTsLiUrb/8W96EUKqKbL9j8ywuBRZNo9/IJq79xaTXoSQvKJ3c/fein8galp7oNFSTpBzq0jqr/I7AkZg9ZHT+YcRI0bs3LmTWezSpQvzuaKigsfjNf8QampqampqjdqksrJSSUmp+YeGTm7m7hsJKfn050uPyZ6r2W7W+pHeHzRqJxVV1ZGXMmtdFXkpc6G7Zf3nEsXV1IpfU6Se0UARwiFkxa8pbtaGOJfYGh4e/fv/thPkdASMwOoU/0A0cP25zyOv+h+483nk1YHrz7XU7258Pt9QwtChQ+fPnx8YGKinp+fm5kYIuXjx4oABA/h8vlAoXLJkSVVVFb3hRx995Ofn9/XXX+vo6BgaGoaGhtLlpqamhJBPPvmEw+HQn0NDQ/v27csccefOnVZWVgKBwNLSMjw8nC7MysricDi//PLLRx99JBAI9u7d2yK9g8YSV1NJGQXH7+QmZRSI/xlx1FrYHtQ/upJML0ZCSv7M3TcadZQ9SVl1dbqaInuSsurf/HpmoeTYi0ERIip6dz2zsFGNgUZ4k08SQsipYHIqmGScJYSQ9DN/LyaEkDcvW/ZoGIHVjj7/IPkviD7/EDGlvzzOocfExMydO5d++Wdubu6oUaN8fHx27979559/zpw5UyAQMFkVExMTGBh47dq1pKQkHx8fZ2dnNze3Gzdu6Ovr79y5c8SIETVvbIqMjAwJCdmyZUu/fv1u3749c+ZMVVVV5t3Wixcv/vbbb3fu3Cn1ShqQB2ZMr6PC+zOvOOevt2XlVZfTC/KK/3OdhhDSVhdv6p80UXN0Zayt7ONkStd8WyGumV60hJT8txViZZ6sd909LSxr8lpCSH5JLekl41polpI8cjWCiMsJR4EQDiGEVIvJ1XBCVRMun9h8StS6NLSLRkCA1ULe5x9OnjzJnN8bOXIkIeS9997bsGEDXRIcHGxsbLxlyxYOh2Npafn8+fPFixcvX76cfrOMra0t/Qbqnj17btmy5ezZs25ubvRJSPrxSDUPt2rVqm+//Xb8+PGEEDMzs5SUlO3btzMBFhAQQK8CeZOaU1CrvKJ3c/beqlkov1+eJNU/aaLW0VXOX29X/ZZK1yyr93LX2riUVeN6y9gSE5367tqsfy0hRF9d0OS10CxCWzL7IvnFmxSkE0pMCCGUmHAUiF4vMmE30bdq2aMhwGrR4PkHxx7NeqLHkCFDIiIi6M+qqqqff/65vb09szY1NdXR0ZG5UcnZ2fnNmzfPnj3r3r07IcTW1papKRQK6Uci1ePly5c5OTm+vr4zZ86kS6qqqjQ1NZkKkocG+ak5pq9VrRVa9uLN0+KnpZWllWIq7t5zUdE7oaZghI0w7UXJr7dfJf75n/EWPWmCEBI0yrqe0RVTs5tWfcGQVdDAsEmSl6PpmrjUWs8iKnCIl6Np/ZsPMNMRagryit5J7YBDiKGmYICZjuwtgUbTtyK+p8kG8/8U+p4mytotfigEWC3kff5BVVX1vffekyphPlMUJXmbLf26AKZEcp4Fh8Oprq6u/1h0hcjISAcHB6ZQ8jSj5KGhaRqc7FPrmL5R6F+erj4pcH5Pr7FHZ1RUVf/4x5WYnLn/KX1Dfs4lhBDCIRylRVSl9P7pSRNrZZj79+x1ff80THUb8SgcnqLCTBczOj6lzHQxa/BuMK4CJ8TDeu7eWxyJ3wnon0uIhzVmcMjd0yuEkvhqoqrJ0yRiOarFj4MAq0Xbnn+wtrY+fPgwE2NXrlxRV1fv2rVr/VspKSmJxbWcwDEwMOjateuTJ08mT54sl+Z2erLcbFTXmL6x5u27te7T3pI7l/1WJ/r0IOHnqprVuX8Ot5yq8XQtetJEo8ZPtfo/me/fotGnLiVPaSpwiOz3gY2wEUZM6S/5wzHEfWCtJvUEIYR0dyRuq8jppSTnKkk9gQBrJW17/uGLL77YtGnTl19+OX/+/LS0tJCQkMDAQPoCWD1MTU3Pnj3r7OzM5/O1tf8zVA8NDfXz89PQ0Bg5cmR5efnNmzf/+uuvwMBAeXais5Bxsk9LzRp4/bZScueyTzWi76kiTZ12/LSwzFRX5dLjhmt201J+9vptzXI3a33ZZ3AwgkZZL3S3bPKTOEbYCN2sDfEkjjYg7Ee6WBGnL4kCl0yLI1c2E0W5/N6PAKtF255/6Nq1a1xc3FdffdWnTx8dHR1fX9+lS5c2uNW3334bGBgYGRnZtWvXrKwsyVUzZsxQUVHZuHHj119/raqq2rt374CAADk1vlORfbJPy47a6Z3TH2o9+teH7l1Of2Wmq0p/49dzT5WMTHRUJjmY7Lma3WDNac6mVzMLpK6WNeE+MAZPUcHXxbzhenXgKnCaecUamuLDOf9+VuCSgQFyOk6neCPzu3fvMjMzzczMBIJGfI/gOTQdWNP+SkhJyij4PPJqXWv3z/yQ+eoUV1MD15+rOaZvsv0zPySE1HN0Gn3OTV9dsOq31L9LBLmqZpvrql+a+WX1O+mT1Qoc8ueqkTxFhVpnIdZa822FeG1cSlZBmamuyv+Nsm7C2AuA4I3MzYHzD1A/2Sf71DqmrxVzH9iSw/dfv63zbS9nUvJsjbUabCE9OfB9I/UGa9aDmTQR6f1B/RnG1FTmcWWfMQ/QZAiw+uD8A9SjUZN9as4pqGnBsJ7zXXvSvyep85UmR12rq2ZUYtaCYT1lbOfD5yUy1pRSc9JEpPcH9Ojq3J/5uRJzDhs1vQKgpSDAAJqosZN9JMf0GS9Koq9kvin/e6qxUFMw8YPupnoq1zML6bH+B2Y6ChxSzzOk9l/PNtQQvCiW6bRkgyM/KYN76Q3q2aXWSRP06GpVs190AtB8CDCAJmrCZB/JMb2/mwUdZlmvSvdfz/7+zCO6nD6LqKnMq/8JiHnF5QuG9dp05pEs4cRV4FRVU4QQSlzfA8MoMV/2a73NnF4B0HwIMICma87NRnSYxT8QbTrzuOZU+OnOpg3uwVRPpcHTkjQ6vTgcQlXqvUlfxOGWE0Jsu2p011FlnsRR+o5rPbAHrvUCiyDAAJqlOZN96pmIf/ROboOb66sLHHvo0kcXvX678ODdeoZiHEL01XgzXHrk/FXLSb9+tTxEE6C9Q4ABNFeTJ/vU89TNwtJKHVVeYWlFrRtKXmZjjp72orjWZy8x+3xRUmHTVXPmIJz3gw4C110B2kz9E/HH9TWqZyhX8zJb0Cjr2YPM6h/94U0i0JEgwADaTP0T8TWVlTRVanlHtlBTUNerVYJGWe+eNqDJRwRgFwRYe0e/N/nOnTv1V9u1a5eWlpa8j9JSOBzOsWPHWv+47Q09Eb/mmIlDiLaK0vdnHr8uk76XecGwnpcXu9YzScSpp15d+xTiTSLQsSDA2gD9gi4jIyMej2diYuLv719QUFBXZWNjY5FIZGNjU/8+PT09Hz161NItlTtZeufj4zNu3LjWalGroifik38m39Poz7VOx+AQcuBGTpP3iTeJQAeDAGtI5VvyxzekspYHbDfNkydP7O3tHz16tH///vT09G3btp09e9bR0bGwsLBm5YqKCi6Xa2hoqKjYwHQbZWVlfX39lmpkE1RW1vnco3rI2LsmqKioffpDe0NPxDfU/PfMnqGmIGBYr5pjLyLxStUm7LMVXugM0MoQYA1JOUHOrSKpv7bU/ubNm8fj8U6fPj148ODu3buPHDnyzJkzubm5wcHBdAVTU9PVq1f7+PhoamrOnDlT6iTbiRMnevbsqaysPGTIkJiYGA6H8/r1a/LfU4ihoaF9+/bds2ePqamppqbmxIkTS0r+fphQfHz8wIEDtbS0dHV1P/7444yMjAYbbGpqumrVqkmTJqmpqRkZGW3e/O+jYDkczrZt28aOHauqqrp69WpCyK+//mpnZycQCMzNzVesWFFVVUXXfPz48aBBgwQCgbW1dUJCArMHqd49fPhw9OjRGhoa6urqLi4uGRkZoaGhMTExx48f53A4HA7nwoULhJD79++7uroqKyvr6urOmjXrzZs39Ob0WC0sLMzIyKhXr16N/rNpIyNshJcXu+6f+eEPE/vun/nh5cWupnr1vftRlokYNfeJ9IKOBwHWkIdH//1/sxUWFp46deqLL75QVlZmCg0NDSdPnhwbG8u8GWDjxo02NjbJycnLli2T3DwrK+uzzz4bN27cnTt3Zs+ezWReTRkZGceOHTt58uTJkycvXry4bt06ury0tDQwMPDGjRtnz55VUFD45JNPGnynM90eW1vbW7duBQUFLViwQDKBQkJCxo4de//+/enTp586dWrKlCl+fn4pKSnbt2/ftWvXmjVrCCHV1dXjx4/ncrlXr17dtm3b4sWLaz1Kbm4uHXLnzp1LTk6ePn16VVXVokWLJkyYMGLECJFIJBKJnJycysrKRowYoa2tfePGjYMHD545c2b+/PnMTs6ePZuampqQkHDy5MkG+9V+0FPhx/bt6thDl6vAaZFXqkrts4VaCtCO4D6w2rzJJ0lbSXUVIYRknCWEkPQz5FQwIYQoKBLH+UStS9N2/PjxY4qirKyspMqtrKz++uuvly9f0qcBXV1dFy1aRK+SfLnXtm3bLCwsNm7cSAixsLB48OABnRA1VVdX79q1S11dnRDi5eV19uxZuuann37K1ImKitLX109JSWnwApuzs/OSJUsIIb169UpMTPz+++/d3NzoVZMmTZo+fTr92cvLa8mSJVOnTiWEmJubr1q16uuvvw4JCTlz5kxqampWVla3bt0IIWvXrh05cmTNo2zdulVTU/PAgQNKSkr0sehyZWXl8vJyQ8O/b7WNiYl5+/bt7t27VVVVCSFbtmzx8PBYv369gYEBIURVVfWnn37i8Xj196ida9tXqgKwBQKsNiV55GoEEZcTjsLf17+rxeRqOKGqCZdPbD5tcoDVhR57cTh//5psb29fa7W0tLQPPvj3xYADBtQ5YdrU1JROL0KIUCjMz//7FRgZGRnLli27evXqq1ev6LFXdnZ2gwHm6Ogo+XnTpk3MomRTk5OTb9y4wWSqWCx+9+5dWVlZampq9+7d6fSS2pukO3fuuLi40OlVj9TU1D59+tDpRQhxdnaurq5OS0ujA6x3795sTy/S1q9UBWALnEKsjdCWzL5I9HoRQggl/vf/er3I7ItEaNvkHb/33nscDiclJUWq/M8//9TW1tbT06MXmW9nKRRFMSFH/om9WknGAIfDYc4Tenh4FBQUREZGXrt27dq1a6RJkx0k2yDZ1Orq6hUrVtz5x/379x8/fiwQCKTaKbm5JMnTqvWQ+iFI7bOuHx3rYCIGQIMwAquDvhXxPU02/PehO76nibJ2c/aqq6vr5uYWHh6+YMEC5vs6Ly9v37593t7edX2zMywtLePi4pjFmzdvNuroBQUFqamp27dvd3FxIYRcvnxZxg2vXr0q+dnS0rLWav37909LS3vvvfekyq2trbOzs58/f25kZEQISUpKqnVzW1vbmJiYyspKqUEYj8cTi8WSe4uJiSktLaWzKjExUUFBgUVTNmSHV6oC1A8jsLo9vUIoiQkOVDV5Wvs3b6Ns2bKlvLx8+PDhf/zxR05OTnx8vJubW9euXeu6miVp9uzZf/755+LFix89evTLL7/s2rWL1D2gqUlbW1tXV3fHjh3p6ennzp0LDAyUccPExMQNGzY8evRo69atBw8e9Pf3r7Xa8uXLd+/eHRoa+vDhw9TU1NjY2KVLlxJChg0bZmFh4e3tfffu3UuXLtU192T+/PnFxcUTJ068efPm48eP9+zZk5aWRggxNTW9d+9eWlraq1evKisrJ0+eLBAIpk6d+uDBg/Pnz3/55ZdeXl70+cOOBxMxAOqBAKtb6glCCOnuSHzPEOMP/y1pnp49e968ebNHjx6enp49evSYNWvWkCFDkpKSdHQavjJvZmZ26NChI0eO2NraRkRE0EnA59f3hidJCgoKBw4cSE5OtrGxWbBgAT0ZRBYLFy5MTk7u16/fqlWrvv322+HDh9dabfjw4SdPnkxISPjggw8+/PDD7777zsTEhD7u0aNHy8vLBwwYMGPGjLqiWldX99y5c2/evBk8eLCdnV1kZCQ9FJs5c6aFhYW9vX2XLl0SExNVVFROnTpVWFj4wQcffPbZZ0OHDt2yZYuMHQGAjoRTz3UUNiouLtbU1CwqKtLQ0GAK3717l5mZaWZmJhA05kFwV7eRqnfE6UuiwCXVYnJlM1EUkA/ntHyjm2rNmjXbtm3LyWng0QzNZGpqGhAQEBAQINejtLIm/pUAgFZU6/e5JFwDq5tkVilwycCANmuJhPDw8A8++EBXVzcxMXHjxo2St0ABAHQqCDCWefz48erVqwsLC7t3775w4cKgoKC2bhEAQNtAgLHM999///3337fmESXvpAYAaD8wiQMAAFgJAQYAAKyEAAMAAFZCgAEAACshwAAAgJUQYAAAwEoIMLai3z4sp51LvShZ3jgczrFjx1r/uADAanIPsPDwcPqBPXZ2dpcuXaq1zr59+/r06aOioiIUCqdNm1ZQUMCsev369bx584RCoUAgsLKyknwWO0t99NFHUo9lOnbsmOwP5G0U1uWBsbGxSCSq//1kck1uAGAR+d7IHBsbGxAQEB4e7uzsvH379pEjR6akpHTv3l2yzuXLl729vb///nsPD4/c3Nw5c+bMmDHj6NGjhJCKigo3Nzd9ff1Dhw5169YtJyeHeUmjvD0tflpaWVqzXFVJ1UTDpHXawGo134oiCy6Xy7x5uWVVVFR0gBddAoAk+Y7AvvvuO19f3xkzZlhZWW3atMnY2DgiIkKqztWrV01NTf38/MzMzAYOHDh79mzmNVfR0dGFhYXHjh1zdnY2MTEZOHBgnz595Npg2tPipx8f/djzpGfN/z4++vHT4qfyO3RoaGjfvn23b99ubGysoqLyv//97/Xr1/QqsVgcGBiopaWlq6v79ddfSz6FOT4+fuDAgfSqjz/+OCMjgy43MzMjhPTr14/D4Xz00Ud04c6dO62srAQCgaWlZXh4OLOT69ev9+vXTyAQ2Nvb3759u64Wmpqarlq1atKkSWpqakZGRps3b2ZWcTicbdu2jR07VlVVdfXq1YSQX3/91c7OTiAQmJubr1ixoqqqiq75+PHjQYMGCQQCa2vrhIQEZg9SQ8aHDx+OHj1aQ0NDXV3dxcUlIyMjNDQ0Jibm+PHjHA6Hw+FcuHCBEHL//n1XV1dlZWVdXd1Zs2a9efOG3pweq4WFhRkZGXXIF4YBdHJyDLCKiork5GR3d3emxN3d/cqVK1LVnJycnj17FhcXR1HUixcvDh06NHr0aHrViRMnHB0d582bZ2BgYGNjs3btWskXGzLKy8uLJTS/5bWOvWRc23zp6em//PLLr7/+Gh8ff+fOnXnz5tHl3377bXR0dFRU1OXLlwsLC+lB6t9NKi0NDAy8cePG2bNnFRQUPvnkE/oVzNevXyeEnDlzRiQSHTlyhBASGRkZHBy8Zs2a1NTUtWvXLlu2LCYmht7Dxx9/bGFhkZycHBoaumjRonpauHHjRltb21u3bgUFBS1YsEAygUJCQsaOHXv//v3p06efOnVqypQpfn5+KSkp27dv37VrF/0ilerq6vHjx3O53KtXr27btm3x4sW1HiU3N5cOuXPnziUnJ0+fPr2qqmrRokUTJkwYMWKESCQSiUROTk5lZWUjRozQ1ta+cePGwYMHz5w5I/mA47Nnz6ampiYkJJw8ebKpfyAA0F5RcpObm0sISUxMZErWrFnTq1evmjUPHjyopqamqKhICBkzZkxFRQVdbmFhwefzp0+ffvPmzf379+vo6KxYsaLm5iEhIVKdKioqkqzw9u3blJSUt2/fytjyh68e2uyyqeu/h68eyvojqM3gwYP9/f0lS+goYvrC5XJzcnLoxd9//11BQUEkElEUJRQK161bR5dXVlZ269Zt7NixNfefn59PCLl//z5FUZmZmYSQ27dvM2uNjY1//vlnZnHVqlWOjo4URW3fvl1HR6e0tJQupwfKkhsyTExMRowYwSx6enqOHDmS/kwICQgIYFa5uLisXbuWWdyzZ49QKKQo6tSpU1J9JIQcPXpUqsFBQUFmZmbMXwbG1KlTJTu+Y8cObW3tN2/e0Iu//fabgoJCXl4eXdPAwKC8vLxmLxr7VwIAWl9RUVHN73NJcp/EITk9gaKomrMVUlJS/Pz8li9fnpycHB8fn5mZOWfO3+8xqa6u1tfX37Fjh52d3cSJE4ODg2uegSSEBAUFFf1D3i/HagXdu3fv1q0b/dnR0bG6ujotLa2oqEgkEjk6OtLlioqK9vb2zCYZGRmTJk0yNzfX0NCgTxtmZ2fX3PPLly9zcnJ8fX3V/rF69Wr6fGNqaio9j4Y5bj0tlFzr6OiYmprKLEq2Kjk5eeXKlcyxZs6cKRKJysrKUlNTpfpY61Hu3Lnj4uLS4IU0uuWqqqr0orOzM/0Toxd79+6NS18AHZUcJ3Ho6elxudy8vDymJD8/v+ar38PCwpydnb/66itCiK2traqqqouLy+rVq4VCoVAoVFJS4nK5dE0rK6u8vLyaV+P5fL7sbyVucxoaGvSvFYzXr1/X9bo2Ou8bnKPo4eFhbGwcGRlpZGRUXV1tY2NTUVFRsxp9XjEyMtLBwYEppH+8VDPeayrZPCZI6MOtWLFi/PjxkpUFAoHUserqnbKysixHr/W3IqZEsj0A0MHIcQTG4/Hs7OwkL5AkJCQ4OTlJVSsrK1NQ+LcZkt+nzs7O6enp9NcuIeTRo0dCoZDtv1BbWloys1RoN27csLCwYBazs7OfP39Of05KSlJQUOjVq5empqZQKLx69SpdXlVVlZycTH8uKChITU1dunTp0KFDrays/vrrL2ZX9M+KuXBoYGDQtWvXJ0+evCeBHrFZW1vfvXv37du3dE3mQLWSXHv16lVLS8taq/Xv3z8tLe29/1JQULC2tpbqY62b29raXrp0qbKyUqqcx+NJXgq1tra+c+dOaenfFyYTExPpn1g97QeAjkG+pxADAwN/+umn6Ojo1NTUBQsWZGdn06cHg4KCvL296ToeHh5HjhyJiIh48uRJYmKin5/fgAEDjIyMCCFz584tKCjw9/d/9OjRb7/9tnbtWmZGA3t98cUXGRkZ8+bNu3v37qNHj7Zu3RoVFUUPQGkCgWDq1Kl37969dOmSn5/fhAkT6Jnl/v7+69atO3r06J9//vnFF18wsxO1tbV1dXV37NiRnp5+7ty5wMBAZlf6+vrKysrx8fEvXrygh32hoaFhYWE//PDDo0eP7t+/v3Pnzu+++44QMmnSJAUFBV9f35SUlLi4uG+++aaeLiQmJm7YsIFu/MGDB/39/Wuttnz58t27d4eGhj58+DA1NTU2Nnbp0qWEkGHDhllYWHh7e9N9DA4OrnXz+fPnFxcXT5w48ebNm48fP96zZw99YtDU1PTevXtpaWmvXr2qrKycPHky/RN78ODB+fPnv/zySy8vr5oDfQDogOR9FW7r1q0mJiY8Hq9///4XL16kC6dOnTp48GCmzo8//mhtba2srCwUCidPnvzs2TNm1ZUrVxwcHPh8vrm5+Zo1a6qqquo/XK0X/drVJA6Kom7evDl8+HB9fX0NDQ17e/v9+/czq0JCQvr06RMeHm5kZCQQCMaPH19YWEivqqys9Pf319DQ0NLSCgwM9Pb2ZuYyJCQkWFlZ8fl8W1tbemY5PSeCoqjIyEhjY2MFBQXmB75v376+ffvyeDxtbe1BgwYdOXKELk9KSurTpw+Px+vbt+/hw4dJ3ZM4VqxYMWHCBBUVFQMDg02bNjGrJI9Li4+Pd3JyUlZW1tDQGDBgwI4dO+jytLS0gQMH8ni8Xr16xcfHk9omcVAUdffuXXd3dxUVFWYaPUVR+fn5bm5uampqhJDz589TFHXv3r0hQ4YIBAIdHZ2ZM2eWlJTQm0tN95CESRwA7V+Dkzg4VDMufrRDxcXFmpqaRUVFkleV3r17l5mZST8QRJad0PeB1bX25Ccn5Xcvc2ho6LFjx9rzszNMTU0DAgKkHibCOo39KwEAra/W73NJ8n0SB0uZaJic/OQknsQBANCeIcBqh5QCAGjncAoROiP8lQBo/xo8hYjXqQAAACt1ogDrYGNNaA78ZQDoADpFgNGPIyorK2vrhkB7Qf9laMILXwCg/egUkzi4XK6Wlhb9lFsVFRU5vT0SWIGiqLKysvz8fC0tLeYpZQDARp0iwAgh9MMs6AwD0NLSktObMwGg1XSWAONwOEKhUF9fv+az9aCzkXxCNACwV2cJMBqXy8U3FwBAx9ApJnEAAEDHgwADAABWQoABAAArIcAAAICVEGAAAMBKCDAAAGAlBBgAALASAgwAAFgJAQYAAKyEAAMAAFZCgAEAACshwAAAgJUQYAAAwEoIMAAAYCUEGAAAsBICDAAAWAkBBgAArIQAAwAAVkKAAQAAKyHAAACAlRBgAADASggwAABgJQQYAACwEgIMAABYCQEGAACshAADAABWQoABAAArIcAAAICVEGAAAMBKCDAAAGAlBBgAALASAgwAAFgJAQYAAKyEAAMAAFZCgAEAACshwAAAgJUQYAAAwEoIMAAAYCW5B1h4eLiZmZlAILCzs7t06VKtdfbt29enTx8VFRWhUDht2rSCggKpCgcOHOBwOOPGjZN3awEAgC3kG2CxsbEBAQHBwcG3b992cXEZOXJkdna2VJ3Lly97e3v7+vo+fPjw4MGDN27cmDFjhmSFp0+fLlq0yMXFRa5NBQAAdpFvgH333Xe+vr4zZsywsrLatGmTsbFxRESEVJ2rV6+ampr6+fmZmZkNHDhw9uzZN2/eZNaKxeLJkyevWLHC3Nxcrk0FAAB2kWOAVVRUJCcnu7u7MyXu7u5XrlyRqubk5PTs2bO4uDiKol68eHHo0KHRo0cza1euXNmlSxdfX996DlReXl4soWV7AQAA7ZMcA+zVq1disdjAwIApMTAwyMvLk6rm5OS0b98+T09PHo9naGiopaW1efNmelViYmJUVFRkZGT9BwoLC9P8h7Gxccv2AgAA2ie5T+LgcDjMZ4qiJBdpKSkpfn5+y5cvT05Ojo+Pz8zMnDNnDiGkpKRkypQpkZGRenp69R8iKCio6B85OTkt3gUAAGiHFOW3az09PS6XKznkys/PlxyQ0cLCwpydnb/66itCiK2traqqqouLy+rVq1+8eJGVleXh4UFXq66uJoQoKiqmpaX16NFDcg98Pp/P58uvIwAA0A7JcQTG4/Hs7OwSEhKYkoSEBCcnJ6lqZWVlCgr/NoPL5RJCKIqytLS8f//+nX+MGTNmyJAhd+7cwUlCAAAgch2BEUICAwO9vLzs7e0dHR137NiRnZ1Nnx4MCgrKzc3dvXs3IcTDw2PmzJkRERHDhw8XiUQBAQEDBgwwMjIihNjY2DC70tLSkioBAIDOTL4B5unpWVBQsHLlSpFIZGNjExcXZ2JiQggRiUTMDWE+Pj4lJSVbtmxZuHChlpaWq6vr+vXr5doqAADoADgURbV1G1pScXGxpqZmUVGRhoZGW7cFAACarsHvczwLEQAAWAkBBgAArIQAAwAAVkKAAQAAKyHAAACAlRBgAADASggwAABgJQQYAACwEgIMAABYCQEGAACshAADAABWQoABAAArIcAAAICVEGAAAMBKCDAAAGAlBBgAALASAgwAAFgJAQYAAKyEAAMAAFZCgAEAACshwAAAgJUQYAAAwEoIMAAAYCUEGAAAsBICDAAAWAkBBgAArIQAAwAAVkKAAQAAKyHAAACAlRBgAADASjIFmKmp6cqVK7Ozs+XdGgAAABnJFGALFy48fvy4ubm5m5vbgQMHysvL5d0sAACA+skUYF9++WVycnJycrK1tbWfn59QKJw/f/6tW7fk3TgAAIC6cCiKatQGlZWV4eHhixcvrqystLGx8ff3nzZtGofDkVP7Gqu4uFhTU7OoqEhDQ6Ot2wIAAE3X4Pe5ouz7qqysPHr06M6dOxMSEj788ENfX9/nz58HBwefOXPm559/bqEGAwAAyESmALt169bOnTv379/P5XK9vLy+//57S0tLepW7u/ugQYPk2UIAAIBayBRgH3zwgZubW0RExLhx45SUlCRXWVtbT5w4UT5tAwAAqJNMAfbkyRMTE5NaV6mqqu7cubNFmwQAANAwmWYh5ufnX7t2TbLk2rVrN2/elE+TAAAAGiZTgM2bNy8nJ0eyJDc3d968efJpEgAAQMNkCrCUlJT+/ftLlvTr1y8lJUU+TQIAAGiYTAHG5/NfvHghWSISiRQVGzEFHwAAoGXJFGBubm5BQUFFRUX04uvXr//v//7Pzc1Nng0DAACoj0yjqG+//XbQoEEmJib9+vUjhNy5c8fAwGDPnj1ybhsAAECdZAqwrl273rt3b9++fXfv3lVWVp42bdrnn38udUMYAABAa5L1OpaqquqsWbPk2hQAAADZNWIiRkpKSnZ2dkVFBVMyZswYOTQJAACgYbI+ieOTTz65f/8+h/P30+vpx8+LxWL5tg4AAKAOMs1C9Pf3NzMze/HihYqKysOHD//44w97e/sLFy7Ism14eLiZmZlAILCzs7t06VKtdfbt29enTx8VFRWhUDht2rSCggK6PDIy0sXFRVtbW1tbe9iwYdevX5etUwAA0PHJFGBJSUkrV67s0qWLgoKCgoLCwIEDw8LC/Pz8GtwwNjY2ICAgODj49u3bLi4uI0eOzM7Olqpz+fJlb29vX1/fhw8fHjx48MaNGzNmzKBXXbhw4fPPPz9//nxSUlL37t3d3d1zc3Mb20MAAOiYKBloaWllZGRQFGVubn7u3DmKotLT05WVlRvccMCAAXPmzGEWLS0tlyxZIlVn48aN5ubmzOKPP/7YrVu3mruqqqpSV1ePiYmp/4j0zWpFRUUNtg0AANqzBr/PZRqB2djY3Lt3jxDi4OCwYcOGxMTElStXmpub179VRUVFcnKyu7s7U+Lu7n7lyhWpak5OTs+ePYuLi6Mo6sWLF4cOHRo9enTNvZWVlVVWVuro6MjSYAAA6PBkmsSxdOnS0tJSQsjq1as//vhjFxcXXV3d2NjY+rd69eqVWCw2MDBgSgwMDPLy8qSqOTk57du3z9PT8927d1VVVWPGjNm8eXPNvS1ZsqRr167Dhg2ruaq8vLy8vJz+XFxcLEuPAACA7WQagQ0fPnz8+PGEEHNz85SUlFevXuXn57u6usqyLT1fkUZRlOQiLSUlxc/Pb/ny5cnJyfHx8ZmZmXPmzJGqs2HDhv379x85ckQgENQ8RFhYmOY/jI2NZWkVAACwXcMBVlVVpaio+ODBA6ZER0enZg7VpKenx+VyJYdc+fn5kgMyWlhYmLOz81dffWVrazt8+PDw8PDo6GiRSMRU+Oabb9auXXv69GlbW9taD0Q/p5Em9doXAADoqBoOMEVFRRMTkybc8sXj8ezs7BISEpiShIQEJycnqWplZWUKCv82g8vlEkIoiqIXN27cuGrVqvj4eHt7+7oOxOfzNSQ0tp0AAMBGMp1CXLp0aVBQUGFhYWP3HhgY+NNPP0VHR6empi5YsCA7O5s+PRgUFOTt7U3X8fDwOHLkSERExJMnTxITE/38/AYMGGBkZEQI2bBhw9KlS6Ojo01NTfPy8vLy8t68edPYNgAAQIck0ySOH3/8MT093cjIyMTERFVVlSm/detW/Rt6enoWFBSsXLlSJBLZ2NjExcWZmJgQQkQiEXNDmI+PT0lJyZYtWxYuXKilpeXq6rp+/Xp6VXh4eEVFxWeffcbsMCQkJDQ0tDEdBACAjonDnKyrx4oVK2otDwkJaen2NFdxcbGmpmZRURHOJQIAsFqD3+cyBRiLIMAAADqGBr/PZboGBgAA0N7IdA1MQUGh1nnzeBo9AAC0FZkC7OjRo8znysrK27dvx8TE1HVhDAAAoBU08RrYzz//HBsbe/z48RZvUDPhGhgAQMcgr2tgDg4OZ86caUbDAAAAmqUpAfb27dvNmzd369atxVsDAAAgI5mugWlrazOTOCiKKikpUVFR2bt3rzwbBgAAUB+ZAuz7779nAkxBQaFLly4ODg7a2trybBgAAEB9ZAowHx8fOTcDAACgcWS6BrZz586DBw9Klhw8eDAmJkY+TQIAAGiYTAG2bt06PT09yRJ9ff21a9fKp0kAAAANkynAnj59amZmJlliYmLCPE4eAACg9ckUYPr6+vfu3ZMsuXv3rq6urnyaBAAA0DCZAmzixIl+fn7nz58Xi8VisfjcuXP+/v4TJ06Ud+MAAADqItMsxNWrVz99+nTo0KGKioqEkOrqam9vb1wDAwCANtSIZyE+fvz4zp07ysrKvXv3pl+s3A7hWYgAAB1Dg9/nMo3AaD179uzZs2cLNQwAAKBZZLoG9tlnn61bt06yZOPGjf/73//k0yQAAICGyRRgFy9eHD16tGTJiBEj/vjjD/k0CQAAoGEyBdibN294PJ5kiZKSUnFxsXyaBAAA0DCZAszGxiY2Nlay5MCBA9bW1vJpEgAAQMNkmsSxbNmyTz/9NCMjw9XVlRBy9uzZn3/++dChQ3JuGwAAQJ1kCrAxY8YcO3Zs7dq1hw4dUlZW7tOnz7lz5zBPHQAA2lAj7gOjvX79et++fVFRUXfv3hWLxXJqVpPhPjAAgI6hwe9zma6B0c6dOzdlyhQjI6MtW7aMGjXq5s2bLdRIAACARmv4FOKzZ8927doVHR1dWlo6YcKEysrKw4cPYwYHAAC0rQZGYKNGjbK2tk5JSdm8efPz5883b97cOs0CAACoXwMjsNOnT/v5+c2dOxcPkQIAgHalgRHYpUuXSkpK7O3tHRwctmzZ8vLly9ZpFgAAQP0aCDBHR8fIyEiRSDR79uwDBw507dq1uro6ISGhpKSkddoHAABQq8ZNo09LS4uKitqzZ8/r16/d3NxOnDghv5Y1DabRAwB0DC05jZ4QYmFhsWHDhmfPnu3fv78lmgcAANBEjb6RuZ3DCAwAoGNo4REYAABAO4EAAwAAVkKAAQAAKyHAAACAlRBgAADASggwAABgJQQYAACwEgIMAABYCQEGAACshAADAABWQoABAAArIcAAAICVEGAAAMBKCDAAAGAlBBgAALCS3AMsPDzczMxMIBDY2dldunSp1jr79u3r06ePioqKUCicNm1aQUEBs+rw4cPW1tZ8Pt/a2vro0aPybi0AALCFfAMsNjY2ICAgODj49u3bLi4uI0eOzM7Olqpz+fJlb29vX1/fhw8fHjx48MaNGzNmzKBXJSUleXp6enl53b1718vLa8KECdeuXZNrgwEAgC3k+0ZmBweH/v37R0RE0ItWVlbjxo0LCwuTrPPNN99ERERkZGTQi5s3b96wYUNOTg4hxNPTs7i4+Pfff6dXjRgxQltbe//+/fUcEW9kBgDoGNryjcwVFRXJycnu7u5Mibu7+5UrV6SqOTk5PXv2LC4ujqKoFy9eHDp0aPTo0fSqpKQkyc2HDx9ec3NCSHl5ebEEOXQFAADaHTkG2KtXr8RisYGBAVNiYGCQl5cnVc3JyWnfvn2enp48Hs/Q0FBLS2vz5s30qry8vAY3J4SEhYVp/sPY2FgOXQEAgHZH7pM4OBwO85miKMlFWkpKip+f3/Lly5OTk+Pj4zMzM+fMmSP75oSQoKCgon/Q5x4BAKDDU5TfrvX09LhcruSYKT8/X3JERQsLC3N2dv7qq68IIba2tqqqqi4uLqtXrxYKhYaGhg1uTgjh8/l8Pl8+nQAAgHZKjiMwHo9nZ2eXkJDAlCQkJDg5OUlVKysrU1D4txlcLpcQQk8tcXR0lNz89OnTNTcHAIDOSY4jMEJIYGCgl5eXvb29o6Pjjh07srOz6dODQUFBubm5u3fvJoR4eHjMnDkzIiJi+PDhIpEoICBgwIABRkZGhBB/f/9BgwatX79+7Nixx48fP3PmzOXLl+XaYAAAYAv5Bpinp2dBQcHKlStFIpGNjU1cXJyJiQkhRCQSMTeE+fj4lJSUbNmyZeHChVpaWq6uruvXr6dXOTk5HThwYOnSpcuWLevRo0dsbKyDg4NcGwwAAGwh3/vAWh/uAwMA6Bja8j4wAAAA+UGAAQAAKyHAAACAlRBgAADASggwAABgJQQYAACwEgIMAABYCQEGAACshAADAABWQoABAAArIcAAAICVEGAAAMBKCDAAAGAlBBgAALASAgwAAFgJAQYAAKyEAAMAAFZCgAEAACshwAAAgJUQYAAAwEoIMAAAYCUEGAAAsBICDAAAWAkBBgAArIQAAwAAVkKAAQAAKyHAAACAlRBgAADASggwAABgJQQYAACwEgIMAABYCQEGAACshAADAABWQoABAAArIcAAAICVEGAAAMBKCDAAAGAlBBgAALASAgwAAFgJAQYAAKyEAAMAAFZCgAEAACshwAAAgJUQYAAAwEoIMAAAYCUEGAAAsBICDAAAWAkBBgAArCT3AAsPDzczMxMIBHZ2dpcuXapZwcfHh/Nf77//PrN206ZNFhYWysrKxsbGCxYsePfunbwbDAAArCDfAIuNjQ0ICAgODr59+7aLi8vIkSOzs7Ol6vzwww+if+Tk5Ojo6Pzvf/+jV+3bt2/JkiUhISGpqalRUVGxsbFBQUFybTAAALAFh6Io+e3dwcGhf//+ERER9KKVldW4cePCwsLqqn/s2LHx48dnZmaamJgQQubPn5+amnr27Fl67cKFC69fv17rMI5RXFysqalZVFSkoaHRcv0AAIDW1uD3uRxHYBUVFcnJye7u7kyJu7v7lStX6tkkKipq2LBhdHoRQgYOHJicnHz9+nVCyJMnT+Li4kaPHi2/BgMAAIsoym/Xr169EovFBgYGTImBgUFeXl5d9UUi0e+///7zzz8zJRMnTnz58uXAgQMpiqqqqpo7d+6SJUtqblheXl5eXk5/Li4ubrkeAABA+yX3SRwcDof5TFGU5KKUXbt2aWlpjRs3jim5cOHCmjVrwsPDb926deTIkZMnT65atarmhmFhYZr/MDY2btHmAwBAOyXHEZienh6Xy5UccuXn50sOyCRRFBUdHe3l5cXj8ZjCZcuWeXl5zZgxgxDSu3fv0tLSWbNmBQcHKyj8J3eDgoICAwPpz8XFxcgwAIDOQI4jMB6PZ2dnl5CQwJQkJCQ4OTnVWvnixYvp6em+vr6ShWVlZZJZxeVyKYqqOeuEz+drSGi5HgAAQPslxxEYISQwMNDLy8ve3t7R0XHHjh3Z2dlz5swhhAQFBeXm5u7evZupGRUV5eDgYGNjI7m5h4fHd999169fPwcHh/T09GXLlo0ZM4bL5cq1zQAAwAryDTBPT8+CgoKVK1eKRCIbG5u4uDh6hqFIJJK8IayoqOjw4cM//PCD1OZLly7lcDhLly7Nzc3t0qWLh4fHmjVr5NpgAABgC/neB9b6cB8YAEDH0Jb3gQEAAMgPAgwAAFgJAQYAAKyEAAMAAFZCgAEAACshwAAAgJUQYAAAwEoIMAAAYCUEGAAAsBICDAAAWAkBBgAArIQAAwAAVkKAAQAAKyHAAACAlRBgAADASggwAABgJQQYAACwEgIMAABYCQEGAACshAADAABWQoABAAArIcAAAICVEGAAAMBKCDAAAGAlBBgAALASAgwAAFgJAQYAAKyEAAMAAFZCgAEAACshwAAAgJUQYAAAwEoIMAAAYCUEGAAAsBICDAAAWAkBBgAArKTY1g0AYBlxNXU9szC/5J2+umCAmQ5XgdPWLQLopBBgAI0Q/0C04tcUUdE7elGoKQjxsB5hI2zbVgF0TjiFCCCr+AeiuXtvMelFCMkrejd37634B6I2bBVAp4UAA5CJuJpa8WsK9d9CenHFryniaqqWbQBAnhBgADK5nlkoOfZiUISIit5dzyxs/SYBdHIIMACZ5JfUkl4yrgUAeUCAAchEX13Q5LUAIA8IMACZDDDTEWoKak6Z5xAi1BQMMNNpgzYBdG4IMACZcBU4IR7WhBDJDKM/h3hY424wgNaHAJMmrqaSMgqO38lNyijA1DKQNMJGGDGlv6Hmv2cLDTUFEVP64z4wgDaBG5n/A7epQv1G2AjdrA3xJA6A9oBDUR1qkFFcXKypqVlUVKShodHYbenbVCV/HPQ3E37FBgBofQ1+n+MU4t9wmyoAALsgwP6G21QBANhF7gEWHh5uZmYmEAjs7OwuXbpUs4KPjw/nv95//31m7evXr+fNmycUCgUCgZWVVVxcnJzaidtUAQDYRb4BFhsbGxAQEBwcfPv2bRcXl5EjR2ZnZ0vV+eGHH0T/yMnJ0dHR+d///kevqqiocHNzy8rKOnToUFpaWmRkZNeuXeXUVNymCgDALvKdxOHg4NC/f/+IiAh60crKaty4cWFhYXXVP3bs2Pjx4zMzM01MTAgh27Zt27hx459//qmkpCTjEZs8iUNcTQ1cfy6v6J3Uj4NDiKGm4PJiV0w2AwBoTW05iaOioiI5Odnd3Z0pcXd3v3LlSj2bREVFDRs2jE4vQsiJEyccHR3nzZtnYGBgY2Ozdu1asVhcc6vy8vJiCU1rLW5TBQBgFzkG2KtXr8RisYGBAVNiYGCQl5dXV32RSPT777/PmDGDKXny5MmhQ4fEYnFcXNzSpUu//fbbNWvW1NwwLCxM8x/GxsZNbjBuUwUAYBG538jM4fw7dqEoSnJRyq5du7S0tMaNG8eUVFdX6+vr79ixg8vl2tnZPX/+fOPGjcuXL5faMCgoKDAwkP5cXFzczAzDbaoAAKwgxwDT09PjcrmSQ678/HzJAZkkiqKio6O9vLx4PB5TKBQKlZSUuFwuvWhlZZWXl1dRUSFZhxDC5/P5fH5LNZurwHHsodtSewMAADmR4ylEHo9nZ2eXkJDAlCQkJDg5OdVa+eLFi+np6b6+vpKFzs7O6enp1dXV9OKjR4+EQqFUegEAQOck32n0gYGBP/30U3R0dGpq6oIFC7Kzs+fMmUMICQoK8vb2lqwZFRXl4OBgY2MjWTh37tyCggJ/f/9Hjx799ttva9eunTdvnlwbDAAAbCHfa2Cenp4FBQUrV64UiUQ2NjZxcXH0DEORSCR5Q1hRUdHhw4d/+OEHqc2NjY1Pnz69YMECW1vbrl27+vv7L168WK4NBgAAtsDDfAEAoD3Cw3wBAKBjQoABAAArIcAAAICVEGAAAMBKCDAAAGAluT9KqpXRkyqb/EhfAABoJ+hv8nqmyne0ACspKSGENOdxiAAA0H6UlJRoamrWuqqj3QdWXV39/PlzdXX1ep4a3D7RjyHOycnpDHewdZ7OoqcdUufpbNv2lKKokpISIyMjBYXar3Z1tBGYgoJCt27d2roVTaehodHh/0kwOk9n0dMOqfN0tg17WtfYi4ZJHAAAwEoIMAAAYCUEWHvB5/NDQkJa8MVm7Vnn6Sx62iF1ns628552tEkcAADQSWAEBgAArIQAAwAAVkKAAQAAKyHAAACAlRBgrSQ8PNzMzEwgENjZ2V26dKnWOhcvXrSzsxMIBObm5tu2bWPKIyMjXVxctLW1tbW1hw0bdv369dZqdVM0p6eMAwcOcDiccePGybetzdPMnr5+/XrevHlCoVAgEFhZWcXFxbVKq5uomZ3dtGmThYWFsrKysbHxggUL3r171yqtbooGeyoSiSZNmmRhYaGgoBAQECC19vDhw9bW1nw+39ra+ujRo63R4qZqTk/by5cSBfJ34MABJSWlyMjIlJQUf39/VVXVp0+fStV58uSJioqKv79/SkpKZGSkkpLSoUOH6FWTJk3aunXr7du3U1NTp02bpqmp+ezZs1bvhEya2VNaVlZW165dXVxcxo4d23pNb6Rm9rS8vNze3n7UqFGXL1/Oysq6dOnSnTt3Wr0TsmpmZ/fu3cvn8/ft25eZmXnq1CmhUBgQENDqnZCJLD3NzMz08/OLiYnp27evv7+/5KorV65wudy1a9empqauXbtWUVHx6tWrrdf6xmhmT9vJlxICrDUMGDBgzpw5zKKlpeWSJUuk6nz99deWlpbM4uzZsz/88MOau6qqqlJXV4+JiZFTU5up+T2tqqpydnb+6aefpk6d2p4DrJk9jYiIMDc3r6ioaIWmNl8zOztv3jxXV1dmVWBg4MCBA+XZ3qaTpaeMwYMHS32tT5gwYcSIEczi8OHDJ06cKIdmtoBm9lRSG34p4RSi3FVUVCQnJ7u7uzMl7u7uV65ckaqWlJQkWWf48OE3b96srKyUqlZWVlZZWamjoyO/BjdZi/R05cqVXbp08fX1bYUGN1nze3rixAlHR8d58+YZGBjY2NisXbtWLBa3TuMbq/mdHThwYHJyMn2W6cmTJ3FxcaNHj26VtjeOjD2tR80fQqM2bzXN76mkNvxS6mgP822HXr16JRaLDQwMmBIDA4O8vDypanl5eVJ1qqqqXr16JRQKJastWbKka9euw4YNk2ubm6b5PU1MTIyKirpz507rNLjJmt/TJ0+enDt3bvLkyXFxcY8fP543b15VVdXy5ctbqQON0fzOTpw48eXLl/Soq6qqau7cuUuWLGml1jeGjD2tR80fQqM2bzXN76mkNvxSQoC1EsnXu1AUVevbXqTqSJUQQjZs2LB///4LFy4IBAK5tbS5mtzTkpKSKVOmREZG6unptUI7m685f6bV1dX6+vo7duzgcrl2dnbPnz/fuHFj+wwwWnM6e+HChTVr1oSHhzs4OKSnp/v7+wuFwmXLlsm/1U0hS0/lt3lrapGmtu2XEgJM7vT09LhcruRvN/n5+ZK/+9AMDQ2l6igqKurq6jIl33zzzdq1a8+cOWNrayvvNjdNM3v68OHDrKwsDw8Pury6upoQoqiomJaW1qNHD/k3vxGa/2cqFAqVlJS4XC69ysrKKi8vr6Kigsfjyb/5jdP8zi5btszLy2vGjBmEkN69e5eWls6aNSs4OLiulzy1FRl7Wo+aP4RGbd5qmt9TWpt/KbWvv0AdEo/Hs7OzS0hIYEoSEhKcnJykqjk6OkrWOX36tL29vZKSEr24cePGVatWxcfH29vbt0Kbm6aZPbW0tLx///6df4wZM2bIkCF37txph+/Xbv6fqbOzc3p6Oh3ShJBHjx4JhcJ2mF6kJTpbVlYmmVVcLpe+Ai/nhjeajD2tR80fQqM2bzXN7ylpJ19KrT9vpBOiZ6xGRUWlpKQEBASoqqpmZWVRFLVkyRIvLy+6Dj0LecGCBSkpKVFRUZKzkNevX8/j8Q4dOiT6R0lJSZt1pl7N7Kmkdj4LsZk9zc7OVlNTmz9/flpa2smTJ/X19VevXt1mnWlIMzsbEhKirq6+f//+J0+enD59ukePHhMmTGizztRLlp5SFHX79u3bt2/b2dlNmjTp9u3bDx8+pMsTExO5XO66detSU1PXrVvX/qfRN7mn7eRLCQHWSrZu3WpiYsLj8fr373/x4kW6cOrUqYMHD2bqXLhwoV+/fjwez9TUNCIigik3MTGR+rUjJCSkdZvfCM3pqaR2HmBUs3t65coVBwcHPp9vbm6+Zs2aqqqq1mx8YzWns5WVlaGhoT169BAIBMbGxl988cVff/3Vus1vBFl6KvXv0cTEhFl18OBBCwsL+ozC4cOHW7ftjdOcnraTLyW8TgUAAFgJ18AAAICVEGAAAMBKCDAAAGAlBBgAALASAgwAAFgJAQYAAKyEAAMAAFZCgAF0BLt27dLS0qp1lY+PTyu/2zo0NLRv376teUTonBBg0In4+PhwOBwOh6OkpGRgYODm5hYdHc08kLCj+uGHH3bt2iV7fcmfkrm5+aJFi0pLSxt1xEWLFp09e5bZWyvHJ3QeCDDoXEaMGCESibKysn7//fchQ4b4+/t//PHHVVVVbd2uv1VUVLT4PjU1NesanNWF/ik9efJk9erV4eHhixYtknFDiqKqqqrU1NQkX6QAICcIMOhc+Hy+oaFh165d+/fv/3//93/Hjx///fffmQFKUVHRrFmz9PX1NTQ0XF1d7969S5fT58Sio6O7d++upqY2d+5csVi8YcMGQ0NDfX39NWvWMPvPzs4eO3asmpqahobGhAkTXrx4waxavXq1vr6+urr6jBkzlixZwpxko8coYWFhRkZGvXr1IoTs3bvX3t5eXV3d0NBw0qRJ+fn5dM0LFy5wOJzffvutT58+AoHAwcHh/v37kr07deqUlZWVmpoanUCS+6c/V1dXr1+//r333uPz+d27d5dsec2fkrGx8aRJkyZPnnzs2LEGW3Xq1Cl7e3s+n3/p0iXmFGJoaGhMTMzx48fpId2FCxdcXV3nz5/PHKigoIDP5587d64xf4YAf0OAQafm6urap0+fI0eOEEIoiho9enReXl5cXFxycnL//v2HDh1aWFhI18zIyPj999/j4+P3798fHR09evToZ8+eXbx4cf369UuXLr169Sq9h3HjxhUWFl68eDEhISEjI8PT05PefN++fWvWrFm/fn1ycnL37t0jIiIkm3H27NnU1NSEhISTJ08SQioqKlatWnX37t1jx45lZmb6+PhIVv7qq6+++eabGzdu6OvrjxkzprKyki4vKyv75ptv9uzZ88cff2RnZ9c6bAoKClq/fv2yZctSUlJ+/vlnWV4BpaysTB+i/lZ9/fXXYWFhqampkq+GWrRo0YQJE+g0FYlETk5OM2bM+Pnnn8vLy5kfi5GR0ZAhQxpsBkAtWv/5wQBtpdYn3Ht6elpZWVEUdfbsWQ0NjXfv3jGrevTosX37doqiQkJCVFRUiouL6fLhw4ebmpqKxWJ60cLCIiwsjKKo06dPc7nc7Oxsuvzhw4eEkOvXr1MU5eDgMG/ePGbPzs7Offr0YVplYGBQXl5ea5uvX79OCKHfVXH+/HlCyIEDB+hVBQUFysrKsbGxFEXt3LmTEJKenk6v2rp1q4GBgVSvi4uL+Xx+ZGSk7D+la9eu6erq1nz7Sc1WHTt2jFkbEhIi2TvJn/m7d+90dHToNlMU1bdv39DQ0PrbA1AXjMCgs6P+eZl6cnLymzdvdHV11f6RmZmZkZFBVzM1NVVXV6c/GxgYWFtbMy9pNDAwoM+npaamGhsbM2/gtLa21tLSSk1NJYSkpaUNGDCAOajkZ0JI7969Jd9mefv27bFjx5qYmKirq3/00UeEkOzsbGato6Mj/UFHR8fCwoLePyFERUWFeXW1UChkTvExUlNTy8vLhw4d2uDP5OTJk2pqagKBwNHRcdCgQZs3b26wVTK+1ZDP50+ZMiU6OpoQcufOnbt370qN5ABkp9jWDQBoY6mpqWZmZoSQ6upqoVB44cIFybXM9Afm7diEEHqGnuQiPZWRyUKGZInkKuq/rzFSVVVlPpeWlrq7u7u7u+/du7dLly7Z2dnDhw+vZ3IHs1upJlE13pSkrKxc106kDBkyJCIiQklJycjIiN5tg62S7EL9ZsyY0bdv32fPnkVHRw8dOrTmm6UAZIQRGHRq586du3///qeffkoI6d+/f15enqKi4nsS9PT0ZN+btbV1dnZ2Tk4OvZiSklJUVGRlZUUIsbCwoE+70W7evFnXTv78889Xr16tW7fOxcXF0tKy5kCKvt5GCPnrr78ePXpkaWkpY/N69uyprKzMTHCvh6qq6nvvvWdiYsKEYoOtqguPxxOLxZIlvXv3tre3j4yM/Pnnn6dPny7jfgBqQoBB51JeXp6Xl5ebm3vr1q21a9eOHTv2448/9vb2JoQMGzbM0dFx3Lhxp06dysrKunLlytKlS+tJmpqGDRtma2s7efLkW7duXb9+3dvbe/DgwfS5tS+//DIqKiomJubx48erV6++d++e1FiN0b17dx6Pt3nz5idPnpw4cWLVqlVSFVauXHn27NkHDx74+Pjo6enJfpeVQCBYvHjx119/vXv37oyMjKtXr0ZFRcm4bYOtqoupqem9e/fS0tJevXrFzDeZMWPGunXrxGLxJ598IuN+AGpCgEHnEh8fLxQKTU1NR4wYcf78+R9//PH48eNcLpcQwuFw4uLiBg0aNH369F69ek2cODErK0uWeXoMDodz7NgxbW3tQYMGDRs2zNzcPDY2ll41efLkoKCgRYsW9e/fn57CJxAIat1Jly5ddu3adfDgQWtr63Xr1n3zzTdSFdatW+fv729nZycSiU6cOCF58axBy5YtW7hw4fLly62srDw9PWUfSDXYqrrMnDnTwsLC3t6+S5cuiYmJdOHnn3+uqKg4adKkun4IALKo5UQ5AMibm5uboaHhnj17GrXVhQsXhgwZ8tdffzX2xuT2Jicnx9TU9MaNG/3792/rtgCLYRIHQGsoKyvbtm3b8OHDuVzu/v37z5w5k5CQ0NaNagOVlZUikWjJkiUffvgh0guaCQEG0Bro85OrV68uLy+3sLA4fPjwsGHD2rpRbSAxMXHIkCG9evU6dOhQW7cFWA+nEAEAgJUwiQMAAFgJAQYAAKyEAAMAAFZCgAEAACshwAAAgJUQYAAAwEoIMAAAYCUEGAAAsBICDAAAWOn/AbZQkTyda4lSAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABcnUlEQVR4nO3deVxUVeMG8GcYGTYBlR1FIBeEcGcJNZfEsIxSe0stFcwlTUsle93FJcXMTF83ytxec+G13DXTcEtTMXEHcUMxA3EFQQWcOb8//DE5MsAMzDDgfb6fz3xqzj333HOv6H0499x7ZUIIASIiIiIJMTN1B4iIiIgqGgMQERERSQ4DEBEREUkOAxARERFJDgMQERERSQ4DEBEREUkOAxARERFJDgMQERERSQ4DEBEREUkOAxARVSmTJ0+GTCYzdTcqtcjISHh5eZm6G0SVGgMQEQEAVqxYAZlMpvUzZsyYCu3Lw4cPMXnyZOzbt69Ct/u8wrCl7RMbG2vSvhFR+VQzdQeIqHKZOnUqvL29Ncr8/f0rtA8PHz7ElClTAADt27fXWDZhwoQKD2SLFy9G9erVNcqCg4MrtA9EZFgMQESk4Y033kBAQIBOdR8/fgyFQgEzs4obTK5WrRqqVTPcP10PHz6EtbV1iXX+9a9/wdHR0WDbJCLT4yUwItLJvn37IJPJsG7dOkyYMAG1a9eGtbU1srOzAQDr169Hy5YtYWVlBUdHR/Tu3Rs3btzQaCMyMhLVq1fHjRs30LVrV1SvXh1OTk4YNWoUlEolAODq1atwcnICAEyZMkV9yWny5MkAip8D9OOPP6q3X6tWLfTs2RPXr1/XqNO+fXv4+/vj+PHjaNu2LaytrTFu3LhyHxtd9r19+/ZFRrMKj8mz83WuXr0KmUyG2bNn4/vvv0e9evVgYWGBwMBAHDt2rMj6mzZtgr+/PywtLeHv74+NGzeWe3+IpIAjQESkISsrC7dv39Yoe3b0Y9q0aVAoFBg1ahTy8vKgUCiwYsUK9OvXD4GBgYiJicHNmzcxb948HDp0CCdOnECNGjXU6yuVSoSFhSE4OBizZ8/Gb7/9hm+++Qb16tXDkCFD4OTkhMWLF2PIkCHo1q0bunfvDgBo0qRJsX2ePn06Jk6ciPfffx8DBgzArVu3MH/+fLRt27bI9u/cuYM33ngDPXv2RO/eveHi4lLqMbl7967Gd7lcjpo1awKAXvuujzVr1uDBgwf4+OOPIZPJMGvWLHTv3h1XrlyBubk5AGDXrl1499134efnh5iYGNy5cwf9+vVDnTp1yrRNIkkRRERCiOXLlwsAWj9CCLF3714BQLz00kvi4cOH6vXy8/OFs7Oz8Pf3F48ePVKXb9u2TQAQkyZNUpdFREQIAGLq1Kka227evLlo2bKl+vutW7cEABEdHV2kn9HR0eLZf7quXr0q5HK5mD59uka9M2fOiGrVqmmUt2vXTgAQsbGxOh2Twm09//H09NR739u1ayfatWtXZBsRERHq9oQQIjU1VQAQDg4O4u7du+ryzZs3CwBi69at6rJmzZoJNzc3cf/+fXXZrl27NPpIRNpxBIiINCxcuBANGzYsdnlERASsrKzU3//8809kZmZi8uTJsLS0VJd36dIFjRo1wvbt29UTmgsNHjxY4/urr76KVatWlam/GzZsgEqlwvvvv68xcuXq6ooGDRpg7969Gpe5LCws0K9fP7228fPPP8POzk79vXD/y7LvuurRo4d6lAl4eowA4MqVKwCA9PR0nDx5EmPGjIG9vb26XqdOneDn54fc3NwybZdIKhiAiEhDUFBQiZOgn79D7Nq1awAAHx+fInUbNWqEgwcPapRZWlqq5/gUqlmzJu7du1em/l68eBFCCDRo0EDr8sLLRYVq164NhUKh1zbatm2rdRK0vvuuj7p162p8LwxDhcepcNva9tvHxweJiYll3jaRFDAAEZFenh39KQu5XG6gnjylUqkgk8nwyy+/aG37+dvXy9v/spLJZBBCFCkvnPz9vOKOk7Y2iEh/DEBEVC6enp4AgJSUFLz22msay1JSUtTL9aHPk57r1asHIQS8vb1LvHRnDPrse82aNdWXr55VOJJT1m1fvHixyLKUlJQytUkkJbwNnojKJSAgAM7OzoiNjUVeXp66/JdffkFycjK6dOmid5uFz+W5f/9+qXW7d+8OuVyOKVOmFBkdEULgzp07em9fV/rse7169XD+/HncunVLXXbq1CkcOnSoTNt2c3NDs2bNsHLlSmRlZanLd+/ejaSkpDK1SSQlHAEionIxNzfHV199hX79+qFdu3bo1auX+lZwLy8vjBw5Uu82rays4Ofnh7i4ODRs2BC1atWCv7+/1idS16tXD19++SXGjh2Lq1evomvXrrC1tUVqaio2btyIQYMGYdSoUYbY1SL02fePPvoIc+bMQVhYGPr374/MzEzExsbi5ZdfVj9LSV8xMTHo0qUL2rRpg48++gh3797F/Pnz8fLLLyMnJ8dQu0n0QuIIEBGVW2RkJOLi4pCfn4/Ro0fju+++Q7du3XDw4MEyPwfnhx9+QO3atTFy5Ej06tULP/30U7F1x4wZg59//hlmZmaYMmUKRo0ahS1btuD111/H22+/Xca90o2u++7r64v//ve/yMrKQlRUFLZs2YJVq1ahRYsWZd52586dsX79eiiVSowdOxYbNmzA8uXLdX6SN5GUyQRn1BEREZHEcASIiIiIJIcBiIiIiCSHAYiIiIgkhwGIiIiIJIcBiIiIiCSHAYiIiIgkhw9C1EKlUuHvv/+Gra2tXo/kJyIiItMRQuDBgwdwd3eHmVnJYzwMQFr8/fff8PDwMHU3iIiIqAyuX7+OOnXqlFiHAUgLW1tbAE8PoJ2dnYl7Q0RERLrIzs6Gh4eH+jxeEgYgLQove9nZ2TEAERERVTG6TF/hJGgiIiKSHAYgIiIikhwGICIiIpIcBiAiIiKSHAYgIiIikhwGICIiIpIcBiAiIiKSHAYgIiIikhwGICIiIpIcBiAiIqKqquARcGD20/+SXvgqDCKiMlKqBBJS7yLzwWM421oiyLsW5GalP4Lf1G3TCyRpC7BnGlCjLtDkfVP3pkphACIiKoOdZ9MxZWsS0rMeq8vc7C0RHe6Hzv5uWtfRNdSUpe3C9o9cvoPDV24DkCGkngNeecnB4MGJwa8SObfxn/8yAOlFJoQQpu5EZZOdnQ17e3tkZWXxZahEOirtxFXWE9uz6znaWAAy4HZOnklPjjvPpmPIj4l4/h/Pwp4s7t2iSFDRNdSUpe3C9cZsOIP7Dws0ymtYm2Nm98Ya65QnZJQ1nJm67RdGTiZweCGgevL0e8L3gDIfkCuAoEFPy8yqASHDgOpOpuuniehz/mYA0oIBiKhkz59A7+XmY9r24k9c2k5stWwU6NrMHZ38XPUaCXmWKU6OSpVAm6/2FNsnGQBXe0scHP2aep90DTVlabuw/cE/JpbY79j/30Z5QkZZw5kujNn2CyX9NPBDKKDMA2RmAGSAUAIyOQABCBUgtwAG/Aa4NTF1b7Uy5igfA1A5MQARFa+0UFKo8J+zQW298f2B1CIntmfpMxKibRsVeXI8fPkOei05Umq9tQNfQUg9B71CTULqXb3aBp6eTFrPjEdGdl6J67jZW2JiFz8MXVO2kFHWcKYLY7b9QspMBv7XF7hz6WngKSQzAxzqA+//F3D2NV3/SmDsUT59zt+8C4xIB0qVwOHLd7D55A0cvnwHSpXQa3lF9sWYCkNJaeEHAMT/f5b8XnL4AYD0rMcY8mMidp5NB/B0H6dsTSp1vcLlU7YmVdhxyHxQ+r4/Wy8h9W6Jx0vg6f4X/kasbx8SUu+WGn7w/9uYsPms1mOqy3HUZz/0Zcy2X0jOvkD/XdqX9d9VqcOPtn8/Mp77+19ROAmaJKUs81R2J2WU+BtLeSas6jsMbMo5ErqGkufpk0umbE1CJz/XUk+Iz3r25Fg4KmJMzraWetXTJ9To27Y+7QPA3dz8YpeVdhzLEs50Zcy2X1jX/tAc/QGefr92GGj0pmn6VIKS/v0QeDrKV/j3v6JG+RiAqFLIf6LCqsNXce3uQ3jWskafEC8oqmkfoCzr9ePSwoO25TWszYtMKgX++Y2luMs7hctLmrCqb5Ap7pJQadsCDHN89QklZVGWkZBnVdTJMci7FtzsLZGR9VjrP+aFl2uCvGsB0C8w6du2Pu3rqrjjWJZwpitjtv3CSt7y9L91Q4BO04BdE4DrR56WV8IApM8oX0X8IgMwAFEF03ZynbUzGUt+T9UYKZi+IxkDX/XG2Df9NNYv6whIaeGhuCCjLfwA/1wyKO7yTkm/0ZQlyJT22xO0bKvwWC/5/TL2ptzCs7P9vtyRjAFtvDG+i+7HN+/Jc79tGok+IyHPqqiTo9xMhuhwPwz5MREyQOPPpPBPOTrcT/3noE+o0bftwvZd7SxKvQxWy8Ycd3O1/zw/q7jjWJZwpitjtv3CcmsOOPkCrT4FzORAvx3AH/OBapUzJFbGUT4GINLLtexryC3IhUolcPbvbNzLzUNNGwv4u9vBzEwGG3MbeNp5al1X28nVWiHHw3xlkboqAXx3IBUXM3Mw8NV66ktR2oJDeikjILqEB13mqWhT0uUdbb/R6BpkXmvkguPX7qnDgEqIUkdf0rMeY8Geixge2rDUicpCPN3nq3dysaRvIIDSg9mI0AYlbr84ZrKn29P1+OoyEvIsU5wcO/u7YXHvFkWOsauWMK5vqNGn7cL2J7/9cql3gX35jj+mbU8uc8goSzjTlTHbfmG9Mljzu5kcaDPCJF3RRWUc5eNdYFrwLrCilCqBrUmnMfF471Lrbuu2rUgI0uWOnpK42lng8RNVsSMyAFDT2hx/TuhU5B9JXe/aMZZ5PZvhnWa19eqLjYUcuXn/BEOFXIZ8pW5H72Md7rp61oKezfBGE/dS78JxsbMAIMPN7NJDibb+ACWHoOfv9Cn8mSlpPVPfIq3P5Vh9Ry/1vdRb3HOAalqbI+b/nwNU3DHV5zjyOUBUFoV3+pUWwMt7p58+52+OAFGpCv9Rupl3GTbepdfPLcjV+F7WybPP0uUul3sPCzD6p9N4taGjxgkjI9u0EyfLMmH12fADQOfwA+g/mjV20xnUrG5R6vX5jOw8jAxtiLm/XSjyW7o2ZjJgQa8WeLOJG5rXrVniiJQ+IyHPKm5UpKLIzWQ6z1fo7O+mnuCtS6jRp+1n2y/pSdD6ji4ZYj/0Ycy2ybQq4ygfAxCVaMfpdHyy5ulvjGY6jkyqnrsuZOzJs8/6KfEv/JT4F4B/fnO8m1N6eCqrki7vVMSEVW30vRv8wWMlDl++o1NdL0frUkNJoQW9muPNJk9PqM+e2H5LysDGkzc05qMUdwJ+/oRYWZ4EXVb6hpqytN+6gSNaN3Asto4hQoYx98PYx4hMxxAB3JAYgKhYO07/jWFrT+i93tm/s+H/zBPYTXXrauHclchW2ucklUfhqWLgq08v7+gzYdXN3rLCAqHudEtNzraWCKnnUGKYKe6SReGJLaSeA8Z18TPaSAiVjseUTKUyjfIxAJFWO8+m45M1+ocfAEi4cgc9m/7z3bG6hYF6pZ/CO7E2n/pb53W0BRmBorfDP/sbi7bLOyVNWI0O9yt1wmpFC3nJET8n3tB5gmxZw0whnoCJpKuy/P1nAKIiCufslNWmU3/j9Qbp/5z8TTjNXgC4m1uAWjaKEh8CV/iagOffZ1UYZEr6jUXf32g6+7thZGhDfPvbBYPuayF977pys7fEK/Ucynx9vrL8Y0ZEpA8GICrCEHN2nn0mze1c483B0VXXZu5YfuhqsaMbhaM1Yf7FB5mSTvL6hoBhr9XH2oRrOk3u1lVpl+WKW6cw2FS26/NERMbEAERFGGLOzrPPv6kMT28tfON4abfYVtRoRuGzW0q7zbtQYZiR/f/ojjalXZZ7nra5OpXp+jwRkTExAFERxQUWodRtLk9hvcIgpc9D7Qzt+afsVqaTe3EjLjWszQFA65yj1xq5qF9p4VHTGo1cbHH3Ub5Ol+VaetbUeLhicfvOS1pEJAV8EKIWUn8QYkkPrJKZ34ZMXvxlG6G0gCh4egvu2oGvqE+kujzUTl+v+7mgoYstqpkBc+MvFTt3xVQPydOVtgfeAag0QY2IqKrQ5/zNAKSF1AMQUHpgsbeqhuxHT/R6oqe2p7y62lmgV1BdeDna4OrtXHz720Wd+/h8wOITZImIpI0BqJwYgJ4qKVQAKNMj9Ut7vP/Os+mYvCWpxKc3FxewyvqWeCIiejEwAJUTA9A/SgoVxhp1UaoEFuy5qHU0qCpc1mIQIyIyDQagcmIA0p0xT/ZV8bJWVewzEdGLggGonBiAKo+qNJpS3Bvvq8KoFRHRi4Bvg6cXRlW5JbukN94XvpLj2YdDEhGRaZmZugNEL4LSnp4t8M/DIYmIyPQYgIgMQNenZxviKdtERFR+DEBEBqDr6z4qw2tBiIiIAYjIIApf91Hc7B4Znt4NVviUZyIiMi0GICIDkJvJ1A+IfD4EFX4vfOs6ERGZHgMQkYEUvtzU1V7zMpervSVvgSciqmR4GzyRAWl7C3tlfnYREZFUMQARGVhVeXYREZGU8RIYERERSQ4DEBEREUmOyQPQwoUL4eXlBUtLSwQHByMhIaHE+nPnzoWPjw+srKzg4eGBkSNH4vFjzYfL3bhxA71794aDgwOsrKzQuHFj/Pnnn8bcDSIiIqpCTDoHKC4uDlFRUYiNjUVwcDDmzp2LsLAwpKSkwNnZuUj9NWvWYMyYMVi2bBlatWqFCxcuIDIyEjKZDHPmzAEA3Lt3D61bt0aHDh3wyy+/wMnJCRcvXkTNmjUreveIiIiokjLp2+CDg4MRGBiIBQsWAABUKhU8PDzw6aefYsyYMUXqDxs2DMnJyYiPj1eXff755zh69CgOHjwIABgzZgwOHTqE33//vcz94tvgiYiIqh59zt8muwSWn5+P48ePIzQ09J/OmJkhNDQUhw8f1rpOq1atcPz4cfVlsitXrmDHjh1488031XW2bNmCgIAAvPfee3B2dkbz5s2xZMmSEvuSl5eH7OxsjQ8RERG9uEwWgG7fvg2lUgkXFxeNchcXF2RkZGhd54MPPsDUqVPRpk0bmJubo169emjfvj3GjRunrnPlyhUsXrwYDRo0wK+//oohQ4bgs88+w8qVK4vtS0xMDOzt7dUfDw8Pw+wkERERVUomnwStj3379mHGjBlYtGgREhMTsWHDBmzfvh3Tpk1T11GpVGjRogVmzJiB5s2bY9CgQRg4cCBiY2OLbXfs2LHIyspSf65fv14Ru0NEREQmYrJJ0I6OjpDL5bh586ZG+c2bN+Hq6qp1nYkTJ6JPnz4YMGAAAKBx48bIzc3FoEGDMH78eJiZmcHNzQ1+fn4a6/n6+uLnn38uti8WFhawsLAo5x4RERFRVWGyESCFQoGWLVtqTGhWqVSIj49HSEiI1nUePnwIMzPNLsvlcgBA4Vzu1q1bIyUlRaPOhQsX4OnpacjuExERURVm0tvgo6KiEBERgYCAAAQFBWHu3LnIzc1Fv379AAB9+/ZF7dq1ERMTAwAIDw/HnDlz0Lx5cwQHB+PSpUuYOHEiwsPD1UFo5MiRaNWqFWbMmIH3338fCQkJ+P777/H999+bbD+JiIiocjFpAOrRowdu3bqFSZMmISMjA82aNcPOnTvVE6PT0tI0RnwmTJgAmUyGCRMm4MaNG3ByckJ4eDimT5+urhMYGIiNGzdi7NixmDp1Kry9vTF37lx8+OGHFb5/REREVDmZ9DlAlRWfA0RERFT1VInnABERERGZCgMQERERSQ4DEBEREUkOAxARERFJDgMQERERSQ4DEBEREUkOAxARERFJDgMQERERSQ4DEBEREUkOAxARERFJDgMQERERSQ4DEBEREUkOAxARERFJDgMQERERSQ4DEBEREUkOAxARERFJDgMQERERSQ4DEBEREUkOAxARERFJDgMQERERSQ4DEBEREUkOAxARERFJDgMQERERSQ4DEBEREUkOAxARERFJDgMQERERSQ4DEBEREUkOAxARERFJDgMQERERSQ4DEBEREUkOAxARERFJDgMQERERSQ4DEBEREUkOAxARERFJDgMQERERSQ4DEBEREUkOAxARERFJDgMQERERSQ4DEBEREUkOAxARERFJDgMQERERSQ4DEBEREUkOAxARERFJDgMQERERSQ4DEBEREUkOAxARERFJDgMQERERSQ4DEBEREUkOAxARERFJTqUIQAsXLoSXlxcsLS0RHByMhISEEuvPnTsXPj4+sLKygoeHB0aOHInHjx9rrTtz5kzIZDKMGDHCCD0nIiKiqsjkASguLg5RUVGIjo5GYmIimjZtirCwMGRmZmqtv2bNGowZMwbR0dFITk7G0qVLERcXh3HjxhWpe+zYMXz33Xdo0qSJsXeDiIiIqhCTB6A5c+Zg4MCB6NevH/z8/BAbGwtra2ssW7ZMa/0//vgDrVu3xgcffAAvLy+8/vrr6NWrV5FRo5ycHHz44YdYsmQJatasWRG7QkRERFWESQNQfn4+jh8/jtDQUHWZmZkZQkNDcfjwYa3rtGrVCsePH1cHnitXrmDHjh148803NeoNHToUXbp00Wi7OHl5ecjOztb4EBER0Yurmik3fvv2bSiVSri4uGiUu7i44Pz581rX+eCDD3D79m20adMGQgg8efIEgwcP1rgEtm7dOiQmJuLYsWM69SMmJgZTpkwp+44QERFRlWLyS2D62rdvH2bMmIFFixYhMTERGzZswPbt2zFt2jQAwPXr1zF8+HCsXr0alpaWOrU5duxYZGVlqT/Xr1835i4QERGRiZl0BMjR0RFyuRw3b97UKL958yZcXV21rjNx4kT06dMHAwYMAAA0btwYubm5GDRoEMaPH4/jx48jMzMTLVq0UK+jVCpx4MABLFiwAHl5eZDL5RptWlhYwMLCwsB7R0RERJWVSUeAFAoFWrZsifj4eHWZSqVCfHw8QkJCtK7z8OFDmJlpdrsw0Agh0LFjR5w5cwYnT55UfwICAvDhhx/i5MmTRcIPERERSY9JR4AAICoqChEREQgICEBQUBDmzp2L3Nxc9OvXDwDQt29f1K5dGzExMQCA8PBwzJkzB82bN0dwcDAuXbqEiRMnIjw8HHK5HLa2tvD399fYho2NDRwcHIqUExERkTSZPAD16NEDt27dwqRJk5CRkYFmzZph586d6onRaWlpGiM+EyZMgEwmw4QJE3Djxg04OTkhPDwc06dPN9UuEBERURUjE0IIU3eissnOzoa9vT2ysrJgZ2dn6u4QERGRDvQ5f1e5u8CIiIiIyosBiIiIiCSHAYiIiIgkhwGIiIiIJIcBiIiIiCSHAYiIiIgkhwGIiIiIJIcBiIiIiCSHAYiIiIgkhwGIiIiIJIcBiIiIiCSHAYiIiIgkhwGIiIiIJIcBiIiIiCSHAYiIiIgkhwGIiIiIJIcBiIiIiCSHAYiIiIgkhwGIiIiIJIcBiIiIiCSHAYiIiIgkhwGIiIiIJIcBiIiIiCSHAYiIiIgkhwGIiIiIJIcBiIiIiCSHAYiIiIgkhwGIiIiIJIcBiIiIiCSHAYiIiIgkhwGIiIiIJIcBiIiIiCSHAYiIiIgkhwGIiIiIJIcBiIiIiCSHAYiIiIgkR+8A5OXlhalTpyItLc0Y/SEiIiIyOr0D0IgRI7Bhwwa89NJL6NSpE9atW4e8vDxj9I2IiIjIKMoUgE6ePImEhAT4+vri008/hZubG4YNG4bExERj9JGIiIjIoGRCCFGeBgoKCrBo0SKMHj0aBQUFaNy4MT777DP069cPMpnMUP2sUNnZ2bC3t0dWVhbs7OxM3R0iIiLSgT7n72pl3UhBQQE2btyI5cuXY/fu3XjllVfQv39//PXXXxg3bhx+++03rFmzpqzNExERERmN3gEoMTERy5cvx9q1a2FmZoa+ffvi22+/RaNGjdR1unXrhsDAQIN2lIiIiMhQ9A5AgYGB6NSpExYvXoyuXbvC3Ny8SB1vb2/07NnTIB0kIiIiMjS9A9CVK1fg6elZYh0bGxssX768zJ0iIiIiMia97wLLzMzE0aNHi5QfPXoUf/75p0E6RURERGRMegegoUOH4vr160XKb9y4gaFDhxqkU0RERETGpHcASkpKQosWLYqUN2/eHElJSQbpFBEREZEx6R2ALCwscPPmzSLl6enpqFatzHfVExEREVUYvQPQ66+/jrFjxyIrK0tddv/+fYwbNw6dOnUyaOeIiIiIjEHvIZvZs2ejbdu28PT0RPPmzQEAJ0+ehIuLC1atWmXwDhIREREZmt4jQLVr18bp06cxa9Ys+Pn5oWXLlpg3bx7OnDkDDw+PMnVi4cKF8PLygqWlJYKDg5GQkFBi/blz58LHxwdWVlbw8PDAyJEj8fjxY/XymJgYBAYGwtbWFs7OzujatStSUlLK1DciIiJ68ZRp0o6NjQ0GDRpkkA7ExcUhKioKsbGxCA4Oxty5cxEWFoaUlBQ4OzsXqb9mzRqMGTMGy5YtQ6tWrXDhwgVERkZCJpNhzpw5AID9+/dj6NChCAwMxJMnTzBu3Di8/vrrSEpKgo2NjUH6TURERFVXmV+GmpSUhLS0NOTn52uUv/3223q1ExwcjMDAQCxYsAAAoFKp4OHhgU8//RRjxowpUn/YsGFITk5GfHy8uuzzzz/H0aNHcfDgQa3buHXrFpydnbF//360bdu21D7xZahERERVj1FfhnrlyhV069YNZ86cgUwmQ2F+Knzzu1Kp1Lmt/Px8HD9+HGPHjlWXmZmZITQ0FIcPH9a6TqtWrfDjjz8iISEBQUFBuHLlCnbs2IE+ffoUu53CCdu1atXSujwvLw95eXnq79nZ2TrvAxEREVU9es8BGj58OLy9vZGZmQlra2ucO3cOBw4cQEBAAPbt26dXW7dv34ZSqYSLi4tGuYuLCzIyMrSu88EHH2Dq1Klo06YNzM3NUa9ePbRv3x7jxo3TWl+lUmHEiBFo3bo1/P39tdaJiYmBvb29+lPWuUxERERUNegdgA4fPoypU6fC0dERZmZmMDMzQ5s2bRATE4PPPvvMGH3UsG/fPsyYMQOLFi1CYmIiNmzYgO3bt2PatGla6w8dOhRnz57FunXrim2z8Lb+wo+2J10TERHRi0PvS2BKpRK2trYAAEdHR/z999/w8fGBp6en3ndaOTo6Qi6XF3mw4s2bN+Hq6qp1nYkTJ6JPnz4YMGAAAKBx48bIzc3FoEGDMH78eJiZ/ZPphg0bhm3btuHAgQOoU6dOsf2wsLCAhYWFXn0nIiKiqkvvESB/f3+cOnUKwNMJzLNmzcKhQ4cwdepUvPTSS3q1pVAo0LJlS40JzSqVCvHx8QgJCdG6zsOHDzVCDgDI5XIAUM9HEkJg2LBh2LhxI/bs2QNvb2+9+kVEREQvNr1HgCZMmIDc3FwAwNSpU/HWW2/h1VdfhYODA+Li4vTuQFRUFCIiIhAQEICgoCDMnTsXubm56NevHwCgb9++qF27NmJiYgAA4eHhmDNnDpo3b47g4GBcunQJEydORHh4uDoIDR06FGvWrMHmzZtha2urnk9kb28PKysrvftIRERELxa9A1BYWJj6/+vXr4/z58/j7t27qFmzpvpOMH306NEDt27dwqRJk5CRkYFmzZph586d6onRaWlpGiM+EyZMgEwmw4QJE3Djxg04OTkhPDwc06dPV9dZvHgxAKB9+/Ya21q+fDkiIyP17iMRERG9WPR6DlBBQQGsrKxw8uTJYu+oehHwOUBERERVjz7nb73mAJmbm6Nu3bp6PeuHiIiIqLLRexL0+PHjMW7cONy9e9cY/SEiIiIyOr3nAC1YsACXLl2Cu7s7PD09i7xbKzEx0WCdIyIiIjIGvQNQ165djdANIiIioopT5pehvsg4CZqIiKjqMdokaCIiIqIXgd6XwMzMzEp83g/vECMiIqLKTu8AtHHjRo3vBQUFOHHiBFauXIkpU6YYrGNERERExmKwOUBr1qxBXFwcNm/ebIjmTIpzgIiIiKoek8wBeuWVVzReakpERERUWRkkAD169Aj/+c9/ULt2bUM0R0RERGRUes8Bev6lp0IIPHjwANbW1vjxxx8N2jkiIiIiY9A7AH377bcaAcjMzAxOTk4IDg5GzZo1Ddo5IiIiImPQOwBFRkYaoRtEREREFUfvOUDLly/H+vXri5SvX78eK1euNEiniIiIiIxJ7wAUExMDR0fHIuXOzs6YMWOGQTpFREREZEx6B6C0tDR4e3sXKff09ERaWppBOkVERERkTHoHIGdnZ5w+fbpI+alTp+Dg4GCQThEREREZk94BqFevXvjss8+wd+9eKJVKKJVK7NmzB8OHD0fPnj2N0UciIiIig9L7LrBp06bh6tWr6NixI6pVe7q6SqVC3759OQeIiIiIqoQyvwvs4sWLOHnyJKysrNC4cWN4enoaum8mw3eBERERVT36nL/1HgEq1KBBAzRo0KCsqxMRERGZjN5zgN5991189dVXRcpnzZqF9957zyCdIiIiIjImvQPQgQMH8OabbxYpf+ONN3DgwAGDdIqIiIjImPQOQDk5OVAoFEXKzc3NkZ2dbZBOERERERmT3gGocePGiIuLK1K+bt06+Pn5GaRTRERERMak9yToiRMnonv37rh8+TJee+01AEB8fDzWrFmDn376yeAdJCIiIjI0vQNQeHg4Nm3ahBkzZuCnn36ClZUVmjZtij179qBWrVrG6CMRERGRQZX5OUCFsrOzsXbtWixduhTHjx+HUqk0VN9Mhs8BIiIiqnr0OX/rPQeo0IEDBxAREQF3d3d88803eO2113DkyJGyNkdERERUYfS6BJaRkYEVK1Zg6dKlyM7Oxvvvv4+8vDxs2rSJE6CJiIioytB5BCg8PBw+Pj44ffo05s6di7///hvz5883Zt+IiIiIjELnEaBffvkFn332GYYMGcJXYBAREVGVpvMI0MGDB/HgwQO0bNkSwcHBWLBgAW7fvm3MvhEREREZhc4B6JVXXsGSJUuQnp6Ojz/+GOvWrYO7uztUKhV2796NBw8eGLOfRERERAZTrtvgU1JSsHTpUqxatQr3799Hp06dsGXLFkP2zyR4GzwREVHVUyG3wQOAj48PZs2ahb/++gtr164tT1NEREREFabcD0J8EXEEiIiIqOqpsBEgIiIioqqIAYiIiIgkhwGIiIiIJIcBiIiIiCSHAYiIiIgkhwGIiIiIJIcBiIiIiCSHAYiIiIgkhwGIiIiIJIcBiIiIiCSHAYiIiIgkp1IEoIULF8LLywuWlpYIDg5GQkJCifXnzp0LHx8fWFlZwcPDAyNHjsTjx4/L1SYRERFJh8kDUFxcHKKiohAdHY3ExEQ0bdoUYWFhyMzM1Fp/zZo1GDNmDKKjo5GcnIylS5ciLi4O48aNK3ObREREJC0mfxt8cHAwAgMDsWDBAgCASqWCh4cHPv30U4wZM6ZI/WHDhiE5ORnx8fHqss8//xxHjx7FwYMHy9Tm8/g2eCIioqqnyrwNPj8/H8ePH0doaKi6zMzMDKGhoTh8+LDWdVq1aoXjx4+rL2lduXIFO3bswJtvvlnmNvPy8pCdna3xISIiohdXNVNu/Pbt21AqlXBxcdEod3Fxwfnz57Wu88EHH+D27dto06YNhBB48uQJBg8erL4EVpY2Y2JiMGXKFAPsEREREVUFJp8DpK99+/ZhxowZWLRoERITE7FhwwZs374d06ZNK3ObY8eORVZWlvpz/fp1A/aYiIiIKhuTjgA5OjpCLpfj5s2bGuU3b96Eq6ur1nUmTpyIPn36YMCAAQCAxo0bIzc3F4MGDcL48ePL1KaFhQUsLCwMsEdERERUFZh0BEihUKBly5YaE5pVKhXi4+MREhKidZ2HDx/CzEyz23K5HAAghChTm0RERCQtJh0BAoCoqChEREQgICAAQUFBmDt3LnJzc9GvXz8AQN++fVG7dm3ExMQAAMLDwzFnzhw0b94cwcHBuHTpEiZOnIjw8HB1ECqtTSIiIpI2kwegHj164NatW5g0aRIyMjLQrFkz7Ny5Uz2JOS0tTWPEZ8KECZDJZJgwYQJu3LgBJycnhIeHY/r06Tq3SURERNJm8ucAVUZ8DhAREVHVU2WeA0RERERkCgxAREREJDkMQERERCQ5DEBEREQkOQxAREREJDkMQERERCQ5DEBEREQkOQxAREREJDkMQERERCQ5DEBEREQkOQxAREREJDkMQERERCQ5DEBEREQkOQxAREREJDkMQERERCQ51UzdASJTUaoEElLvIvPBYzjbWiLIuxbkZjJTd4uIiCoAAxBJ0s6z6ZiyNQnpWY/VZW72logO90NnfzcT9oyIiCoCL4GR5Ow8m44hPyZqhB8AyMh6jCE/JmLn2XQT9YyIiCoKAxBJilIlMGVrEoSWZYVlU7YmQanSVoOIiF4UDEAkKQmpd4uM/DxLAEjPeoyE1LsV1ykiIqpwDEAkKZkPig8/ZalHRERVEwMQSYqzraVB6xERUdXEAESSEuRdC272lijuZncZnt4NFuRdqyK7RUREFYwBiCRFbiZDdLgfABQJQYXfo8P9+DwgIqIXHAMQSU5nfzcs7t0Crvaal7lc7S2xuHcLPgeIiEgC+CBEkqTO/m7o5OfKJ0ETEUkUAxBJltxMhpB6DqbuBhERmQAvgREREZHkMAARERGR5DAAERERkeQwABEREZHkMAARERGR5DAAERERkeQwABEREZHkMAARERGR5DAAERERkeQwABEREZHkMAARERGR5DAAERERkeQwABEREZHkMAARERGR5DAAERERkeQwABEREZHkMAARERGR5DAAERERkeQwABEREZHkMAARERGR5DAAERERkeQwABEREZHkMAARERGR5FSKALRw4UJ4eXnB0tISwcHBSEhIKLZu+/btIZPJiny6dOmirpOTk4Nhw4ahTp06sLKygp+fH2JjYytiV4iIiKgKMHkAiouLQ1RUFKKjo5GYmIimTZsiLCwMmZmZWutv2LAB6enp6s/Zs2chl8vx3nvvqetERUVh586d+PHHH5GcnIwRI0Zg2LBh2LJlS0XtFhEREVViJg9Ac+bMwcCBA9GvXz/1SI21tTWWLVumtX6tWrXg6uqq/uzevRvW1tYaAeiPP/5AREQE2rdvDy8vLwwaNAhNmzYtcWSJiIiIpMOkASg/Px/Hjx9HaGiouszMzAyhoaE4fPiwTm0sXboUPXv2hI2NjbqsVatW2LJlC27cuAEhBPbu3YsLFy7g9ddf19pGXl4esrOzNT5ERET04qpmyo3fvn0bSqUSLi4uGuUuLi44f/58qesnJCTg7NmzWLp0qUb5/PnzMWjQINSpUwfVqlWDmZkZlixZgrZt22ptJyYmBlOmTCn7jhARVUFKpRIFBQWm7gaRzszNzSGXyw3SlkkDUHktXboUjRs3RlBQkEb5/PnzceTIEWzZsgWenp44cOAAhg4dCnd3d43RpkJjx45FVFSU+nt2djY8PDyM3n8iIlMQQiAjIwP37983dVeI9FajRg24urpCJpOVqx2TBiBHR0fI5XLcvHlTo/zmzZtwdXUtcd3c3FysW7cOU6dO1Sh/9OgRxo0bh40bN6rvDGvSpAlOnjyJ2bNnaw1AFhYWsLCwKOfeEBFVDYXhx9nZGdbW1uU+kRBVBCEEHj58qL5Jys3NrVztmTQAKRQKtGzZEvHx8ejatSsAQKVSIT4+HsOGDStx3fXr1yMvLw+9e/fWKC8oKEBBQQHMzDSnN8nlcqhUKoP2n4ioqlEqlerw4+DgYOruEOnFysoKAJCZmQlnZ+dyXQ4z+SWwqKgoREREICAgAEFBQZg7dy5yc3PRr18/AEDfvn1Ru3ZtxMTEaKy3dOlSdO3atchfYDs7O7Rr1w5ffPEFrKys4Onpif379+O///0v5syZU2H7RURUGRXO+bG2tjZxT4jKpvBnt6CgoGoHoB49euDWrVuYNGkSMjIy0KxZM+zcuVM9MTotLa3IaE5KSgoOHjyIXbt2aW1z3bp1GDt2LD788EPcvXsXnp6emD59OgYPHmz0/SEiqgp42YuqKkP97MqEEMIgLb1AsrOzYW9vj6ysLNjZ2Zm6O0REBvP48WOkpqbC29sblpaWpu4Okd5K+hnW5/xt8gchEhERVSWTJ09Gs2bNTN0NKicGICIiqhIiIyO1vgvy0qVLRtumTCbDpk2bNMpGjRqF+Ph4o22TKobJ5wAREVHVpFQJJKTeReaDx3C2tUSQdy3IzYw7t6hz585Yvny5RpmTk5PG9/z8fCgUCqP1oXr16qhevXq52igoKIC5ubmBekRlwREgIiLS286z6Wjz1R70WnIEw9edRK8lR9Dmqz3YeTbdqNu1sLDQeB+kq6srOnbsiGHDhmHEiBFwdHREWFgYAGD//v0ICgqChYUF3NzcMGbMGDx58kTdVvv27fHZZ5/h3//+t/o9k5MnT1Yv9/LyAgB069YNMplM/V3bJbAffvgBvr6+sLS0RKNGjbBo0SL1sqtXr0ImkyEuLg7t2rWDpaUlVq9ebZTjQ7pjACIiIr3sPJuOIT8mIj3rsUZ5RtZjDPkx0eghSJuVK1dCoVDg0KFDiI2NxY0bN/Dmm28iMDAQp06dwuLFi7F06VJ8+eWXRdazsbHB0aNHMWvWLEydOhW7d+8GABw7dgwAsHz5cqSnp6u/P2/16tWYNGkSpk+fjuTkZMyYMQMTJ07EypUrNeqNGTMGw4cPR3JysjqkkenwEhgREelMqRKYsjUJ2m4fFgBkAKZsTUInP1ejXA7btm2bxuWnN954AwDQoEEDzJo1S10+fvx4eHh4YMGCBZDJZGjUqBH+/vtvjB49GpMmTVI/XqVJkyaIjo5Wt7FgwQLEx8ejU6dO6ktrha9eKE50dDS++eYbdO/eHQDg7e2NpKQkfPfdd4iIiFDXGzFihLoOmR4DEBER6Swh9W6RkZ9nCQDpWY+RkHoXIfUM/6TpDh06YPHixervNjY26NWrF1q2bKlRLzk5GSEhIRrPjGndujVycnLw119/oW7dugCeBqBnubm5qV+1oIvc3FxcvnwZ/fv3x8CBA9XlT548gb29vUbdgIAAndsl42MAIiIinWU+KD78lKWevmxsbFC/fn2t5WXx/ERkmUym12uTcnJyAABLlixBcHCwxrLnn1Jc1j6ScTAAERGRzpxtdXt4oq71jMXX1xc///wzhBDqUaBDhw7B1tYWderU0bkdc3NzKJXKYpe7uLjA3d0dV65cwYcffljuflPF4SRoIiLSWZB3LbjZW6K42T0yAG72T2+JN6VPPvkE169fx6efforz589j8+bNiI6ORlRUVJHXK5XEy8sL8fHxyMjIwL1797TWmTJlCmJiYvCf//wHFy5cwJkzZ7B8+XK+f7KSYwAiIiKdyc1kiA73A4AiIajwe3S4n9GfB1Sa2rVrY8eOHUhISEDTpk0xePBg9O/fHxMmTNCrnW+++Qa7d++Gh4cHmjdvrrXOgAED8MMPP2D58uVo3Lgx2rVrhxUrVsDb29sQu0JGwneBacF3gRHRi8pQ7wLbeTYdU7YmaUyIdrO3RHS4Hzr7uxmiq0RaGepdYJwDREREeuvs74ZOfq4V/iRoIkNhACIiojKRm8mMcqs7UUXgHCAiIiKSHAYgIiIikhwGICIiIpIcBiAiIiKSHAYgIiIikhwGICIiIpIcBiAiIpKEq1evQiaT4eTJkzqvs2LFCtSoUcPk/TA2mUyGTZs2Aaic/TMGBiAiIqoyrl+/jo8++gju7u5QKBTw9PTE8OHDcefOnVLX9fDwQHp6Ovz9/XXeXo8ePXDhwoXydLnK0fc4RUZGomvXrsbtlBEwABERUZVw5coVBAQE4OLFi1i7di0uXbqE2NhYxMfHIyQkBHfv3i123fz8fMjlcri6uqJaNd2fAWxlZQVnZ2dDdN/oCgoKDNJOWY6TIeTn51fo9hiAiIio7AoeAQdmP/2vkQ0dOhQKhQK7du1Cu3btULduXbzxxhv47bffcOPGDYwfP15d18vLC9OmTUPfvn1hZ2eHQYMGab20s2XLFjRo0ACWlpbo0KEDVq5cCZlMhvv37wMoegls8uTJaNasGVatWgUvLy/Y29ujZ8+eePDggbrOzp070aZNG9SoUQMODg546623cPnyZb32tbD/vXr1go2NDWrXro2FCxdq1JHJZFi8eDHefvtt2NjYYPr06QCAzZs3o0WLFrC0tMRLL72EKVOm4MmTJ+r1Ll68iLZt28LS0hJ+fn7YvXu3RrvajtO5c+fw1ltvwc7ODra2tnj11Vdx+fJlTJ48GStXrsTmzZshk8kgk8mwb98+AMCZM2fw2muvwcrKCg4ODhg0aBBycnLUbRaOHE2fPh3u7u7w8fHR6xiVFwMQERGVXdIWYM80IHmrUTdz9+5d/Prrr/jkk09gZWWlsczV1RUffvgh4uLi8Oz7vWfPno2mTZvixIkTmDhxYpE2U1NT8a9//Qtdu3bFqVOn8PHHH2uEqOJcvnwZmzZtwrZt27Bt2zbs378fM2fOVC/Pzc1FVFQU/vzzT8THx8PMzAzdunWDSqXSa5+//vprdf/HjBmD4cOHFwkrkydPRrdu3XDmzBl89NFH+P3339G3b18MHz4cSUlJ+O6777BixQp1OFKpVOjevTsUCgWOHj2K2NhYjB49usR+3LhxA23btoWFhQX27NmD48eP46OPPsKTJ08watQovP/+++jcuTPS09ORnp6OVq1aITc3F2FhYahZsyaOHTuG9evX47fffsOwYcM02o6Pj0dKSgp2796Nbdu26XV8yk1QEVlZWQKAyMrKMnVXiIgM6tGjRyIpKUk8evTIMA2u7iFEtJ0Qa3oapr1iHDlyRAAQGzdu1Lp8zpw5AoC4efOmEEIIT09P0bVrV406qampAoA4ceKEEEKI0aNHC39/f40648ePFwDEvXv3hBBCLF++XNjb26uXR0dHC2tra5Gdna0u++KLL0RwcHCxfb9165YAIM6cOaO1H9p4enqKzp07a5T16NFDvPHGG+rvAMSIESM06nTs2FHMmDFDo2zVqlXCzc1NCCHEr7/+KqpVqyZu3LihXv7LL79oHNvn+zd27Fjh7e0t8vPztfY1IiJCvPPOOxpl33//vahZs6bIyclRl23fvl2YmZmJjIwM9XouLi4iLy+v2OOgTUk/w/qcv/kyVCIi0l1OJnB4IaD6/0sql+Of/vfSb8Cv/z96YlYNCBkGVHcy+ObFMyM8pQkICChxeUpKCgIDAzXKgoKCSm3Xy8sLtra26u9ubm7IzMxUf7948SImTZqEo0eP4vbt2+qRn7S0NL0mYIeEhBT5PnfuXI2y5/fx1KlTOHTokHrEBwCUSiUeP36Mhw8fIjk5GR4eHnB3dy92O887efIkXn31VZibm+vc9+TkZDRt2hQ2NjbqstatW0OlUiElJQUuLi4AgMaNG0OhUOjcriExABERke4eZABHFgPKPEBmBkD2tFylBI4sAoQKkFsA/u8aNADVr18fMpkMycnJ6NatW5HlycnJqFmzJpyc/tnmsydfQ3o+CMhkMo3LW+Hh4fD09MSSJUvg7u4OlUoFf39/o0zyfX4fc3JyMGXKFHTv3r1IXUtLyzJt4/lLjoZkrD8jXXAOEBER6c6tCfDxfsCx4dPvQqn5X8eGT5e7NTHoZh0cHNCpUycsWrQIjx5pTrjOyMjA6tWr0aNHD8hkMp3b9PHxwZ9//qlRduzYsXL1886dO0hJScGECRPQsWNH+Pr64t69e2Vq68iRI0W++/r6lrhOixYtkJKSgvr16xf5mJmZwdfXF9evX0d6enqx23lekyZN8Pvvvxd7l5lCoYBSqdQo8/X1xalTp5Cbm6suO3ToEMzMzCp8snNxGICIiEg/zr5A/13al/Xf9XS5ESxYsAB5eXkICwvDgQMHcP36dezcuROdOnVC7dq1NS776OLjjz/G+fPnMXr0aFy4cAH/+9//sGLFCgDQK0g9q2bNmnBwcMD333+PS5cuYc+ePYiKiipTW4cOHcKsWbNw4cIFLFy4EOvXr8fw4cNLXGfSpEn473//iylTpuDcuXNITk7GunXrMGHCBABAaGgoGjZsiIiICJw6dQq///57qRO/hw0bhuzsbPTs2RN//vknLl68iFWrViElJQXA00uCp0+fRkpKCm7fvo2CggJ8+OGHsLS0REREBM6ePYu9e/fi008/RZ8+fdSXv0yNAYiIiPR37Y+nl7ueJVTAtcNG22SDBg3w559/4qWXXsL777+PevXqYdCgQejQoQMOHz6MWrVq6dWet7c3fvrpJ2zYsAFNmjTB4sWL1WHAwsKiTH00MzPDunXrcPz4cfj7+2PkyJH4+uuvy9TW559/jj///BPNmzfHl19+iTlz5iAsLKzEdcLCwrBt2zbs2rULgYGBeOWVV/Dtt9/C09NT3b+NGzfi0aNHCAoKwoABA0oNjg4ODtizZw9ycnLQrl07tGzZEkuWLFFfChw4cCB8fHwQEBAAJycnHDp0CNbW1vj1119x9+5dBAYG4l//+hc6duyIBQsWlOlYGINM6DOjTCKys7Nhb2+PrKws2NnZmbo7REQG8/jxY6SmpsLb27vMc0IAABs/Bk6tA+qGAJ2mAbsmANePAE17Ad1iDdfhCjZ9+nTExsbi+vXrJu2Hl5cXRowYgREjRpi0H5VRST/D+py/OQmaiIj059YccPIFWn0KmMmBfjuAP+YD1coRqkxg0aJFCAwMhIODAw4dOoSvv/66yLNq6MXEAERERPp7ZbDmdzM50GaESbpSHhcvXsSXX36Ju3fvom7duvj8888xduxYU3eLKgADEBERSda3336Lb7/91tTdKOLq1aum7sILj5OgiYiISHIYgIiIiEhyGICIiIhIchiAiIiISHIYgIiIiEhyGICIiIhIchiAiIiIALRv395kT17et28fZDIZ7t+/b5LtP+/q1auQyWQ4efIkgMrXP0NgACIioiqhuICyYsUK1KhRo8L78yKGguK0atUK6enpsLe316m+KcOkrhiAiIiIXlAFBQUGaUehUMDV1RUymcwg7ekqPz/faG0zABERkV6uZV9D0p2kYj/Xsq+ZtH+RkZHo2rUrpkyZAicnJ9jZ2WHw4MEaJ9Pc3Fz07dsX1atXh5ubG7755psi7axatQoBAQGwtbWFq6srPvjgA2RmZgJ4eomoQ4cOAICaNWtCJpMhMjISAKBSqRATEwNvb29YWVmhadOm+OmnnzTa3rFjBxo2bAgrKyt06NBBpyc/y2QyLF68GG+88QasrKzw0ksvabRbeNkqLi4O7dq1g6WlJVavXg0A+OGHH+Dr6wtLS0s0atQIixYt0mg7ISEBzZs3h6WlJQICAnDixAmN5dpGuw4dOoT27dvD2toaNWvWRFhYGO7du4fIyEjs378f8+bNg0wmg0wmU+/f/v37ERQUBAsLC7i5uWHMmDF48uSJus327dtj2LBhGDFiBBwdHREWFlbqcSkrvgqDiIh0di37Gt7a+Fap9bZ12wZPO88K6JF28fHxsLS0xL59+3D16lX069cPDg4OmD59OgDgiy++wP79+7F582Y4Oztj3LhxSExMRLNmzdRtFBQUYNq0afDx8UFmZiaioqIQGRmJHTt2wMPDAz///DPeffddpKSkwM7ODlZWVgCAmJgY/Pjjj4iNjUWDBg1w4MAB9O7dG05OTmjXrh2uX7+O7t27Y+jQoRg0aBD+/PNPfP755zrt18SJEzFz5kzMmzcPq1atQs+ePXHmzBn4+vqq64wZMwbffPONOtCsXr0akyZNwoIFC9C8eXOcOHECAwcOhI2NDSIiIpCTk4O33noLnTp1wo8//ojU1FQMHz68xH6cPHkSHTt2xEcffYR58+ahWrVq2Lt3L5RKJebNm4cLFy7A398fU6dOBQA4OTnhxo0bePPNNxEZGYn//ve/OH/+PAYOHAhLS0tMnjxZ3fbKlSsxZMgQHDp0SKdjUmaCisjKyhIARFZWlkHbfaJUiT8u3RabTvwl/rh0WzxRqgzaPhFRaR49eiSSkpLEo0ePyrT+udvnhP8K/1I/526fM3DPhWjXrp0YPnx4kfLly5cLe3t79feIiAhRq1YtkZubqy5bvHixqF69ulAqleLBgwdCoVCI//3vf+rld+7cEVZWVlrbL3Ts2DEBQDx48EAIIcTevXsFAHHv3j11ncePHwtra2vxxx9/aKzbv39/0atXLyGEEGPHjhV+fn4ay0ePHl2krecBEIMHD9YoCw4OFkOGDBFCCJGamioAiLlz52rUqVevnlizZo1G2bRp00RISIgQQojvvvtOODg4aPxMLF68WAAQJ06c0LqvvXr1Eq1bty62r9r+rMaNGyd8fHyESvXPuW/hwoXqP5fC9Zo3b15su0KU/DOsz/mbI0AVZOfZdEzZmoT0rMfqMjd7S0SH+6Gzv5sJe0ZE9OJp2rQprK2t1d9DQkKQk5OD69ev4/79+8jPz0dwcLB6ea1ateDj46PRxvHjxzF58mScOnUK9+7dg0qlAgCkpaXBz89P63YvXbqEhw8folOnThrl+fn5aN68OQAgOTlZY9uF/dPF8/VCQkLUd2oVCggIUP9/bm4uLl++jP79+2PgwIHq8idPnqgnNCcnJ6NJkyawtLTUuT8nT57Ee++9p1OfCyUnJyMkJERjHlHr1q2Rk5ODv/76C3Xr1gUAtGzZUq92y4oBqALsPJuOIT8mQjxXnpH1GEN+TMTi3i0YgoiISmFnZ4esrKwi5ffv39f57iRd5ebmIiwsDGFhYVi9ejWcnJyQlpaGsLCwEifm5uTkAAC2b9+O2rVrayyzsLAwaB+LY2NjU6Q/S5YsKRK65HJ5mbdReLnPGJ7tvzFViknQCxcuhJeXFywtLREcHIyEhIRi67Zv3149qerZT5cuXTTqJScn4+2334a9vT1sbGwQGBiItLQ0Y+9KEUqVwJStSUXCDwB12ZStSVCqtNUgIqJCPj4+SExMLFKemJiIhg0bapSdOnUKjx49Un8/cuQIqlevDg8PD9SrVw/m5uY4evSoevm9e/dw4cIF9ffz58/jzp07mDlzJl599VU0atRIPQG6kEKhAAAolUp1mZ+fHywsLJCWlob69etrfDw8PAAAvr6+Rc5zR44c0ekYPF/vyJEjGvN/nufi4gJ3d3dcuXKlSH+8vb3V/Tl9+jQeP/7nCkVp/WnSpAni4+OLXa5QKDSOS+F2Dh8+DCH+Od8dOnQItra2qFOnTonbMwaTB6C4uDhERUUhOjoaiYmJaNq0KcLCwor8oBXasGED0tPT1Z+zZ89CLpdrDMVdvnwZbdq0QaNGjbBv3z6cPn0aEydO1BjeqygJqXc1Lns9TwBIz3qMhNS7FdcpIqIqaMiQIbhw4QI+++wznD59GikpKZgzZw7Wrl1bZBJxfn4++vfvj6SkJOzYsQPR0dEYNmwYzMzMUL16dfTv3x9ffPEF9uzZg7NnzyIyMhJmZv+cEuvWrQuFQoH58+fjypUr2LJlC6ZNm6axDU9PT8hkMmzbtg23bt1CTk4ObG1tMWrUKIwcORIrV67E5cuXkZiYiPnz52PlypUAgMGDB+PixYv44osvkJKSgjVr1mDFihU6HYP169dj2bJluHDhAqKjo5GQkIBhw4aVuM6UKVMQExOD//znP7hw4QLOnDmD5cuXY86cOQCADz74ADKZDAMHDlQfr9mzZ5fY5tixY3Hs2DF88sknOH36NM6fP4/Fixfj9u3bAAAvLy8cPXoUV69exe3bt6FSqfDJJ5/g+vXr+PTTT3H+/Hls3rwZ0dHRiIqK0jj2FabUWUJGFhQUJIYOHar+rlQqhbu7u4iJidFp/W+//VbY2tqKnJwcdVmPHj1E7969y9wnQ06C3nTiL+E5elupn00n/ir3toiISlOVJ0ELIURCQoLo1KmTcHJyEvb29iI4OFhs3LhRo05ERIR45513xKRJk4SDg4OoXr26GDhwoHj8+LG6zoMHD0Tv3r2FtbW1cHFxEbNmzSoycXfNmjXCy8tLWFhYiJCQELFlyxaNicFCCDF16lTh6uoqZDKZiIiIEEIIoVKpxNy5c4WPj48wNzcXTk5OIiwsTOzfv1+93tatW0X9+vWFhYWFePXVV8WyZct0mgS9cOFC0alTJ2FhYSG8vLxEXFycennhJOhn+1do9erVolmzZkKhUIiaNWuKtm3big0bNqiXHz58WDRt2lQoFArRrFkz8fPPP5c4CVoIIfbt2ydatWolLCwsRI0aNURYWJh6eUpKinjllVeElZWVACBSU1PV6wQGBgqFQiFcXV3F6NGjRUFBgbrN4ia6P8tQk6BlQgiTXXvJz8+HtbU1fvrpJ3Tt2lVdHhERgfv372Pz5s2lttG4cWOEhITg+++/B/D0+Qv29vb497//jYMHD+LEiRPw9vbG2LFjNbbxrLy8POTl5am/Z2dnw8PDA1lZWbCzsyvXPh6+fAe9lpQ+tLl24CsIqedQrm0REZXm8ePHSE1Nhbe3d5lGxZPuJKHHth6l1ot7Kw5+DtonChtbZGQk7t+/j02bNplk+8Yik8mwcePGYs9lUlHSz3B2djbs7e11On+b9BLY7du3oVQq4eLiolHu4uKCjIyMUtdPSEjA2bNnMWDAAHVZZmYmcnJyMHPmTHTu3Bm7du1Ct27d0L17d+zfv19rOzExMbC3t1d/Cq/TGkKQdy242VuiuGdnyvD0brAg71oG2yYRkbHYmOs2QVXXekSmUqXvAlu6dCkaN26MoKAgdVnhbYrvvPMORo4cCQBo1qwZ/vjjD8TGxqJdu3ZF2hk7diyioqLU3wtHgAxBbiZDdLgfhvyYCBmgMRm6MBRFh/tBblaxjxcnIioLTztPbOu2DbkFucXWsTG3MelDEIl0YdIA5OjoCLlcjps3b2qU37x5E66uriWum5ubi3Xr1qmfMvlsm9WqVSvyjAZfX18cPHhQa1sWFhZGvT2xs78bFvduUeQ5QK58DhARVUGVPdzoOqG4qjHhjJUXkkkDkEKhQMuWLREfH6++pqlSqRAfH1/qrPb169cjLy8PvXv3LtJmYGAgUlJSNMovXLgAT0/T/aXt7O+GTn6uSEi9i8wHj+Fs+/SyF0d+iIiIKp7JL4FFRUUhIiICAQEBCAoKwty5c5Gbm4t+/foBAPr27YvatWsjJiZGY72lS5eia9eucHAoOnH4iy++QI8ePdC2bVt06NABO3fuxNatW7Fv376K2KViyc1knOhMRERUCZg8APXo0QO3bt3CpEmTkJGRgWbNmmHnzp3qidFpaWlFng+QkpKCgwcPYteuXVrb7NatG2JjYxETE4PPPvsMPj4++Pnnn9GmTRuj7w8RUVXAyylUVRnqZ9ekt8FXVvrcRkdEVJUolUpcuHABzs7OWkfQiSq7O3fuIDMzEw0bNizyOg99zt8mHwEiIqKKI5fLUaNGDfXT9q2trTVeTklUWQkh8PDhQ2RmZqJGjRrlepcZwABERCQ5hXfZFvfKIaLKrEaNGqXeKa4LBiAiIomRyWRwc3ODs7MzCgoKTN0dIp2Zm5uXe+SnEAMQEZFEyeVyg51MiKoak78NnoiIiKiiMQARERGR5DAAERERkeRwDpAWhY9Gys7ONnFPiIiISFeF521dHnHIAKTFgwcPAMBgb4QnIiKiivPgwQPY29uXWIdPgtZCpVLh77//hq2tbbkfEJadnQ0PDw9cv36dT5UuAx6/8uMxLB8ev/LjMSw/HkPdCCHw4MEDuLu7F3mN1vM4AqSFmZkZ6tSpY9A27ezs+ENbDjx+5cdjWD48fuXHY1h+PIalK23kpxAnQRMREZHkMAARERGR5DAAGZmFhQWio6NhYWFh6q5USTx+5cdjWD48fuXHY1h+PIaGx0nQREREJDkcASIiIiLJYQAiIiIiyWEAIiIiIslhACIiIiLJYQDS08KFC+Hl5QVLS0sEBwcjISGhxPrr169Ho0aNYGlpicaNG2PHjh0ay4UQmDRpEtzc3GBlZYXQ0FBcvHjRmLtgcoY8hgUFBRg9ejQaN24MGxsbuLu7o2/fvvj777+NvRsmY+ifwWcNHjwYMpkMc+fONXCvKxdjHMPk5GS8/fbbsLe3h42NDQIDA5GWlmasXTA5Qx/DnJwcDBs2DHXq1IGVlRX8/PwQGxtrzF0wKX2O37lz5/Duu+/Cy8urxL+f+v6ZSJ4gna1bt04oFAqxbNkyce7cOTFw4EBRo0YNcfPmTa31Dx06JORyuZg1a5ZISkoSEyZMEObm5uLMmTPqOjNnzhT29vZi06ZN4tSpU+Ltt98W3t7e4tGjRxW1WxXK0Mfw/v37IjQ0VMTFxYnz58+Lw4cPi6CgINGyZcuK3K0KY4yfwUIbNmwQTZs2Fe7u7uLbb7818p6YjjGO4aVLl0StWrXEF198IRITE8WlS5fE5s2bi22zqjPGMRw4cKCoV6+e2Lt3r0hNTRXfffedkMvlYvPmzRW1WxVG3+OXkJAgRo0aJdauXStcXV21/v3Ut00SggFID0FBQWLo0KHq70qlUri7u4uYmBit9d9//33RpUsXjbLg4GDx8ccfCyGEUKlUwtXVVXz99dfq5ffv3xcWFhZi7dq1RtgD0zP0MdQmISFBABDXrl0zTKcrEWMdv7/++kvUrl1bnD17Vnh6er7QAcgYx7BHjx6id+/exulwJWSMY/jyyy+LqVOnatRp0aKFGD9+vAF7Xjnoe/yeVdzfz/K0KVW8BKaj/Px8HD9+HKGhoeoyMzMzhIaG4vDhw1rXOXz4sEZ9AAgLC1PXT01NRUZGhkYde3t7BAcHF9tmVWaMY6hNVlYWZDIZatSoYZB+VxbGOn4qlQp9+vTBF198gZdfftk4na8kjHEMVSoVtm/fjoYNGyIsLAzOzs4IDg7Gpk2bjLYfpmSsn8NWrVphy5YtuHHjBoQQ2Lt3Ly5cuIDXX3/dODtiImU5fqZoUwoYgHR0+/ZtKJVKuLi4aJS7uLggIyND6zoZGRkl1i/8rz5tVmXGOIbPe/z4MUaPHo1evXq9cC8MNNbx++qrr1CtWjV89tlnhu90JWOMY5iZmYmcnBzMnDkTnTt3xq5du9CtWzd0794d+/fvN86OmJCxfg7nz58PPz8/1KlTBwqFAp07d8bChQvRtm1bw++ECZXl+JmiTSng2+DphVFQUID3338fQggsXrzY1N2pEo4fP4558+YhMTERMpnM1N2pklQqFQDgnXfewciRIwEAzZo1wx9//IHY2Fi0a9fOlN2rMubPn48jR45gy5Yt8PT0xIEDBzB06FC4u7sXGT0iMgSOAOnI0dERcrkcN2/e1Ci/efMmXF1dta7j6upaYv3C/+rTZlVmjGNYqDD8XLt2Dbt3737hRn8A4xy/33//HZmZmahbty6qVauGatWq4dq1a/j888/h5eVllP0wJWMcQ0dHR1SrVg1+fn4adXx9fV/Iu8CMcQwfPXqEcePGYc6cOQgPD0eTJk0wbNgw9OjRA7NnzzbOjphIWY6fKdqUAgYgHSkUCrRs2RLx8fHqMpVKhfj4eISEhGhdJyQkRKM+AOzevVtd39vbG66urhp1srOzcfTo0WLbrMqMcQyBf8LPxYsX8dtvv8HBwcE4O2Bixjh+ffr0wenTp3Hy5En1x93dHV988QV+/fVX4+2MiRjjGCoUCgQGBiIlJUWjzoULF+Dp6WngPTA9YxzDgoICFBQUwMxM85Qkl8vVI2wvirIcP1O0KQmmnoVdlaxbt05YWFiIFStWiKSkJDFo0CBRo0YNkZGRIYQQok+fPmLMmDHq+ocOHRLVqlUTs2fPFsnJySI6OlrrbfA1atQQmzdvFqdPnxbvvPPOC38bvCGPYX5+vnj77bdFnTp1xMmTJ0V6err6k5eXZ5J9NCZj/Aw+70W/C8wYx3DDhg3C3NxcfP/99+LixYti/vz5Qi6Xi99//73C968iGOMYtmvXTrz88sti79694sqVK2L58uXC0tJSLFq0qML3z9j0PX55eXnixIkT4sSJE8LNzU2MGjVKnDhxQly8eFHnNqkoBiA9zZ8/X9StW1coFAoRFBQkjhw5ol7Wrl07ERERoVH/f//7n2jYsKFQKBTi5ZdfFtu3b9dYrlKpxMSJE4WLi4uwsLAQHTt2FCkpKRWxKyZjyGOYmpoqAGj97N27t4L2qGIZ+mfweS96ABLCOMdw6dKlon79+sLS0lI0bdpUbNq0ydi7YVKGPobp6ekiMjJSuLu7C0tLS+Hj4yO++eYboVKpKmJ3Kpw+x6+4f+fatWunc5tUlEwIIUw0+ERERERkEpwDRERERJLDAERERESSwwBEREREksMARERERJLDAERERESSwwBEREREksMARERERJLDAEREBGDFihWoUaNGiXUiIyPRtWvXCumPPiprv4gqMwYgIgmIjIyETCaDTCaDubk5XFxc0KlTJyxbtuyFe9eSMc2bNw8rVqwo8/rP/jkoFArUr18fU6dOxZMnTwzar/bt22PEiBHlapPoRccARCQRnTt3Rnp6Oq5evYpffvkFHTp0wPDhw/HWW2+V+wRsKvn5+RW6PXt7+1JHiUpT+Odw8eJFfP7555g8eTK+/vrrMrWlVCqhUqkM0i8iqWEAIpIICwsLuLq6onbt2mjRogXGjRuHzZs345dfftEYPbh//z4GDBgAJycn2NnZ4bXXXsOpU6fUyydPnoxmzZph2bJlqFu3LqpXr45PPvkESqUSs2bNgqurK5ydnTF9+nSN7aelpeGdd95B9erVYWdnh/fffx83b97UqPPll1/C2dkZtra2GDBgAMaMGYNmzZqplxde6pk+fTrc3d3h4+MDAFi1ahUCAgJga2sLV1dXfPDBB8jMzFSvt2/fPshkMmzfvh1NmjSBpaUlXnnlFZw9e7bIcfr111/h6+uL6tWrq8PK89svpFKpMGvWLNSvXx8WFhaoW7dukf0u7s/B09MTQ4YMQWhoKLZs2QIAmDNnDho3bgwbGxt4eHjgk08+QU5Ojnrdwst0W7ZsgZ+fHywsLJCWlqbRr8jISOzfvx/z5s1Tjzalpqaifv36mD17tkZfTp48CZlMhkuXLpXYZ6IXEQMQkYS99tpraNq0KTZs2KAue++995CZmYlffvkFx48fR4sWLdCxY0fcvXtXXefy5cv45ZdfsHPnTqxduxZLly5Fly5d8Ndff2H//v346quvMGHCBBw9ehTA06Dwzjvv4O7du9i/fz92796NK1euoEePHuo2V69ejenTp+Orr77C8ePHUbduXSxevLhIn+Pj45GSkoLdu3dj27ZtAICCggJMmzYNp06dwqZNm3D16lVERkYWWfeLL77AN998g2PHjsHJyQnh4eEoKChQL3/48CFmz56NVatW4cCBA0hLS8OoUaOKPX5jx47FzJkzMXHiRCQlJWHNmjVwcXHR/Q8AgJWVlXoky8zMDP/5z39w7tw5rFy5Env27MG///1vjfoPHz7EV199hR9++AHnzp2Ds7OzxvJ58+YhJCQEAwcORHp6OtLT01G3bl189NFHWL58uUbd5cuXo23btqhfv75efSZ6IZj6baxEZHwRERHinXfe0bqsR48ewtfXVwghxO+//y7s7OzE48ePNerUq1dPfPfdd0IIIaKjo4W1tbXIzs5WLw8LCxNeXl5CqVSqy3x8fERMTIwQQohdu3YJuVwu0tLS1MvPnTsnAIiEhAQhhBDBwcFi6NChGttt3bq1aNq0qcZ+uLi4iLy8vBL399ixYwKAePDggRBCiL179woAYt26deo6d+7cEVZWViIuLk4IIcTy5csFAHHp0iV1nYULFwoXFxeN7Rcex+zsbGFhYSGWLFlSYl+e9ez6KpVK7N69W1hYWIhRo0Zprb9+/Xrh4OCg/l7Yx5MnTxbbrhBP3yY+fPhwjTo3btwQcrlcHD16VAghRH5+vnB0dBQrVqzQuf9ELxKOABFJnBACMpkMAHDq1Cnk5OTAwcEB1atXV39SU1Nx+fJl9TpeXl6wtbVVf3dxcYGfnx/MzMw0ygovQyUnJ8PDwwMeHh7q5X5+fqhRowaSk5MBACkpKQgKCtLo2/PfAaBx48ZQKBQaZcePH0d4eDjq1q0LW1tbtGvXDsDTy27PCgkJUf9/rVq14OPjo94+AFhbW6NevXrq725ubhqX0p6VnJyMvLw8dOzYUevy4mzbtg3Vq1eHpaUl3njjDfTo0QOTJ08GAPz222/o2LEjateuDVtbW/Tp0wd37tzBw4cP1esrFAo0adJEr20CgLu7O7p06YJly5YBALZu3Yq8vDy89957erdF9CKoZuoOEJFpJScnw9vbGwCQk5MDNzc37Nu3r0i9ZyfZmpubaywrvLvs+TJj3GFmY2Oj8T03NxdhYWEICwvD6tWr4eTkhLS0NISFhek9SVrbPgghtNa1srLSr+P/r0OHDli8eDEUCgXc3d1RrdrTf4avXr2Kt956C0OGDMH06dNRq1YtHDx4EP3790d+fj6sra3V2y0MrPoaMGAA+vTpg2+//RbLly9Hjx491O0SSQ1HgIgkbM+ePThz5gzeffddAECLFi2QkZGBatWqoX79+hofR0fHMm/H19cX169fx/Xr19VlSUlJuH//Pvz8/AAAPj4+OHbsmMZ6z3/X5vz587hz5w5mzpyJV199FY0aNSp21ObIkSPq/7937x4uXLgAX1/fsuwSGjRoACsrK8THx+u1no2NDerXr4+6deuqww/wdBRLpVLhm2++wSuvvIKGDRvi77//LlPfFAoFlEplkfI333wTNjY2WLx4MXbu3ImPPvqoTO0TvQg4AkQkEXl5ecjIyIBSqcTNmzexc+dOxMTE4K233kLfvn0BAKGhoQgJCUHXrl0xa9Ys9Ul4+/bt6NatGwICAsq07dDQUDRu3Bgffvgh5s6diydPnuCTTz5Bu3bt1G1++umnGDhwIAICAtCqVSvExcXh9OnTeOmll0psu27dulAoFJg/fz4GDx6Ms2fPYtq0aVrrTp06FQ4ODnBxccH48ePh6OhY5gcIWlpaYvTo0fj3v/8NhUKB1q1b49atWzh37hz69++vd3v169dHQUEB5s+fj/DwcBw6dAixsbFl6puXlxeOHj2Kq1evonr16qhVqxbMzMwgl8sRGRmJsWPHokGDBhqXBImkhiNARBKxc+dOuLm5wcvLC507d8bevXvxn//8B5s3b4ZcLgfw9JLPjh070LZtW/Tr1w8NGzZEz549ce3aNb3vbnqWTCbD5s2bUbNmTbRt2xahoaF46aWXEBcXp67z4YcfYuzYsRg1ahRatGiB1NRUREZGwtLSssS2nZycsGLFCqxfvx5+fn6YOXNmkdu9C82cORPDhw9Hy5YtkZGRga1btxaZT6SPiRMn4vPPP8ekSZPg6+uLHj16FDv6VJqmTZtizpw5+Oqrr+Dv74/Vq1cjJiamTG2NGjUKcrkcfn5+6kuChQovqfXr169MbRO9KGSiuAvcREQm1qlTJ7i6umLVqlXlamffvn3o0KED7t27J/kHBv7+++/o2LEjrl+/Xq5QS1TV8RIYEVUKDx8+RGxsLMLCwiCXy7F27Vr89ttv2L17t6m79kLIy8vDrVu3MHnyZLz33nsMPyR5vARGRJXCs5ffWrZsia1bt+Lnn39GaGioqbv2Qli7di08PT1x//59zJo1y9TdITI5XgIjIiIiyeEIEBEREUkOAxARERFJDgMQERERSQ4DEBEREUkOAxARERFJDgMQERERSQ4DEBEREUkOAxARERFJDgMQERERSc7/ASRfldW00LbCAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -899,14 +799,7 @@ { "cell_type": "code", "execution_count": 14, - "metadata": { - "execution": { - "iopub.execute_input": "2024-06-17T19:21:21.292402Z", - "iopub.status.busy": "2024-06-17T19:21:21.292266Z", - "iopub.status.idle": "2024-06-17T19:21:21.341972Z", - "shell.execute_reply": "2024-06-17T19:21:21.341555Z" - } - }, + "metadata": {}, "outputs": [ { "data": { @@ -962,200 +855,200 @@ " \n", " original\n", " Overall\n", - " 0.874212\n", - " 0.800385\n", - " 0.714816\n", - " 0.638670\n", - " 0.781250\n", - " 0.658795\n", - " 0.926794\n", + " 0.871919\n", + " 0.803569\n", + " 0.715326\n", + " 0.635274\n", + " 0.763997\n", + " 0.672485\n", + " 0.924047\n", " 2922.0\n", " 9289.0\n", " 0.239292\n", - " 0.201785\n", + " 0.210630\n", " \n", " \n", " 0\n", - " 0.863158\n", - " 0.618671\n", - " 0.380952\n", - " 0.397779\n", - " 0.800000\n", - " 0.250000\n", - " 0.879747\n", - " 16.0\n", - " 79.0\n", - " 0.168421\n", - " 0.052632\n", + " 0.892308\n", + " 0.653390\n", + " 0.461538\n", + " 0.480136\n", + " 0.857143\n", + " 0.315789\n", + " 0.893789\n", + " 19.0\n", + " 111.0\n", + " 0.146154\n", + " 0.053846\n", " \n", " \n", " 1\n", - " 0.837838\n", - " 0.805269\n", - " 0.750000\n", - " 0.634899\n", - " 0.810811\n", - " 0.697674\n", - " 0.919554\n", - " 129.0\n", - " 241.0\n", - " 0.348649\n", - " 0.300000\n", + " 0.825193\n", + " 0.761461\n", + " 0.653061\n", + " 0.537282\n", + " 0.680851\n", + " 0.627451\n", + " 0.867869\n", + " 102.0\n", + " 287.0\n", + " 0.262211\n", + " 0.241645\n", " \n", " \n", " 2\n", - " 0.939138\n", - " 0.792021\n", - " 0.686957\n", - " 0.661844\n", - " 0.797980\n", - " 0.603053\n", - " 0.960479\n", - " 131.0\n", - " 1052.0\n", - " 0.110735\n", - " 0.083686\n", + " 0.932143\n", + " 0.790032\n", + " 0.685950\n", + " 0.656913\n", + " 0.798077\n", + " 0.601449\n", + " 0.958772\n", + " 138.0\n", + " 982.0\n", + " 0.123214\n", + " 0.092857\n", " \n", " \n", " 3\n", - " 0.937500\n", - " 0.797591\n", - " 0.695652\n", - " 0.668558\n", - " 0.800000\n", - " 0.615385\n", - " 0.973582\n", - " 13.0\n", - " 99.0\n", - " 0.116071\n", - " 0.089286\n", + " 0.958763\n", + " 0.897463\n", + " 0.818182\n", + " 0.794926\n", + " 0.818182\n", + " 0.818182\n", + " 0.973573\n", + " 11.0\n", + " 86.0\n", + " 0.113402\n", + " 0.113402\n", " \n", " \n", " 4\n", - " 0.867572\n", - " 0.799523\n", - " 0.715928\n", - " 0.633844\n", - " 0.778919\n", - " 0.662362\n", - " 0.922501\n", - " 2633.0\n", - " 7818.0\n", - " 0.251938\n", - " 0.214238\n", + " 0.866158\n", + " 0.804588\n", + " 0.720048\n", + " 0.634420\n", + " 0.765280\n", + " 0.679864\n", + " 0.921546\n", + " 2652.0\n", + " 7823.0\n", + " 0.253174\n", + " 0.224916\n", " \n", " \n", " Maximum difference\n", - " 0.101300\n", - " 0.186598\n", - " 0.369048\n", - " 0.270780\n", - " 0.031892\n", - " 0.447674\n", - " 0.093835\n", - " 2620.0\n", - " 7739.0\n", - " 0.237913\n", - " 0.247368\n", + " 0.133570\n", + " 0.244073\n", + " 0.356643\n", + " 0.314790\n", + " 0.176292\n", + " 0.502392\n", + " 0.105704\n", + " 2641.0\n", + " 7737.0\n", + " 0.148809\n", + " 0.187799\n", " \n", " \n", " updated\n", " Overall\n", - " 0.872001\n", - " 0.792246\n", - " 0.705039\n", - " 0.629830\n", - " 0.785865\n", - " 0.639288\n", - " 0.907573\n", + " 0.868479\n", + " 0.777851\n", + " 0.687305\n", + " 0.615379\n", + " 0.797200\n", + " 0.604038\n", + " 0.900418\n", " 2922.0\n", " 9289.0\n", " 0.239292\n", - " 0.194661\n", + " 0.181312\n", " \n", " \n", " 0\n", - " 0.884211\n", - " 0.780854\n", - " 0.645161\n", - " 0.576493\n", - " 0.666667\n", - " 0.625000\n", - " 0.879747\n", - " 16.0\n", - " 79.0\n", - " 0.168421\n", - " 0.157895\n", + " 0.884615\n", + " 0.779753\n", + " 0.615385\n", + " 0.547813\n", + " 0.600000\n", + " 0.631579\n", + " 0.893789\n", + " 19.0\n", + " 111.0\n", + " 0.146154\n", + " 0.153846\n", " \n", " \n", " 1\n", - " 0.837838\n", - " 0.794461\n", - " 0.736842\n", - " 0.633956\n", - " 0.848485\n", - " 0.651163\n", - " 0.919554\n", - " 129.0\n", - " 241.0\n", - " 0.348649\n", - " 0.267568\n", + " 0.822622\n", + " 0.702842\n", + " 0.571429\n", + " 0.497446\n", + " 0.779661\n", + " 0.450980\n", + " 0.867869\n", + " 102.0\n", + " 287.0\n", + " 0.262211\n", + " 0.151671\n", " \n", " \n", " 2\n", - " 0.913779\n", - " 0.864642\n", - " 0.673077\n", - " 0.635721\n", - " 0.580110\n", - " 0.801527\n", - " 0.960479\n", - " 131.0\n", - " 1052.0\n", - " 0.110735\n", - " 0.153001\n", + " 0.911607\n", + " 0.849944\n", + " 0.681672\n", + " 0.636540\n", + " 0.612717\n", + " 0.768116\n", + " 0.958772\n", + " 138.0\n", + " 982.0\n", + " 0.123214\n", + " 0.154464\n", " \n", " \n", " 3\n", - " 0.919643\n", - " 0.787490\n", - " 0.640000\n", - " 0.595459\n", + " 0.938144\n", + " 0.925476\n", + " 0.769231\n", + " 0.746273\n", " 0.666667\n", - " 0.615385\n", - " 0.973582\n", - " 13.0\n", - " 99.0\n", - " 0.116071\n", - " 0.107143\n", + " 0.909091\n", + " 0.973573\n", + " 11.0\n", + " 86.0\n", + " 0.113402\n", + " 0.154639\n", " \n", " \n", " 4\n", - " 0.867860\n", - " 0.789262\n", - " 0.706358\n", - " 0.630176\n", - " 0.802415\n", - " 0.630839\n", - " 0.922501\n", - " 2633.0\n", - " 7818.0\n", - " 0.251938\n", - " 0.198067\n", + " 0.864726\n", + " 0.777209\n", + " 0.691890\n", + " 0.619732\n", + " 0.817155\n", + " 0.599925\n", + " 0.921546\n", + " 2652.0\n", + " 7823.0\n", + " 0.253174\n", + " 0.185871\n", " \n", " \n", " Maximum difference\n", - " 0.081805\n", - " 0.083787\n", - " 0.096842\n", - " 0.059228\n", - " 0.268374\n", - " 0.186142\n", - " 0.093835\n", - " 2620.0\n", - " 7739.0\n", - " 0.237913\n", - " 0.160425\n", + " 0.115522\n", + " 0.222634\n", + " 0.197802\n", + " 0.248827\n", + " 0.217155\n", + " 0.458111\n", + " 0.105704\n", + " 2641.0\n", + " 7737.0\n", + " 0.148809\n", + " 0.034200\n", " \n", " \n", "\n", @@ -1164,71 +1057,71 @@ "text/plain": [ " Accuracy Balanced Accuracy F1 score MCC \\\n", " Groups \n", - "original Overall 0.874212 0.800385 0.714816 0.638670 \n", - " 0 0.863158 0.618671 0.380952 0.397779 \n", - " 1 0.837838 0.805269 0.750000 0.634899 \n", - " 2 0.939138 0.792021 0.686957 0.661844 \n", - " 3 0.937500 0.797591 0.695652 0.668558 \n", - " 4 0.867572 0.799523 0.715928 0.633844 \n", - " Maximum difference 0.101300 0.186598 0.369048 0.270780 \n", - "updated Overall 0.872001 0.792246 0.705039 0.629830 \n", - " 0 0.884211 0.780854 0.645161 0.576493 \n", - " 1 0.837838 0.794461 0.736842 0.633956 \n", - " 2 0.913779 0.864642 0.673077 0.635721 \n", - " 3 0.919643 0.787490 0.640000 0.595459 \n", - " 4 0.867860 0.789262 0.706358 0.630176 \n", - " Maximum difference 0.081805 0.083787 0.096842 0.059228 \n", + "original Overall 0.871919 0.803569 0.715326 0.635274 \n", + " 0 0.892308 0.653390 0.461538 0.480136 \n", + " 1 0.825193 0.761461 0.653061 0.537282 \n", + " 2 0.932143 0.790032 0.685950 0.656913 \n", + " 3 0.958763 0.897463 0.818182 0.794926 \n", + " 4 0.866158 0.804588 0.720048 0.634420 \n", + " Maximum difference 0.133570 0.244073 0.356643 0.314790 \n", + "updated Overall 0.868479 0.777851 0.687305 0.615379 \n", + " 0 0.884615 0.779753 0.615385 0.547813 \n", + " 1 0.822622 0.702842 0.571429 0.497446 \n", + " 2 0.911607 0.849944 0.681672 0.636540 \n", + " 3 0.938144 0.925476 0.769231 0.746273 \n", + " 4 0.864726 0.777209 0.691890 0.619732 \n", + " Maximum difference 0.115522 0.222634 0.197802 0.248827 \n", "\n", " Precision Recall ROC AUC Positive Count \\\n", " Groups \n", - "original Overall 0.781250 0.658795 0.926794 2922.0 \n", - " 0 0.800000 0.250000 0.879747 16.0 \n", - " 1 0.810811 0.697674 0.919554 129.0 \n", - " 2 0.797980 0.603053 0.960479 131.0 \n", - " 3 0.800000 0.615385 0.973582 13.0 \n", - " 4 0.778919 0.662362 0.922501 2633.0 \n", - " Maximum difference 0.031892 0.447674 0.093835 2620.0 \n", - "updated Overall 0.785865 0.639288 0.907573 2922.0 \n", - " 0 0.666667 0.625000 0.879747 16.0 \n", - " 1 0.848485 0.651163 0.919554 129.0 \n", - " 2 0.580110 0.801527 0.960479 131.0 \n", - " 3 0.666667 0.615385 0.973582 13.0 \n", - " 4 0.802415 0.630839 0.922501 2633.0 \n", - " Maximum difference 0.268374 0.186142 0.093835 2620.0 \n", + "original Overall 0.763997 0.672485 0.924047 2922.0 \n", + " 0 0.857143 0.315789 0.893789 19.0 \n", + " 1 0.680851 0.627451 0.867869 102.0 \n", + " 2 0.798077 0.601449 0.958772 138.0 \n", + " 3 0.818182 0.818182 0.973573 11.0 \n", + " 4 0.765280 0.679864 0.921546 2652.0 \n", + " Maximum difference 0.176292 0.502392 0.105704 2641.0 \n", + "updated Overall 0.797200 0.604038 0.900418 2922.0 \n", + " 0 0.600000 0.631579 0.893789 19.0 \n", + " 1 0.779661 0.450980 0.867869 102.0 \n", + " 2 0.612717 0.768116 0.958772 138.0 \n", + " 3 0.666667 0.909091 0.973573 11.0 \n", + " 4 0.817155 0.599925 0.921546 2652.0 \n", + " Maximum difference 0.217155 0.458111 0.105704 2641.0 \n", "\n", " Negative Count Positive Label Rate \\\n", " Groups \n", "original Overall 9289.0 0.239292 \n", - " 0 79.0 0.168421 \n", - " 1 241.0 0.348649 \n", - " 2 1052.0 0.110735 \n", - " 3 99.0 0.116071 \n", - " 4 7818.0 0.251938 \n", - " Maximum difference 7739.0 0.237913 \n", + " 0 111.0 0.146154 \n", + " 1 287.0 0.262211 \n", + " 2 982.0 0.123214 \n", + " 3 86.0 0.113402 \n", + " 4 7823.0 0.253174 \n", + " Maximum difference 7737.0 0.148809 \n", "updated Overall 9289.0 0.239292 \n", - " 0 79.0 0.168421 \n", - " 1 241.0 0.348649 \n", - " 2 1052.0 0.110735 \n", - " 3 99.0 0.116071 \n", - " 4 7818.0 0.251938 \n", - " Maximum difference 7739.0 0.237913 \n", + " 0 111.0 0.146154 \n", + " 1 287.0 0.262211 \n", + " 2 982.0 0.123214 \n", + " 3 86.0 0.113402 \n", + " 4 7823.0 0.253174 \n", + " Maximum difference 7737.0 0.148809 \n", "\n", " Positive Prediction Rate \n", " Groups \n", - "original Overall 0.201785 \n", - " 0 0.052632 \n", - " 1 0.300000 \n", - " 2 0.083686 \n", - " 3 0.089286 \n", - " 4 0.214238 \n", - " Maximum difference 0.247368 \n", - "updated Overall 0.194661 \n", - " 0 0.157895 \n", - " 1 0.267568 \n", - " 2 0.153001 \n", - " 3 0.107143 \n", - " 4 0.198067 \n", - " Maximum difference 0.160425 " + "original Overall 0.210630 \n", + " 0 0.053846 \n", + " 1 0.241645 \n", + " 2 0.092857 \n", + " 3 0.113402 \n", + " 4 0.224916 \n", + " Maximum difference 0.187799 \n", + "updated Overall 0.181312 \n", + " 0 0.153846 \n", + " 1 0.151671 \n", + " 2 0.154464 \n", + " 3 0.154639 \n", + " 4 0.185871 \n", + " Maximum difference 0.034200 " ] }, "execution_count": 14, @@ -1245,14 +1138,7 @@ { "cell_type": "code", "execution_count": 15, - "metadata": { - "execution": { - "iopub.execute_input": "2024-06-17T19:21:21.346173Z", - "iopub.status.busy": "2024-06-17T19:21:21.345994Z", - "iopub.status.idle": "2024-06-17T19:21:21.396723Z", - "shell.execute_reply": "2024-06-17T19:21:21.396269Z" - } - }, + "metadata": {}, "outputs": [ { "data": { @@ -1308,200 +1194,200 @@ " \n", " original\n", " Overall\n", - " 0.873464\n", - " 0.800249\n", - " 0.713942\n", - " 0.636936\n", - " 0.777733\n", - " 0.659822\n", - " 0.928441\n", + " 0.867568\n", + " 0.795669\n", + " 0.703900\n", + " 0.621685\n", + " 0.756991\n", + " 0.657769\n", + " 0.923969\n", " 2922.0\n", " 9288.0\n", " 0.239312\n", - " 0.203030\n", + " 0.207944\n", " \n", " \n", " 0\n", - " 0.888889\n", - " 0.615909\n", - " 0.363636\n", - " 0.362441\n", - " 0.666667\n", - " 0.250000\n", - " 0.900000\n", + " 0.909836\n", + " 0.709316\n", + " 0.560000\n", + " 0.540611\n", + " 0.777778\n", + " 0.437500\n", + " 0.916863\n", " 16.0\n", - " 110.0\n", - " 0.126984\n", - " 0.047619\n", + " 106.0\n", + " 0.131148\n", + " 0.073770\n", " \n", " \n", " 1\n", - " 0.831978\n", - " 0.759259\n", - " 0.621951\n", - " 0.514021\n", - " 0.614458\n", - " 0.629630\n", - " 0.879630\n", - " 81.0\n", - " 288.0\n", - " 0.219512\n", - " 0.224932\n", + " 0.859459\n", + " 0.816824\n", + " 0.745098\n", + " 0.649240\n", + " 0.775510\n", + " 0.716981\n", + " 0.928423\n", + " 106.0\n", + " 264.0\n", + " 0.286486\n", + " 0.264865\n", " \n", " \n", " 2\n", - " 0.927920\n", - " 0.785367\n", - " 0.678967\n", - " 0.647838\n", - " 0.793103\n", - " 0.593548\n", - " 0.947179\n", - " 155.0\n", - " 1052.0\n", - " 0.128418\n", - " 0.096106\n", + " 0.924370\n", + " 0.766790\n", + " 0.628099\n", + " 0.591542\n", + " 0.710280\n", + " 0.562963\n", + " 0.949142\n", + " 135.0\n", + " 1055.0\n", + " 0.113445\n", + " 0.089916\n", " \n", " \n", " 3\n", - " 0.936170\n", - " 0.833808\n", - " 0.750000\n", - " 0.716978\n", - " 0.818182\n", - " 0.692308\n", - " 0.951567\n", - " 13.0\n", - " 81.0\n", - " 0.138298\n", - " 0.117021\n", + " 0.965217\n", + " 0.918670\n", + " 0.857143\n", + " 0.837341\n", + " 0.857143\n", + " 0.857143\n", + " 0.960396\n", + " 14.0\n", + " 101.0\n", + " 0.121739\n", + " 0.121739\n", " \n", " \n", " 4\n", - " 0.867870\n", - " 0.801810\n", - " 0.720325\n", - " 0.638056\n", - " 0.783031\n", - " 0.666918\n", - " 0.926850\n", - " 2657.0\n", - " 7757.0\n", - " 0.255137\n", - " 0.217304\n", + " 0.859791\n", + " 0.794180\n", + " 0.705764\n", + " 0.616791\n", + " 0.757681\n", + " 0.660505\n", + " 0.919260\n", + " 2651.0\n", + " 7762.0\n", + " 0.254586\n", + " 0.221934\n", " \n", " \n", " Maximum difference\n", - " 0.104192\n", - " 0.217899\n", - " 0.386364\n", - " 0.354537\n", - " 0.203724\n", - " 0.442308\n", - " 0.071937\n", - " 2644.0\n", - " 7676.0\n", - " 0.128153\n", - " 0.177313\n", + " 0.105758\n", + " 0.209354\n", + " 0.297143\n", + " 0.296730\n", + " 0.146862\n", + " 0.419643\n", + " 0.043533\n", + " 2637.0\n", + " 7661.0\n", + " 0.173041\n", + " 0.191094\n", " \n", " \n", " updated\n", " Overall\n", - " 0.872072\n", - " 0.791593\n", - " 0.704502\n", - " 0.629731\n", - " 0.787648\n", - " 0.637235\n", - " 0.908668\n", + " 0.866093\n", + " 0.772651\n", + " 0.679600\n", + " 0.607410\n", + " 0.795048\n", + " 0.593429\n", + " 0.899048\n", " 2922.0\n", " 9288.0\n", " 0.239312\n", - " 0.193612\n", + " 0.178624\n", " \n", " \n", " 0\n", - " 0.880952\n", - " 0.798295\n", + " 0.877049\n", + " 0.796580\n", " 0.594595\n", - " 0.533002\n", + " 0.530414\n", " 0.523810\n", " 0.687500\n", - " 0.900000\n", + " 0.916863\n", " 16.0\n", - " 110.0\n", - " 0.126984\n", - " 0.166667\n", + " 106.0\n", + " 0.131148\n", + " 0.172131\n", " \n", " \n", " 1\n", - " 0.845528\n", - " 0.736883\n", - " 0.606897\n", - " 0.517919\n", - " 0.687500\n", - " 0.543210\n", - " 0.879630\n", - " 81.0\n", - " 288.0\n", - " 0.219512\n", - " 0.173442\n", + " 0.837838\n", + " 0.745212\n", + " 0.651163\n", + " 0.579185\n", + " 0.848485\n", + " 0.528302\n", + " 0.928423\n", + " 106.0\n", + " 264.0\n", + " 0.286486\n", + " 0.178378\n", " \n", " \n", " 2\n", - " 0.907208\n", - " 0.844999\n", - " 0.678161\n", - " 0.629830\n", - " 0.611399\n", - " 0.761290\n", - " 0.947179\n", - " 155.0\n", - " 1052.0\n", - " 0.128418\n", - " 0.159901\n", + " 0.910084\n", + " 0.829788\n", + " 0.646865\n", + " 0.600727\n", + " 0.583333\n", + " 0.725926\n", + " 0.949142\n", + " 135.0\n", + " 1055.0\n", + " 0.113445\n", + " 0.141176\n", " \n", " \n", " 3\n", - " 0.946809\n", - " 0.936847\n", - " 0.827586\n", - " 0.802539\n", - " 0.750000\n", - " 0.923077\n", - " 0.951567\n", - " 13.0\n", - " 81.0\n", - " 0.138298\n", - " 0.170213\n", + " 0.913043\n", + " 0.888967\n", + " 0.705882\n", + " 0.671106\n", + " 0.600000\n", + " 0.857143\n", + " 0.960396\n", + " 14.0\n", + " 101.0\n", + " 0.121739\n", + " 0.173913\n", " \n", " \n", " 4\n", - " 0.868158\n", - " 0.790250\n", - " 0.709541\n", - " 0.634121\n", - " 0.810145\n", - " 0.631163\n", - " 0.926850\n", - " 2657.0\n", - " 7757.0\n", - " 0.255137\n", - " 0.198771\n", + " 0.861423\n", + " 0.771181\n", + " 0.683344\n", + " 0.610987\n", + " 0.816894\n", + " 0.587326\n", + " 0.919260\n", + " 2651.0\n", + " 7762.0\n", + " 0.254586\n", + " 0.183040\n", " \n", " \n", " Maximum difference\n", - " 0.101280\n", - " 0.199964\n", - " 0.232992\n", - " 0.284620\n", - " 0.286335\n", - " 0.379867\n", - " 0.071937\n", - " 2644.0\n", - " 7676.0\n", - " 0.128153\n", - " 0.038870\n", + " 0.075206\n", + " 0.143756\n", + " 0.111288\n", + " 0.140692\n", + " 0.324675\n", + " 0.328841\n", + " 0.043533\n", + " 2637.0\n", + " 7661.0\n", + " 0.173041\n", + " 0.041864\n", " \n", " \n", "\n", @@ -1510,71 +1396,71 @@ "text/plain": [ " Accuracy Balanced Accuracy F1 score MCC \\\n", " Groups \n", - "original Overall 0.873464 0.800249 0.713942 0.636936 \n", - " 0 0.888889 0.615909 0.363636 0.362441 \n", - " 1 0.831978 0.759259 0.621951 0.514021 \n", - " 2 0.927920 0.785367 0.678967 0.647838 \n", - " 3 0.936170 0.833808 0.750000 0.716978 \n", - " 4 0.867870 0.801810 0.720325 0.638056 \n", - " Maximum difference 0.104192 0.217899 0.386364 0.354537 \n", - "updated Overall 0.872072 0.791593 0.704502 0.629731 \n", - " 0 0.880952 0.798295 0.594595 0.533002 \n", - " 1 0.845528 0.736883 0.606897 0.517919 \n", - " 2 0.907208 0.844999 0.678161 0.629830 \n", - " 3 0.946809 0.936847 0.827586 0.802539 \n", - " 4 0.868158 0.790250 0.709541 0.634121 \n", - " Maximum difference 0.101280 0.199964 0.232992 0.284620 \n", + "original Overall 0.867568 0.795669 0.703900 0.621685 \n", + " 0 0.909836 0.709316 0.560000 0.540611 \n", + " 1 0.859459 0.816824 0.745098 0.649240 \n", + " 2 0.924370 0.766790 0.628099 0.591542 \n", + " 3 0.965217 0.918670 0.857143 0.837341 \n", + " 4 0.859791 0.794180 0.705764 0.616791 \n", + " Maximum difference 0.105758 0.209354 0.297143 0.296730 \n", + "updated Overall 0.866093 0.772651 0.679600 0.607410 \n", + " 0 0.877049 0.796580 0.594595 0.530414 \n", + " 1 0.837838 0.745212 0.651163 0.579185 \n", + " 2 0.910084 0.829788 0.646865 0.600727 \n", + " 3 0.913043 0.888967 0.705882 0.671106 \n", + " 4 0.861423 0.771181 0.683344 0.610987 \n", + " Maximum difference 0.075206 0.143756 0.111288 0.140692 \n", "\n", " Precision Recall ROC AUC Positive Count \\\n", " Groups \n", - "original Overall 0.777733 0.659822 0.928441 2922.0 \n", - " 0 0.666667 0.250000 0.900000 16.0 \n", - " 1 0.614458 0.629630 0.879630 81.0 \n", - " 2 0.793103 0.593548 0.947179 155.0 \n", - " 3 0.818182 0.692308 0.951567 13.0 \n", - " 4 0.783031 0.666918 0.926850 2657.0 \n", - " Maximum difference 0.203724 0.442308 0.071937 2644.0 \n", - "updated Overall 0.787648 0.637235 0.908668 2922.0 \n", - " 0 0.523810 0.687500 0.900000 16.0 \n", - " 1 0.687500 0.543210 0.879630 81.0 \n", - " 2 0.611399 0.761290 0.947179 155.0 \n", - " 3 0.750000 0.923077 0.951567 13.0 \n", - " 4 0.810145 0.631163 0.926850 2657.0 \n", - " Maximum difference 0.286335 0.379867 0.071937 2644.0 \n", + "original Overall 0.756991 0.657769 0.923969 2922.0 \n", + " 0 0.777778 0.437500 0.916863 16.0 \n", + " 1 0.775510 0.716981 0.928423 106.0 \n", + " 2 0.710280 0.562963 0.949142 135.0 \n", + " 3 0.857143 0.857143 0.960396 14.0 \n", + " 4 0.757681 0.660505 0.919260 2651.0 \n", + " Maximum difference 0.146862 0.419643 0.043533 2637.0 \n", + "updated Overall 0.795048 0.593429 0.899048 2922.0 \n", + " 0 0.523810 0.687500 0.916863 16.0 \n", + " 1 0.848485 0.528302 0.928423 106.0 \n", + " 2 0.583333 0.725926 0.949142 135.0 \n", + " 3 0.600000 0.857143 0.960396 14.0 \n", + " 4 0.816894 0.587326 0.919260 2651.0 \n", + " Maximum difference 0.324675 0.328841 0.043533 2637.0 \n", "\n", " Negative Count Positive Label Rate \\\n", " Groups \n", "original Overall 9288.0 0.239312 \n", - " 0 110.0 0.126984 \n", - " 1 288.0 0.219512 \n", - " 2 1052.0 0.128418 \n", - " 3 81.0 0.138298 \n", - " 4 7757.0 0.255137 \n", - " Maximum difference 7676.0 0.128153 \n", + " 0 106.0 0.131148 \n", + " 1 264.0 0.286486 \n", + " 2 1055.0 0.113445 \n", + " 3 101.0 0.121739 \n", + " 4 7762.0 0.254586 \n", + " Maximum difference 7661.0 0.173041 \n", "updated Overall 9288.0 0.239312 \n", - " 0 110.0 0.126984 \n", - " 1 288.0 0.219512 \n", - " 2 1052.0 0.128418 \n", - " 3 81.0 0.138298 \n", - " 4 7757.0 0.255137 \n", - " Maximum difference 7676.0 0.128153 \n", + " 0 106.0 0.131148 \n", + " 1 264.0 0.286486 \n", + " 2 1055.0 0.113445 \n", + " 3 101.0 0.121739 \n", + " 4 7762.0 0.254586 \n", + " Maximum difference 7661.0 0.173041 \n", "\n", " Positive Prediction Rate \n", " Groups \n", - "original Overall 0.203030 \n", - " 0 0.047619 \n", - " 1 0.224932 \n", - " 2 0.096106 \n", - " 3 0.117021 \n", - " 4 0.217304 \n", - " Maximum difference 0.177313 \n", - "updated Overall 0.193612 \n", - " 0 0.166667 \n", - " 1 0.173442 \n", - " 2 0.159901 \n", - " 3 0.170213 \n", - " 4 0.198771 \n", - " Maximum difference 0.038870 " + "original Overall 0.207944 \n", + " 0 0.073770 \n", + " 1 0.264865 \n", + " 2 0.089916 \n", + " 3 0.121739 \n", + " 4 0.221934 \n", + " Maximum difference 0.191094 \n", + "updated Overall 0.178624 \n", + " 0 0.172131 \n", + " 1 0.178378 \n", + " 2 0.141176 \n", + " 3 0.173913 \n", + " 4 0.183040 \n", + " Maximum difference 0.041864 " ] }, "execution_count": 15, @@ -1607,14 +1493,7 @@ { "cell_type": "code", "execution_count": 16, - "metadata": { - "execution": { - "iopub.execute_input": "2024-06-17T19:21:21.398854Z", - "iopub.status.busy": "2024-06-17T19:21:21.398702Z", - "iopub.status.idle": "2024-06-17T19:21:23.010811Z", - "shell.execute_reply": "2024-06-17T19:21:23.010340Z" - } - }, + "metadata": {}, "outputs": [], "source": [ "#Generate two sets of training, validation and test, with race and without.\n", @@ -1625,14 +1504,7 @@ { "cell_type": "code", "execution_count": 17, - "metadata": { - "execution": { - "iopub.execute_input": "2024-06-17T19:21:23.013427Z", - "iopub.status.busy": "2024-06-17T19:21:23.013300Z", - "iopub.status.idle": "2024-06-17T19:21:24.403737Z", - "shell.execute_reply": "2024-06-17T19:21:24.403246Z" - } - }, + "metadata": {}, "outputs": [], "source": [ "predictor = xgboost.XGBClassifier().fit(X=train_g['data'],y=train_g['target'])\n", @@ -1643,14 +1515,7 @@ { "cell_type": "code", "execution_count": 18, - "metadata": { - "execution": { - "iopub.execute_input": "2024-06-17T19:21:24.406237Z", - "iopub.status.busy": "2024-06-17T19:21:24.406077Z", - "iopub.status.idle": "2024-06-17T19:21:25.115068Z", - "shell.execute_reply": "2024-06-17T19:21:25.114579Z" - } - }, + "metadata": {}, "outputs": [], "source": [ "fpredictor=FairPredictor(predictor2, train, inferred_groups=protected)\n", @@ -1660,14 +1525,7 @@ { "cell_type": "code", "execution_count": 19, - "metadata": { - "execution": { - "iopub.execute_input": "2024-06-17T19:21:25.117654Z", - "iopub.status.busy": "2024-06-17T19:21:25.117485Z", - "iopub.status.idle": "2024-06-17T19:21:25.121478Z", - "shell.execute_reply": "2024-06-17T19:21:25.121011Z" - } - }, + "metadata": {}, "outputs": [], "source": [ "#However, instead we will show how a family of fairness measures can be individually optimized. \n", @@ -1692,14 +1550,7 @@ { "cell_type": "code", "execution_count": 20, - "metadata": { - "execution": { - "iopub.execute_input": "2024-06-17T19:21:25.123458Z", - "iopub.status.busy": "2024-06-17T19:21:25.123357Z", - "iopub.status.idle": "2024-06-17T19:21:25.125997Z", - "shell.execute_reply": "2024-06-17T19:21:25.125602Z" - } - }, + "metadata": {}, "outputs": [ { "data": { @@ -1721,14 +1572,7 @@ { "cell_type": "code", "execution_count": 21, - "metadata": { - "execution": { - "iopub.execute_input": "2024-06-17T19:21:25.127993Z", - "iopub.status.busy": "2024-06-17T19:21:25.127879Z", - "iopub.status.idle": "2024-06-17T19:21:25.413549Z", - "shell.execute_reply": "2024-06-17T19:21:25.413175Z" - } - }, + "metadata": {}, "outputs": [ { "name": "stderr", @@ -1767,73 +1611,73 @@ " \n", " \n", " Demographic Parity\n", - " 0.170373\n", - " 0.063117\n", - " 0.671849\n", - " 0.663866\n", + " 0.149878\n", + " 0.034548\n", + " 0.653361\n", + " 0.636975\n", " \n", " \n", " Disparate Impact\n", - " 0.651723\n", - " 0.892211\n", - " 0.671849\n", - " 0.663866\n", + " 0.660512\n", + " 0.933217\n", + " 0.653361\n", + " 0.636134\n", " \n", " \n", " Average Group Difference in Conditional Acceptance Rate\n", - " 0.392026\n", - " 0.071445\n", - " 0.671849\n", - " 0.673950\n", + " 0.365188\n", + " 0.105676\n", + " 0.653361\n", + " 0.647479\n", " \n", " \n", " Average Group Difference in Conditional Rejectance Rate\n", - " 0.111950\n", - " 0.034648\n", - " 0.671849\n", - " 0.674790\n", + " 0.071960\n", + " 0.038268\n", + " 0.653361\n", + " 0.649160\n", " \n", " \n", " Average Group Difference in Accuracy\n", - " 0.022351\n", - " 0.025632\n", - " 0.671849\n", - " 0.667647\n", + " 0.014843\n", + " 0.004748\n", + " 0.653361\n", + " 0.649580\n", " \n", " \n", " Average Group Difference in Recall\n", - " 0.177895\n", - " 0.069213\n", - " 0.671849\n", - " 0.671008\n", + " 0.161616\n", + " 0.068086\n", + " 0.653361\n", + " 0.643697\n", " \n", " \n", " Average Group Difference in Acceptance Rate\n", - " 0.040866\n", - " 0.055503\n", - " 0.671849\n", - " 0.670168\n", + " 0.077211\n", + " 0.100334\n", + " 0.653361\n", + " 0.655042\n", " \n", " \n", " Average Group Difference in Specificity\n", - " 0.121835\n", - " 0.057111\n", - " 0.671849\n", - " 0.674370\n", + " 0.102890\n", + " 0.051929\n", + " 0.653361\n", + " 0.639916\n", " \n", " \n", " Average Group Difference in Rejection Rate\n", - " 0.050291\n", - " 0.038554\n", - " 0.671849\n", - " 0.668487\n", + " 0.057218\n", + " 0.049770\n", + " 0.653361\n", + " 0.648319\n", " \n", " \n", " Treatment Equality\n", - " 0.360054\n", - " 0.052966\n", - " 0.671849\n", - " 0.673950\n", + " 0.244338\n", + " 0.120008\n", + " 0.653361\n", + " 0.643697\n", " \n", " \n", "\n", @@ -1841,52 +1685,52 @@ ], "text/plain": [ " Measure (original) \\\n", - "Demographic Parity 0.170373 \n", - "Disparate Impact 0.651723 \n", - "Average Group Difference in Conditional Accepta... 0.392026 \n", - "Average Group Difference in Conditional Rejecta... 0.111950 \n", - "Average Group Difference in Accuracy 0.022351 \n", - "Average Group Difference in Recall 0.177895 \n", - "Average Group Difference in Acceptance Rate 0.040866 \n", - "Average Group Difference in Specificity 0.121835 \n", - "Average Group Difference in Rejection Rate 0.050291 \n", - "Treatment Equality 0.360054 \n", + "Demographic Parity 0.149878 \n", + "Disparate Impact 0.660512 \n", + "Average Group Difference in Conditional Accepta... 0.365188 \n", + "Average Group Difference in Conditional Rejecta... 0.071960 \n", + "Average Group Difference in Accuracy 0.014843 \n", + "Average Group Difference in Recall 0.161616 \n", + "Average Group Difference in Acceptance Rate 0.077211 \n", + "Average Group Difference in Specificity 0.102890 \n", + "Average Group Difference in Rejection Rate 0.057218 \n", + "Treatment Equality 0.244338 \n", "\n", " Measure (updated) \\\n", - "Demographic Parity 0.063117 \n", - "Disparate Impact 0.892211 \n", - "Average Group Difference in Conditional Accepta... 0.071445 \n", - "Average Group Difference in Conditional Rejecta... 0.034648 \n", - "Average Group Difference in Accuracy 0.025632 \n", - "Average Group Difference in Recall 0.069213 \n", - "Average Group Difference in Acceptance Rate 0.055503 \n", - "Average Group Difference in Specificity 0.057111 \n", - "Average Group Difference in Rejection Rate 0.038554 \n", - "Treatment Equality 0.052966 \n", + "Demographic Parity 0.034548 \n", + "Disparate Impact 0.933217 \n", + "Average Group Difference in Conditional Accepta... 0.105676 \n", + "Average Group Difference in Conditional Rejecta... 0.038268 \n", + "Average Group Difference in Accuracy 0.004748 \n", + "Average Group Difference in Recall 0.068086 \n", + "Average Group Difference in Acceptance Rate 0.100334 \n", + "Average Group Difference in Specificity 0.051929 \n", + "Average Group Difference in Rejection Rate 0.049770 \n", + "Treatment Equality 0.120008 \n", "\n", " Accuracy (original) \\\n", - "Demographic Parity 0.671849 \n", - "Disparate Impact 0.671849 \n", - "Average Group Difference in Conditional Accepta... 0.671849 \n", - "Average Group Difference in Conditional Rejecta... 0.671849 \n", - "Average Group Difference in Accuracy 0.671849 \n", - "Average Group Difference in Recall 0.671849 \n", - "Average Group Difference in Acceptance Rate 0.671849 \n", - "Average Group Difference in Specificity 0.671849 \n", - "Average Group Difference in Rejection Rate 0.671849 \n", - "Treatment Equality 0.671849 \n", + "Demographic Parity 0.653361 \n", + "Disparate Impact 0.653361 \n", + "Average Group Difference in Conditional Accepta... 0.653361 \n", + "Average Group Difference in Conditional Rejecta... 0.653361 \n", + "Average Group Difference in Accuracy 0.653361 \n", + "Average Group Difference in Recall 0.653361 \n", + "Average Group Difference in Acceptance Rate 0.653361 \n", + "Average Group Difference in Specificity 0.653361 \n", + "Average Group Difference in Rejection Rate 0.653361 \n", + "Treatment Equality 0.653361 \n", "\n", " Accuracy (updated) \n", - "Demographic Parity 0.663866 \n", - "Disparate Impact 0.663866 \n", - "Average Group Difference in Conditional Accepta... 0.673950 \n", - "Average Group Difference in Conditional Rejecta... 0.674790 \n", - "Average Group Difference in Accuracy 0.667647 \n", - "Average Group Difference in Recall 0.671008 \n", - "Average Group Difference in Acceptance Rate 0.670168 \n", - "Average Group Difference in Specificity 0.674370 \n", - "Average Group Difference in Rejection Rate 0.668487 \n", - "Treatment Equality 0.673950 " + "Demographic Parity 0.636975 \n", + "Disparate Impact 0.636134 \n", + "Average Group Difference in Conditional Accepta... 0.647479 \n", + "Average Group Difference in Conditional Rejecta... 0.649160 \n", + "Average Group Difference in Accuracy 0.649580 \n", + "Average Group Difference in Recall 0.643697 \n", + "Average Group Difference in Acceptance Rate 0.655042 \n", + "Average Group Difference in Specificity 0.639916 \n", + "Average Group Difference in Rejection Rate 0.648319 \n", + "Treatment Equality 0.643697 " ] }, "execution_count": 21, @@ -1909,14 +1753,7 @@ { "cell_type": "code", "execution_count": 22, - "metadata": { - "execution": { - "iopub.execute_input": "2024-06-17T19:21:25.415329Z", - "iopub.status.busy": "2024-06-17T19:21:25.415128Z", - "iopub.status.idle": "2024-06-17T19:21:29.921083Z", - "shell.execute_reply": "2024-06-17T19:21:29.920745Z" - } - }, + "metadata": {}, "outputs": [ { "data": { @@ -1948,73 +1785,73 @@ " \n", " \n", " Demographic Parity\n", - " 0.142173\n", - " 0.107317\n", - " 0.653361\n", - " 0.624370\n", + " 0.135583\n", + " 0.074996\n", + " 0.657563\n", + " 0.610084\n", " \n", " \n", " Disparate Impact\n", - " 0.682094\n", - " 0.731433\n", - " 0.653361\n", - " 0.618487\n", + " 0.698826\n", + " 0.775239\n", + " 0.657563\n", + " 0.594538\n", " \n", " \n", " Average Group Difference in Conditional Acceptance Rate\n", - " 0.287004\n", - " 0.163108\n", - " 0.653361\n", - " 0.643697\n", + " 0.244732\n", + " 0.128222\n", + " 0.657563\n", + " 0.634454\n", " \n", " \n", " Average Group Difference in Conditional Rejectance Rate\n", - " 0.068234\n", - " 0.063120\n", - " 0.653361\n", - " 0.649580\n", + " 0.067420\n", + " 0.064152\n", + " 0.657563\n", + " 0.648319\n", " \n", " \n", " Average Group Difference in Accuracy\n", - " 0.028167\n", - " 0.026010\n", - " 0.653361\n", + " 0.055076\n", + " 0.054847\n", + " 0.657563\n", " 0.650000\n", " \n", " \n", " Average Group Difference in Recall\n", - " 0.143907\n", - " 0.130195\n", - " 0.653361\n", - " 0.628992\n", + " 0.118756\n", + " 0.055106\n", + " 0.657563\n", + " 0.614706\n", " \n", " \n", " Average Group Difference in Acceptance Rate\n", - " 0.059639\n", - " 0.061339\n", - " 0.653361\n", - " 0.660924\n", + " 0.024263\n", + " 0.044214\n", + " 0.657563\n", + " 0.655882\n", " \n", " \n", " Average Group Difference in Specificity\n", - " 0.103289\n", - " 0.089840\n", - " 0.653361\n", - " 0.645378\n", + " 0.111172\n", + " 0.107794\n", + " 0.657563\n", + " 0.643697\n", " \n", " \n", " Average Group Difference in Rejection Rate\n", - " 0.073389\n", - " 0.062303\n", - " 0.653361\n", - " 0.655882\n", + " 0.097222\n", + " 0.099675\n", + " 0.657563\n", + " 0.648739\n", " \n", " \n", " Treatment Equality\n", - " 0.237167\n", - " 0.160742\n", - " 0.653361\n", - " 0.646218\n", + " 0.231623\n", + " 0.157130\n", + " 0.657563\n", + " 0.638655\n", " \n", " \n", "\n", @@ -2022,52 +1859,52 @@ ], "text/plain": [ " Measure (original) \\\n", - "Demographic Parity 0.142173 \n", - "Disparate Impact 0.682094 \n", - "Average Group Difference in Conditional Accepta... 0.287004 \n", - "Average Group Difference in Conditional Rejecta... 0.068234 \n", - "Average Group Difference in Accuracy 0.028167 \n", - "Average Group Difference in Recall 0.143907 \n", - "Average Group Difference in Acceptance Rate 0.059639 \n", - "Average Group Difference in Specificity 0.103289 \n", - "Average Group Difference in Rejection Rate 0.073389 \n", - "Treatment Equality 0.237167 \n", + "Demographic Parity 0.135583 \n", + "Disparate Impact 0.698826 \n", + "Average Group Difference in Conditional Accepta... 0.244732 \n", + "Average Group Difference in Conditional Rejecta... 0.067420 \n", + "Average Group Difference in Accuracy 0.055076 \n", + "Average Group Difference in Recall 0.118756 \n", + "Average Group Difference in Acceptance Rate 0.024263 \n", + "Average Group Difference in Specificity 0.111172 \n", + "Average Group Difference in Rejection Rate 0.097222 \n", + "Treatment Equality 0.231623 \n", "\n", " Measure (updated) \\\n", - "Demographic Parity 0.107317 \n", - "Disparate Impact 0.731433 \n", - "Average Group Difference in Conditional Accepta... 0.163108 \n", - "Average Group Difference in Conditional Rejecta... 0.063120 \n", - "Average Group Difference in Accuracy 0.026010 \n", - "Average Group Difference in Recall 0.130195 \n", - "Average Group Difference in Acceptance Rate 0.061339 \n", - "Average Group Difference in Specificity 0.089840 \n", - "Average Group Difference in Rejection Rate 0.062303 \n", - "Treatment Equality 0.160742 \n", + "Demographic Parity 0.074996 \n", + "Disparate Impact 0.775239 \n", + "Average Group Difference in Conditional Accepta... 0.128222 \n", + "Average Group Difference in Conditional Rejecta... 0.064152 \n", + "Average Group Difference in Accuracy 0.054847 \n", + "Average Group Difference in Recall 0.055106 \n", + "Average Group Difference in Acceptance Rate 0.044214 \n", + "Average Group Difference in Specificity 0.107794 \n", + "Average Group Difference in Rejection Rate 0.099675 \n", + "Treatment Equality 0.157130 \n", "\n", " Accuracy (original) \\\n", - "Demographic Parity 0.653361 \n", - "Disparate Impact 0.653361 \n", - "Average Group Difference in Conditional Accepta... 0.653361 \n", - "Average Group Difference in Conditional Rejecta... 0.653361 \n", - "Average Group Difference in Accuracy 0.653361 \n", - "Average Group Difference in Recall 0.653361 \n", - "Average Group Difference in Acceptance Rate 0.653361 \n", - "Average Group Difference in Specificity 0.653361 \n", - "Average Group Difference in Rejection Rate 0.653361 \n", - "Treatment Equality 0.653361 \n", + "Demographic Parity 0.657563 \n", + "Disparate Impact 0.657563 \n", + "Average Group Difference in Conditional Accepta... 0.657563 \n", + "Average Group Difference in Conditional Rejecta... 0.657563 \n", + "Average Group Difference in Accuracy 0.657563 \n", + "Average Group Difference in Recall 0.657563 \n", + "Average Group Difference in Acceptance Rate 0.657563 \n", + "Average Group Difference in Specificity 0.657563 \n", + "Average Group Difference in Rejection Rate 0.657563 \n", + "Treatment Equality 0.657563 \n", "\n", " Accuracy (updated) \n", - "Demographic Parity 0.624370 \n", - "Disparate Impact 0.618487 \n", - "Average Group Difference in Conditional Accepta... 0.643697 \n", - "Average Group Difference in Conditional Rejecta... 0.649580 \n", + "Demographic Parity 0.610084 \n", + "Disparate Impact 0.594538 \n", + "Average Group Difference in Conditional Accepta... 0.634454 \n", + "Average Group Difference in Conditional Rejecta... 0.648319 \n", "Average Group Difference in Accuracy 0.650000 \n", - "Average Group Difference in Recall 0.628992 \n", - "Average Group Difference in Acceptance Rate 0.660924 \n", - "Average Group Difference in Specificity 0.645378 \n", - "Average Group Difference in Rejection Rate 0.655882 \n", - "Treatment Equality 0.646218 " + "Average Group Difference in Recall 0.614706 \n", + "Average Group Difference in Acceptance Rate 0.655882 \n", + "Average Group Difference in Specificity 0.643697 \n", + "Average Group Difference in Rejection Rate 0.648739 \n", + "Treatment Equality 0.638655 " ] }, "execution_count": 22, @@ -2087,14 +1924,7 @@ { "cell_type": "code", "execution_count": 23, - "metadata": { - "execution": { - "iopub.execute_input": "2024-06-17T19:21:29.922746Z", - "iopub.status.busy": "2024-06-17T19:21:29.922627Z", - "iopub.status.idle": "2024-06-17T19:21:29.967142Z", - "shell.execute_reply": "2024-06-17T19:21:29.966853Z" - } - }, + "metadata": {}, "outputs": [ { "data": { @@ -2150,144 +1980,144 @@ " \n", " original\n", " Overall\n", - " 0.653361\n", - " 0.642428\n", - " 0.580153\n", - " 0.292805\n", - " 0.639013\n", - " 0.531221\n", - " 0.700889\n", + " 0.657563\n", + " 0.647421\n", + " 0.589007\n", + " 0.301889\n", + " 0.641758\n", + " 0.544268\n", + " 0.697111\n", " 1073.0\n", " 1307.0\n", " 0.450840\n", - " 0.374790\n", + " 0.382353\n", " \n", " \n", " African-American\n", - " 0.641509\n", - " 0.642416\n", - " 0.636741\n", - " 0.285145\n", - " 0.664931\n", - " 0.610845\n", - " 0.701756\n", + " 0.632486\n", + " 0.633314\n", + " 0.628524\n", + " 0.266852\n", + " 0.654577\n", + " 0.604466\n", + " 0.683172\n", " 627.0\n", " 592.0\n", " 0.514356\n", - " 0.472518\n", + " 0.474979\n", " \n", " \n", " Caucasian\n", - " 0.658025\n", - " 0.611952\n", - " 0.476371\n", - " 0.249640\n", - " 0.600000\n", - " 0.394984\n", - " 0.673311\n", + " 0.670370\n", + " 0.627626\n", + " 0.504638\n", + " 0.280394\n", + " 0.618182\n", + " 0.426332\n", + " 0.675842\n", " 319.0\n", " 491.0\n", " 0.393827\n", - " 0.259259\n", + " 0.271605\n", " \n", " \n", " Other\n", - " 0.683761\n", - " 0.639711\n", - " 0.523605\n", - " 0.292449\n", - " 0.575472\n", - " 0.480315\n", - " 0.688607\n", + " 0.715100\n", + " 0.677904\n", + " 0.579832\n", + " 0.367683\n", + " 0.621622\n", + " 0.543307\n", + " 0.729436\n", " 127.0\n", " 224.0\n", " 0.361823\n", - " 0.301994\n", + " 0.316239\n", " \n", " \n", " Maximum difference\n", - " 0.042251\n", - " 0.030463\n", - " 0.160371\n", - " 0.042809\n", - " 0.089459\n", - " 0.215861\n", - " 0.028445\n", + " 0.082614\n", + " 0.050277\n", + " 0.123886\n", + " 0.100831\n", + " 0.036395\n", + " 0.178133\n", + " 0.053594\n", " 500.0\n", " 368.0\n", " 0.152533\n", - " 0.213259\n", + " 0.203375\n", " \n", " \n", " updated\n", " Overall\n", - " 0.646218\n", - " 0.632754\n", - " 0.558237\n", - " 0.276979\n", " 0.638655\n", - " 0.495806\n", - " 0.688616\n", + " 0.627870\n", + " 0.563895\n", + " 0.262470\n", + " 0.618465\n", + " 0.518173\n", + " 0.675213\n", " 1073.0\n", " 1307.0\n", " 0.450840\n", - " 0.350000\n", + " 0.377731\n", " \n", " \n", " African-American\n", - " 0.634947\n", - " 0.636885\n", - " 0.616048\n", - " 0.275896\n", - " 0.671053\n", - " 0.569378\n", - " 0.693082\n", + " 0.616899\n", + " 0.618162\n", + " 0.606571\n", + " 0.237010\n", + " 0.642857\n", + " 0.574163\n", + " 0.663147\n", " 627.0\n", " 592.0\n", " 0.514356\n", - " 0.436423\n", + " 0.459393\n", " \n", " \n", " Caucasian\n", - " 0.654321\n", - " 0.605603\n", - " 0.461538\n", - " 0.238911\n", - " 0.597015\n", - " 0.376176\n", - " 0.655683\n", + " 0.650617\n", + " 0.609137\n", + " 0.482633\n", + " 0.237142\n", + " 0.578947\n", + " 0.413793\n", + " 0.654135\n", " 319.0\n", " 491.0\n", " 0.393827\n", - " 0.248148\n", + " 0.281481\n", " \n", " \n", " Other\n", - " 0.666667\n", - " 0.616089\n", - " 0.484581\n", - " 0.247178\n", - " 0.550000\n", - " 0.433071\n", - " 0.673703\n", + " 0.686610\n", + " 0.647058\n", + " 0.537815\n", + " 0.303932\n", + " 0.576577\n", + " 0.503937\n", + " 0.707185\n", " 127.0\n", " 224.0\n", " 0.361823\n", - " 0.284900\n", + " 0.316239\n", " \n", " \n", " Maximum difference\n", - " 0.031720\n", - " 0.031282\n", - " 0.154510\n", - " 0.036986\n", - " 0.121053\n", - " 0.193202\n", - " 0.037399\n", + " 0.069711\n", + " 0.037921\n", + " 0.123939\n", + " 0.066922\n", + " 0.066281\n", + " 0.160370\n", + " 0.053050\n", " 500.0\n", " 368.0\n", " 0.152533\n", - " 0.188275\n", + " 0.177911\n", " \n", " \n", "\n", @@ -2296,29 +2126,29 @@ "text/plain": [ " Accuracy Balanced Accuracy F1 score MCC \\\n", " Groups \n", - "original Overall 0.653361 0.642428 0.580153 0.292805 \n", - " African-American 0.641509 0.642416 0.636741 0.285145 \n", - " Caucasian 0.658025 0.611952 0.476371 0.249640 \n", - " Other 0.683761 0.639711 0.523605 0.292449 \n", - " Maximum difference 0.042251 0.030463 0.160371 0.042809 \n", - "updated Overall 0.646218 0.632754 0.558237 0.276979 \n", - " African-American 0.634947 0.636885 0.616048 0.275896 \n", - " Caucasian 0.654321 0.605603 0.461538 0.238911 \n", - " Other 0.666667 0.616089 0.484581 0.247178 \n", - " Maximum difference 0.031720 0.031282 0.154510 0.036986 \n", + "original Overall 0.657563 0.647421 0.589007 0.301889 \n", + " African-American 0.632486 0.633314 0.628524 0.266852 \n", + " Caucasian 0.670370 0.627626 0.504638 0.280394 \n", + " Other 0.715100 0.677904 0.579832 0.367683 \n", + " Maximum difference 0.082614 0.050277 0.123886 0.100831 \n", + "updated Overall 0.638655 0.627870 0.563895 0.262470 \n", + " African-American 0.616899 0.618162 0.606571 0.237010 \n", + " Caucasian 0.650617 0.609137 0.482633 0.237142 \n", + " Other 0.686610 0.647058 0.537815 0.303932 \n", + " Maximum difference 0.069711 0.037921 0.123939 0.066922 \n", "\n", " Precision Recall ROC AUC Positive Count \\\n", " Groups \n", - "original Overall 0.639013 0.531221 0.700889 1073.0 \n", - " African-American 0.664931 0.610845 0.701756 627.0 \n", - " Caucasian 0.600000 0.394984 0.673311 319.0 \n", - " Other 0.575472 0.480315 0.688607 127.0 \n", - " Maximum difference 0.089459 0.215861 0.028445 500.0 \n", - "updated Overall 0.638655 0.495806 0.688616 1073.0 \n", - " African-American 0.671053 0.569378 0.693082 627.0 \n", - " Caucasian 0.597015 0.376176 0.655683 319.0 \n", - " Other 0.550000 0.433071 0.673703 127.0 \n", - " Maximum difference 0.121053 0.193202 0.037399 500.0 \n", + "original Overall 0.641758 0.544268 0.697111 1073.0 \n", + " African-American 0.654577 0.604466 0.683172 627.0 \n", + " Caucasian 0.618182 0.426332 0.675842 319.0 \n", + " Other 0.621622 0.543307 0.729436 127.0 \n", + " Maximum difference 0.036395 0.178133 0.053594 500.0 \n", + "updated Overall 0.618465 0.518173 0.675213 1073.0 \n", + " African-American 0.642857 0.574163 0.663147 627.0 \n", + " Caucasian 0.578947 0.413793 0.654135 319.0 \n", + " Other 0.576577 0.503937 0.707185 127.0 \n", + " Maximum difference 0.066281 0.160370 0.053050 500.0 \n", "\n", " Negative Count Positive Label Rate \\\n", " Groups \n", @@ -2335,16 +2165,16 @@ "\n", " Positive Prediction Rate \n", " Groups \n", - "original Overall 0.374790 \n", - " African-American 0.472518 \n", - " Caucasian 0.259259 \n", - " Other 0.301994 \n", - " Maximum difference 0.213259 \n", - "updated Overall 0.350000 \n", - " African-American 0.436423 \n", - " Caucasian 0.248148 \n", - " Other 0.284900 \n", - " Maximum difference 0.188275 " + "original Overall 0.382353 \n", + " African-American 0.474979 \n", + " Caucasian 0.271605 \n", + " Other 0.316239 \n", + " Maximum difference 0.203375 \n", + "updated Overall 0.377731 \n", + " African-American 0.459393 \n", + " Caucasian 0.281481 \n", + " Other 0.316239 \n", + " Maximum difference 0.177911 " ] }, "execution_count": 23, @@ -2359,14 +2189,7 @@ { "cell_type": "code", "execution_count": 24, - "metadata": { - "execution": { - "iopub.execute_input": "2024-06-17T19:21:29.968836Z", - "iopub.status.busy": "2024-06-17T19:21:29.968711Z", - "iopub.status.idle": "2024-06-17T19:21:30.728647Z", - "shell.execute_reply": "2024-06-17T19:21:30.728237Z" - } - }, + "metadata": {}, "outputs": [], "source": [ "from oxonfair import conditional_group_metrics as cgm\n", @@ -2377,14 +2200,7 @@ { "cell_type": "code", "execution_count": 25, - "metadata": { - "execution": { - "iopub.execute_input": "2024-06-17T19:21:30.730457Z", - "iopub.status.busy": "2024-06-17T19:21:30.730328Z", - "iopub.status.idle": "2024-06-17T19:21:30.750226Z", - "shell.execute_reply": "2024-06-17T19:21:30.749941Z" - } - }, + "metadata": {}, "outputs": [ { "data": { @@ -2414,13 +2230,13 @@ " \n", " \n", " Accuracy\n", - " 0.738975\n", - " 0.693406\n", + " 0.747165\n", + " 0.678706\n", " \n", " \n", " Average Group Difference in Conditional Positive Prediction Rate\n", - " 0.137529\n", - " 0.019887\n", + " 0.140569\n", + " 0.019400\n", " \n", " \n", "\n", @@ -2428,8 +2244,8 @@ ], "text/plain": [ " original updated\n", - "Accuracy 0.738975 0.693406\n", - "Average Group Difference in Conditional Positiv... 0.137529 0.019887" + "Accuracy 0.747165 0.678706\n", + "Average Group Difference in Conditional Positiv... 0.140569 0.019400" ] }, "execution_count": 25, @@ -2444,14 +2260,7 @@ { "cell_type": "code", "execution_count": 26, - "metadata": { - "execution": { - "iopub.execute_input": "2024-06-17T19:21:30.751715Z", - "iopub.status.busy": "2024-06-17T19:21:30.751600Z", - "iopub.status.idle": "2024-06-17T19:21:30.764769Z", - "shell.execute_reply": "2024-06-17T19:21:30.764470Z" - } - }, + "metadata": {}, "outputs": [ { "data": { @@ -2481,13 +2290,13 @@ " \n", " \n", " Accuracy\n", - " 0.653361\n", - " 0.626471\n", + " 0.657563\n", + " 0.610084\n", " \n", " \n", " Average Group Difference in Conditional Positive Prediction Rate\n", - " 0.136923\n", - " 0.100760\n", + " 0.130682\n", + " 0.071482\n", " \n", " \n", "\n", @@ -2495,8 +2304,8 @@ ], "text/plain": [ " original updated\n", - "Accuracy 0.653361 0.626471\n", - "Average Group Difference in Conditional Positiv... 0.136923 0.100760" + "Accuracy 0.657563 0.610084\n", + "Average Group Difference in Conditional Positiv... 0.130682 0.071482" ] }, "execution_count": 26, @@ -2511,7 +2320,7 @@ ], "metadata": { "kernelspec": { - "display_name": "base", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -2525,9 +2334,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.13" + "version": "3.10.0" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 }