-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathetl.py
106 lines (80 loc) · 3.33 KB
/
etl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import os
import glob
from typing import Callable
import psycopg2
import pandas as pd
from datetime import datetime
from sql_queries import *
def process_song_file(cur, filepath: str):
"""
This function reads all the song files and writes the data into
song and artist tables.
"""
# open song file
df = pd.read_json(filepath, lines=True)
# insert song record
song_data = df[["song_id", "title", "artist_id", "year", "duration"]].values
for rec in song_data:
cur.execute(song_table_insert, rec)
# insert artist record
artist_data = df[["artist_id", "artist_name", "artist_location", "artist_latitude", "artist_longitude"]].values
for rec in artist_data:
cur.execute(artist_table_insert, rec)
def process_log_file(cur, filepath: str):
"""
This function reads all the log files and writes the data into
songplay, users and time tables.
"""
# open log file
df = pd.read_json(filepath, lines=True)
# filter by NextSong action
df = df[df.page == "NextSong"]
# convert timestamp column to datetime
t = pd.to_datetime(df.ts, unit='ms')
# insert time data records
time_data = (t, t.dt.hour, t.dt.day, t.dt.isocalendar().week, t.dt.month, t.dt.year, t.dt.weekday)
column_labels = ("start_time", "hour", "day", "week", "month", "year", "weekday")
time_df = pd.DataFrame({c:d for c,d in zip(column_labels, time_data)})
for i, row in time_df.iterrows():
cur.execute(time_table_insert, list(row))
# load user table
user_df = df[["userId", "firstName", "lastName", "gender", "level"]]
# insert user records
for i, row in user_df.iterrows():
cur.execute(user_table_insert, row)
# insert songplay records
for index, row in df.iterrows():
# get songid and artistid from song and artist tables
cur.execute(song_select, (row.song, row.artist, row.length))
results = cur.fetchone()
if results:
songid, artistid = results
else:
songid, artistid = None, None
# insert songplay record
songplay_data = (datetime.fromtimestamp(row.ts/1000), row.userId, row.level, songid, artistid, row.sessionId, row.location, row.userAgent)
cur.execute(songplay_table_insert, songplay_data)
def process_data(cur, conn, filepath: str, func: Callable):
""" This function preprocesses the data based on the function passed into it """
# get all files matching extension from directory
all_files = []
for root, dirs, files in os.walk(filepath):
files = glob.glob(os.path.join(root,'*.json'))
for f in files :
all_files.append(os.path.abspath(f))
# get total number of files found
num_files = len(all_files)
print('{} files found in {}'.format(num_files, filepath))
# iterate over files and process
for i, datafile in enumerate(all_files, 1):
func(cur, datafile)
conn.commit()
print('{}/{} files processed.'.format(i, num_files))
def main():
conn = psycopg2.connect("host=127.0.0.1 dbname=sparkifydb user=student password=student")
cur = conn.cursor()
process_data(cur, conn, filepath='data/song_data', func=process_song_file)
process_data(cur, conn, filepath='data/log_data', func=process_log_file)
conn.close()
if __name__ == "__main__":
main()