-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
50 lines (42 loc) · 1.66 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
class OneHotTransform(object):
def __init__(self, out_dim):
self.out_dim = out_dim
def __call__(self, agent_id):
assert agent_id < self.out_dim
one_hot_id = np.zeros(self.out_dim, dtype='float32')
one_hot_id[agent_id] = 1.0
return one_hot_id
class AvailableActionsSampler(object):
''' Sample available actions uniformly.
'''
def __init__(self, data):
'''data: np.ndarray (batch_size, len_distributions)'''
assert len(data.shape) == 2
self.batch_list = []
for i in range(data.shape[0]):
elements = set()
for j in range(data.shape[1]):
if np.abs(data[i, j] - 1.0) < 1e-5:
# add action idx
elements.add(j)
self.batch_list.append(list(elements))
def sample(self):
results = []
for i in range(len(self.batch_list)):
candidates = self.batch_list[i]
results.append(np.random.choice(candidates))
return np.array(results, dtype='long')