-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbatch_file_redone.py
596 lines (342 loc) · 14.6 KB
/
batch_file_redone.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
import qiskit
from qiskit import *
import numpy as np
from scipy.io import loadmat
from scipy.io import savemat
########### Functions for C ####################3
# First need a function to create the Ci circuits
def C_i(i,register):
n = register.size
if i<1 or i>(n-1):
print('WRONG VALUE FOR i !!!!')
return
Ci = QuantumCircuit(register, name='C_{}'.format(i))
[Ci.cx(control_qubit=i, target_qubit=(i-j), ctrl_state='0') for j in range(1,i+1)]
Ci.append(qiskit.circuit.library.MCXGate(num_ctrl_qubits=i, ctrl_state='0'*i),register[:i+1])
# Ci.mcx(control_qubits=workRegister[:i-1],target_qubit=workRegister[i-1])
[Ci.cx(control_qubit=i, target_qubit=(i-j), ctrl_state='0') for j in reversed(range(1,i+1))]
return Ci
############### Functions for R ###############
def L1_d(register):
n = register.size
# Circuit that creates L1 unitary
L1 = QuantumCircuit(n,name='L1')
L1.x(0)
return L1
def L2_d(register):
n = register.size
L2 = QuantumCircuit(register,name='L2')
for j in range(1,n):
L2 = L2.compose(C_i(j,register))
return L2
def L3_d(register,NBC):
n = register.size
L3 = QuantumCircuit(register,name='L3')
if not NBC[0]:
L3.x(0)
L3.h(0)
L3.append(qiskit.circuit.library.MCXGate(num_ctrl_qubits=n-1, ctrl_state='0'*(n-1)),register[1:]+[register[0]])
L3.h(0)
L3.x(0)
if not NBC[1]:
L3.h(n-1)
L3.append(qiskit.circuit.library.MCXGate(num_ctrl_qubits=n-1, ctrl_state='1'*(n-1)),register)
L3.h(n-1)
return L3
def L4_d(register,NBC):
n = register.size
L4 = QuantumCircuit(register,name='L4')
# Apply -ve sign to the unitary
L4.z(0)
L4.x(0)
L4.z(0)
L4.x(0)
return L4
def R_circuit(n,d,workRegisters,lcuRegister,NBCs,alphas):
# Create the Select circuit
# Create the Prep Circuit
prep = QuantumCircuit(lcuRegister,name='Prep')
prep.prepare_state(alphas)
allregisters = []
allregisters.extend(workRegisters)
allregisters.extend([lcuRegister])
blockEncoded = QuantumCircuit(*workRegisters,lcuRegister,name='R')
# Apply the PREP operation
blockEncoded = blockEncoded.compose(prep,lcuRegister)
# Apply the SELECT operation using controlled versions of the circuits L1-L3
# This needs to be done for each dimension!
for i in range(d):
if d>1:
d_string = format(i, '0{}b'.format(d_size))
else:
d_string = ''
blockEncoded.append(L1_d(workRegisters[i]).control(num_ctrl_qubits=(d_size+2) ,ctrl_state=d_string+'00'), lcuRegister[:] + workRegisters[i][:])
blockEncoded.append(L2_d(workRegisters[i]).control(num_ctrl_qubits=(d_size+2) ,ctrl_state=d_string+'01'), lcuRegister[:] + workRegisters[i][:])
blockEncoded.append(L3_d(workRegisters[i],NBCs[i]).control(num_ctrl_qubits=(d_size+2),ctrl_state=d_string+'10'), lcuRegister[:] + workRegisters[i][:])
blockEncoded.append(L4_d(workRegisters[i],NBCs[i]).control(num_ctrl_qubits=(d_size+2),ctrl_state=d_string+'11'), lcuRegister[:] + workRegisters[i][:])
# Apply the PREP+ operation
blockEncoded = blockEncoded.compose(prep.inverse(),lcuRegister)
return blockEncoded
######################## Functions for D ##########################
def L1_1(register):
n = register.size
# Circuit that creates L1 unitary
L1 = QuantumCircuit(n,name='L1_1')
L1.x(0)
L1.z(0)
return L1
def L1_2(register):
n = register.size
# Circuit that creates L1 unitary
L1 = QuantumCircuit(n,name='L1_2')
L1.z(0)
L1.x(0)
L1.z(0)
return L1
def C_i(i,register):
n = register.size
if i<1 or i>(n-1):
print('WRONG VALUE FOR i !!!!')
return
Ci = QuantumCircuit(register, name='C_{}'.format(i))
[Ci.cx(control_qubit=i, target_qubit=(i-j), ctrl_state='0') for j in range(1,i+1)]
Ci.append(qiskit.circuit.library.MCXGate(num_ctrl_qubits=i, ctrl_state='0'*i),register[:i+1])
# Ci.mcx(control_qubits=workRegister[:i-1],target_qubit=workRegister[i-1])
[Ci.cx(control_qubit=i, target_qubit=(i-j), ctrl_state='0') for j in reversed(range(1,i+1))]
return Ci
def L2_1(register):
n = register.size
L2 = QuantumCircuit(register,name='L2_1')
# Apply -ve to sign to alternating bits
# L2.x(0)
L2.z(0)
# L2.x(0)
for j in range(1,n):
L2 = L2.compose(C_i(j,register))
return L2
def L2_2(register):
n = register.size
L2 = QuantumCircuit(register,name='L2_2')
# Apply -ve sign to final piece
L2.h(n-1)
L2.append(qiskit.circuit.library.MCXGate(num_ctrl_qubits=n-1, ctrl_state='1'*(n-1)),register)
L2.h(n-1)
for j in range(1,n):
L2 = L2.compose(C_i(j,register))
# Apply -ve sign to whole thing
L2.z(0)
L2.x(0)
L2.z(0)
L2.x(0)
return L2
def D_circuit(l,indexRegister,lcuRegister,alphas):
# Create the Select circuit
# Create the Prep Circuit
prep = QuantumCircuit(lcuRegister,name='Prep')
prep.prepare_state(alphas)
allregisters = []
allregisters.extend([indexRegister])
allregisters.extend([lcuRegister])
blockEncoded = QuantumCircuit(indexRegister,lcuRegister,name='D')
# Apply the PREP operation
blockEncoded = blockEncoded.compose(prep,lcuRegister)
# Apply the SELECT operation using controlled versions of the circuits L1_i, L2_i
blockEncoded.append(L1_1(indexRegister).control(num_ctrl_qubits=(2) ,ctrl_state='00'), lcuRegister[:] + indexRegister[:])
blockEncoded.append(L1_2(indexRegister).control(num_ctrl_qubits=(2) ,ctrl_state='01'), lcuRegister[:] + indexRegister[:])
blockEncoded.append(L2_1(indexRegister).control(num_ctrl_qubits=(2) ,ctrl_state='10'), lcuRegister[:] + indexRegister[:])
blockEncoded.append(L2_2(indexRegister).control(num_ctrl_qubits=(2) ,ctrl_state='11'), lcuRegister[:] + indexRegister[:])
# Apply the PREP+ operation
blockEncoded = blockEncoded.compose(prep.inverse(),lcuRegister)
return blockEncoded
################ Functions for QSP Rotation ##################################
def CR_phi_d_efficient(phi, _d, signalReg, lcuRegister_R, lcuRegister_l, lcuRegister_q, circuit):
BE_size = lcuRegister_R.size + lcuRegister_l.size + lcuRegister_q.size
ctrl_state = '0'*(BE_size)
circuit.append(qiskit.circuit.library.MCXGate(num_ctrl_qubits=BE_size, ctrl_state=ctrl_state), lcuRegister_R[:] + lcuRegister_l[:] + lcuRegister_q[:] + signalReg[:])
circuit.rz(2*phi, signalReg)
circuit.z(signalReg)
circuit.append(qiskit.circuit.library.MCXGate(num_ctrl_qubits=BE_size, ctrl_state=ctrl_state), lcuRegister_R[:] + lcuRegister_l[:] + lcuRegister_q[:] + signalReg[:])
return
####################### Construct qRLS Circuit ##############################
import sys
print ('argument list', sys.argv)
problem = int(sys.argv[1])
n = int(sys.argv[2])
l = int(sys.argv[3])
if problem == 1:
d = 1
NBCs = [[False, False]]
elif problem == 2:
d = 1
NBCs = [[False, True]]
elif problem == 3:
d = 2
NBCs = [[False, True],[False, False]]
elif problem == 4:
d = 2
NBCs = [[False, True],[False, True]]
elif problem == 5:
d = 2
NBCs = [[False, True],[True, True]]
print("problem number: {}".format(problem))
print("boundary conditions: {}".format(NBCs))
print("problem size: {}".format(n))
print("number of iterations {}".format(l))
# n = 2
# d = 2
# l = 2
device = 'CPU'
d_size = int(np.log2(d))
# NBCs = [[False,False]]*d
workRegisters = [QuantumRegister(n,name='dim {}'.format(i)) for i in range(d)]
indexRegister = QuantumRegister(l,name='index')
alphas_R = np.array([np.sqrt(1+0j), np.sqrt(1+0j), np.sqrt(0.5+0j), np.sqrt(0.5+0j)]*d)
alphas_R = alphas_R/np.linalg.norm(alphas_R,2)
lcu_size_R = np.ceil(np.log2(alphas_R.size))
lcuRegister_R = QuantumRegister(lcu_size_R,name='lcu_R')
R = R_circuit(n,d,workRegisters,lcuRegister_R,NBCs,alphas_R)
alphas_l = np.array([np.sqrt(0.5+0j), np.sqrt(0.5+0j), np.sqrt(0.5+0j), np.sqrt(0.5+0j)])
alphas_l = alphas_l/np.linalg.norm(alphas_l,2)
lcu_size_l = np.ceil(np.log2(alphas_l.size))
lcuRegister_l = QuantumRegister(lcu_size_l,name='lcu_l')
D = D_circuit(l,indexRegister,lcuRegister_l,alphas_l)
alphas_q = np.array([np.sqrt(1+0j), np.sqrt(3+0j)])
alphas_q = alphas_q/np.linalg.norm(alphas_q,2)
lcu_size_q = np.ceil(np.log2(alphas_q.size))
lcuRegister_q = QuantumRegister(lcu_size_q,name='lcu_q')
R = R_circuit(n,d,workRegisters,lcuRegister_R,NBCs,alphas_R)
D = D_circuit(l,indexRegister,lcuRegister_l,alphas_l)
R = R.decompose().decompose().decompose()
D = D.decompose().decompose().decompose()
R = R.decompose().decompose().decompose()
D = D.decompose().decompose().decompose()
prep = QuantumCircuit(lcuRegister_q,name='Prep')
prep.prepare_state(alphas_q)
qRLS_circuit = QuantumCircuit(*workRegisters,indexRegister,lcuRegister_R,lcuRegister_l,lcuRegister_q,name='qRLS')
qRLS_circuit = qRLS_circuit.compose(prep,lcuRegister_q)
qRLS_circuit.append(R.control(num_ctrl_qubits=(1) ,ctrl_state='1'), lcuRegister_q[:] + [_x for _xs in workRegisters for _x in _xs] + lcuRegister_R[:])
qRLS_circuit.append(D.control(num_ctrl_qubits=(1) ,ctrl_state='1'), lcuRegister_q[:] + indexRegister[:] + lcuRegister_l[:] )
qRLS_circuit = qRLS_circuit.compose(prep.inverse(),lcuRegister_q)
# backend = Aer.get_backend('unitary_simulator', device=device, precision='double')
# backend.set_options(precision='double')
# result = execute(qRLS_circuit,backend,shots=0).result()
# print("Block encoding of M:")
# print(((result.get_unitary().data[0:(2**(l)*2**(n**d)),0:(2**(l)*2**(n**d))].real)/result.get_unitary().data[0,0].real).round(10))
U_A = qRLS_circuit
U_A_i = U_A.inverse()
# Load and prep angles
# phi_angles = np.array( loadmat('phi_kappa_120_pts_16000_deg_5999.mat') ).item()['phi_proc']
# phi_angles = np.array( loadmat('phi_kappa_50_pts_5000_deg_999_crit_14.mat') ).item()['phi_proc']
phi_angles = np.array( loadmat('phi_kappa_80_pts_8000_deg_1999.mat') ).item()['phi_proc']
phase_angles = phi_angles.reshape(phi_angles.shape[0])
signalRegister = QuantumRegister(1,name='QSP signal')
QSP_circuit = QuantumCircuit(*workRegisters,indexRegister,lcuRegister_R,lcuRegister_l,lcuRegister_q,signalRegister,name='QSP_Solver')
# Prepare initial state
initial_state = np.ones(2**l)
initial_state[0] = 0
initial_state = initial_state/np.linalg.norm(initial_state,2)
QSP_circuit.append(qiskit.circuit.library.StatePreparation(initial_state),indexRegister)
for _i in workRegisters:
QSP_circuit.h(_i)
##### Start QSP Sequence #####
# First thing is to Hadamard the signal qubit since we want Re(P(A))
QSP_circuit.h(signalRegister)
# phase_angles = phase_angles[0:4]
for _d, phi in reversed( list( enumerate( phase_angles[:]))):
# for _d, phi in list(enumerate(phase_angles[0:4])):
# print("_d is {} phi is {}".format(_d,phi))
CR_phi_d_efficient(phi,_d,signalRegister,lcuRegister_R,lcuRegister_l,lcuRegister_q,QSP_circuit)
if _d>(0):
if _d%2:
for _ci in U_A_i.data:
QSP_circuit.append(_ci)
else:
for _ci in U_A.data:
QSP_circuit.append(_ci)
# print(_d)
# Apply the final Hadamard gate
QSP_circuit.h(signalRegister)
print('running simulation')
backend = Aer.get_backend('statevector_simulator', device=device, precision='double')
result = execute(QSP_circuit,backend,shots=0).result()
statevector = result.get_statevector()
final_output = np.array(statevector)[0:(2**(l)*2**(n*d))]
iterates = final_output/np.linalg.norm(final_output,2)
# Calculate the classical iterates
R = [np.zeros((2**n,2**n)) for _i in NBCs]
for _R in R:
i, j = np.indices(_R.shape)
_R[i==j-1] = 0.5
_R[i==j+1] = 0.5
for _i,_R in zip(NBCs,R):
if _i[0]:
_R[0,0] = 0.5
if _i[1]:
_R[-1,-1] = 0.5
R_full = np.zeros((2**(n*d),2**(n*d)))
for _i,_R in enumerate(reversed(R)):
if _i == 0:
_Ri = _R
else:
_Ri = np.eye(2**n)
for _j in range(1,d):
if _j==_i:
_Ri = np.kron(_Ri,_R)
else:
_Ri = np.kron(_Ri,np.eye(2**n))
R_full += _Ri
R_full = R_full/d
classical_iterates = [np.zeros(R_full.shape[0]) for _i in range(2**l)]
f = np.ones(R_full.shape[0])
for _i in range(2**l - 1):
classical_iterates[_i+1] = np.matmul(R_full,classical_iterates[_i]) + f
classical_iterates = np.concatenate(classical_iterates)
classical_iterates = classical_iterates/np.linalg.norm(classical_iterates,2)
# Calculate the exact solution
A = [np.zeros((2**n,2**n)) for _i in NBCs]
for _A in A:
i, j = np.indices(_A.shape)
_A[i==j-1] = -1
_A[i==j+1] = -1
_A[i==j] = 2
for _i,_A in zip(NBCs,A):
if _i[0]:
_A[0,0] = 1
if _i[1]:
_A[-1,-1] = 1
A_full = np.zeros((2**(n*d),2**(n*d)))
for _i,_A in enumerate(reversed(A)):
if _i == 0:
_Ai = _A
else:
_Ai = np.eye(2**n)
for _j in range(1,d):
if _j==_i:
_Ai = np.kron(_Ai,_A)
else:
_Ai = np.kron(_Ai,np.eye(2**n))
A_full += _Ai
f = np.ones(R_full.shape[0])
exact_sol = np.linalg.solve(A_full,f)
exact_sol = exact_sol/np.linalg.norm(exact_sol,2)
# Calculate the iterate errors
quantum_convergence = []
for _i in range(1,2**l):
quantum_convergence.append( np.linalg.norm(exact_sol - iterates[(2**(n*d))*(_i):(2**(n*d))*(_i+1)]/np.linalg.norm(iterates[(2**(n*d))*(_i):(2**(n*d))*(_i+1)],2)) )
classical_convergence = []
for _i in range(1,2**l):
classical_convergence.append( np.linalg.norm(exact_sol - classical_iterates[(2**(n*d))*(_i):(2**(n*d))*(_i+1)]/np.linalg.norm(classical_iterates[(2**(n*d))*(_i):(2**(n*d))*(_i+1)],2)) )
# Calculate the QSP errors
QSP_errors_full = []
for _i in range(2**l):
QSP_errors_full.append( np.linalg.norm( ( classical_iterates[(2**(n*d))*(_i):(2**(n*d))*(_i+1)]) - iterates[_i*(2**(n*d)):(_i+1)*(2**(n*d))], 2 ) )
# Save all useful variables
mdic = {"dimensions":d, "n":n, "l":l, "BCs":NBCs, "raw_statevector": final_output, "classical_solution":classical_iterates, "QSP_solution":iterates, "QSP_Errors":QSP_errors_full, "classical":classical_convergence, "quantum":quantum_convergence}
# mdic = {"classical":error_expected,"quantum":error_actual,"kappa":np.linalg.cond(A_orig)}
savemat("output_problem_{}_n_{}_l_{}.mat".format(problem,n,l), mdic)
print("completed simulation with parameters")
print("problem number: {}".format(problem))
print("boundary conditions: {}".format(NBCs))
print("problem size: {}".format(n))
print("number of iterations {}".format(l))
print('\n\nsaved output\n\n')