-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdenoise_dataset.py
307 lines (248 loc) · 10.8 KB
/
denoise_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
from pathlib import Path
import os
import zarr
from tqdm.auto import tqdm
import shutil
import pandas as pd
import numpy as np
from skimage import img_as_float32, img_as_uint
from n2v.models import N2V
import argparse
from src.data.aicszarr import MAP_NAME_STRUCTURE
def parse_args():
parser = argparse.ArgumentParser(description='Denoise dataset')
parser.add_argument(
'--src_dir',
type=Path,
help='Path to the source directory',
)
parser.add_argument(
'--target_dir',
type=Path,
help='Path to the target directory',
)
parser.add_argument(
'-s',
'--structures_of_interest',
type=list,
help='List of structures to denoise',
default=["TOMM20", "ACTB", "MYH10", "ACTN1", "LMNB1", "FBL", "NPM1"]
)
return parser.parse_args()
def denoise_channel(image, channel, in_focus_slice, model):
# # extract channel and in focus slice
infocus_channel_image = image[channel:channel+1, in_focus_slice, ...]
# prepare for n2v
infocus_channel_image = np.moveaxis(infocus_channel_image, 0, 3)
infocus_channel_image = img_as_float32(infocus_channel_image)
# denoise
pred = model.predict(infocus_channel_image,
axes='ZYXC', n_tiles=(1, 1, 2, 1))
return pred
def normalize16(I):
mn = I.min()
mx = I.max()
mx -= mn
I = ((I - mn)/mx) * 65535.0
return I.astype(np.uint16)
if __name__ == "__main__":
args = parse_args()
src_dir = args.src_dir
target_dir = args.target_dir
structures_of_interest = args.structures_of_interest
if not os.path.exists(target_dir):
# make target dir
os.mkdir(target_dir)
# txt file with processed images from previous runs
if os.path.exists(target_dir / "processed_images.txt"): # already processed images
with open(target_dir / "processed_images.txt", "r") as f:
processed_images = f.read().splitlines()
else: # no processed images
with open(target_dir / "processed_images.txt", "w") as f:
f.write("")
processed_images = []
metadata = pd.read_csv(src_dir / "metadata.csv")
if len(processed_images) > 0:
metadata = pd.read_csv(target_dir / "metadata.csv", index_col=0)
else: # no processed images
metadata = pd.read_csv(src_dir / "metadata.csv", index_col=0)
print("Already processed images (channels): ", len(processed_images))
# channel: DNA
model_name = 'n2v_3D_DNA'
n2v_basedir = 'n2v_models'
model = N2V(config=None, name=model_name, basedir=n2v_basedir)
channel = 2
channel_structure = "DNA"
for structure in tqdm(structures_of_interest):
# mkdir for structure
if not os.path.exists(target_dir / structure):
os.mkdir(target_dir / structure)
print("Denoising structure: ", structure, "channel: ", channel)
fovs = os.listdir(src_dir / structure) # target_dir is still empty
for fov in tqdm(fovs):
img_name = str(Path(structure) / fov)
if structure+"/"+fov+f"/channel{channel}" in processed_images:
continue
if os.path.exists(target_dir / img_name):
# print("Already denoised: ", img_name)
continue
# else: copy to target dir
shutil.copytree(src_dir / img_name, target_dir / img_name)
img = zarr.open(str(target_dir / structure / fov))
channel_zfocus_int = eval(
metadata[metadata.index == img_name][f'zfocusint_{channel_structure}'].values[0])
try:
pred = denoise_channel(
img, channel, slice(*channel_zfocus_int), model)
except Exception as e:
print(f"Error {e}: {img_name}")
if os.path.exists(target_dir / "error_images.txt"):
with open(target_dir / "error_images.txt", "a") as f:
# TODO: channel{channel}
f.write(img_name + f"{channel_structure} \n")
else:
with open(target_dir / "error_images.txt", "w") as f:
f.write(img_name + f"/channel{channel}\n")
continue
pred = pred[..., 0] # remove channel dimension
# insert denoised slice back into image
if pred.min() < -1 or pred.max() > 1:
print(
"Warning: pred min/max not in [-1,1] for image: ", img_name)
img[channel, slice(
*channel_zfocus_int), ...] = normalize16(pred)
else:
img[channel, slice(
*channel_zfocus_int), ...] = img_as_uint(pred)
in_focus_mean = img[channel, slice(
*channel_zfocus_int), ...].mean()
in_focus_var = img[channel, slice(*channel_zfocus_int), ...].var()
metadata.loc[
str(img_name),
[f"zfocus_mean_{channel_structure}",
f"zfocus_var_{channel_structure}",
],
] = (
in_focus_mean,
in_focus_var,
)
metadata.to_csv(target_dir / "metadata.csv")
with open(target_dir / "processed_images.txt", "a") as f:
f.write(img_name + f"/channel{channel}\n")
# channel: cell_membrane
channel = 0
channel_structure = "cell_membrane"
model_name = 'n2v_3D_cell_membrane'
model = N2V(config=None, name=model_name, basedir=n2v_basedir)
for structure in tqdm(structures_of_interest):
print("Denoising structure: ", structure, "channel: ", channel)
fovs = os.listdir(target_dir / structure)
for fov in tqdm(fovs):
if structure+"/"+fov+f"/channel{channel}" in processed_images:
# print("Already denoised: ", fov)
continue
# denoise fov
img_name = str(Path(structure) / fov)
# already copied to target dir in previous loop
img = zarr.open(str(target_dir / structure / fov))
channel_zfocus_int = eval(
metadata[metadata.index == img_name][f'zfocusint_{channel_structure}'].values[0])
try:
pred = denoise_channel(
img, channel, slice(*channel_zfocus_int), model)
except Exception as e:
print(f"Error {e}: {img_name}")
if os.path.exists(target_dir / "error_images.txt"):
with open(target_dir / "error_images.txt", "a") as f:
# TODO: channel{channel}
f.write(img_name + f"{channel_structure} \n")
else:
with open(target_dir / "error_images.txt", "w") as f:
f.write(img_name + f"/channel{channel}\n")
continue
pred = pred[..., 0] # remove channel dimension
# insert denoised slice back into image
if pred.min() < -1 or pred.max() > 1:
print(
"Warning: pred min/max not in [-1,1] for image: ", img_name)
img[channel, slice(
*channel_zfocus_int), ...] = normalize16(pred)
else:
img[channel, slice(
*channel_zfocus_int), ...] = img_as_uint(pred)
in_focus_mean = img[channel, slice(
*channel_zfocus_int), ...].mean()
in_focus_var = img[channel, slice(*channel_zfocus_int), ...].var()
metadata.loc[
str(img_name),
[f"zfocus_mean_{channel_structure}",
f"zfocus_var_{channel_structure}",
],
] = (
in_focus_mean,
in_focus_var,
)
metadata.to_csv(target_dir / "metadata.csv")
with open(target_dir / "processed_images.txt", "a") as f:
f.write(img_name + f"/channel{channel}\n")
# channel: specific structure
channel = 1
for structure in tqdm(structures_of_interest):
channel_structure = MAP_NAME_STRUCTURE[structure]
model_name = f'n2v_3D_{channel_structure}'
try:
model = N2V(config=None, name=model_name, basedir=n2v_basedir)
except FileNotFoundError:
print("Model not found: ", model_name)
continue
print("Denoising structure: ", structure, "channel: ", channel)
fovs = os.listdir(target_dir / structure)
for fov in tqdm(fovs):
if structure+"/"+fov+f"/channel{channel}" in processed_images:
# print("Already denoised: ", fov)
continue
# denoise fov
img_name = str(Path(structure) / fov)
img = zarr.open(str(target_dir / structure / fov))
channel_zfocus_int = eval(
metadata[metadata.index == img_name][f'zfocusint_{channel_structure}'].values[0])
try:
pred = denoise_channel(
img, channel, slice(*channel_zfocus_int), model)
except Exception as e:
print(f"Error {e}: {img_name}")
if os.path.exists(target_dir / "error_images.txt"):
with open(target_dir / "error_images.txt", "a") as f:
# TODO: channel{channel}
f.write(img_name + f"{channel_structure} \n")
else:
with open(target_dir / "error_images.txt", "w") as f:
# TODO: channel{channel}
f.write(img_name + f"{channel_structure} \n")
continue
pred = pred[..., 0] # remove channel dimension
# insert denoised slice back into image
if pred.min() < -1 or pred.max() > 1:
print(
"Warning: pred min/max not in [-1,1] for image: ", img_name)
img[channel, slice(
*channel_zfocus_int), ...] = normalize16(pred)
else:
img[channel, slice(
*channel_zfocus_int), ...] = img_as_uint(pred)
in_focus_mean = img[channel, slice(
*channel_zfocus_int), ...].mean()
in_focus_var = img[channel, slice(*channel_zfocus_int), ...].var()
# metadata = pd.read_csv(target_dir / "metadata.csv")
metadata.loc[
str(img_name),
[f"zfocus_mean_{channel_structure}",
f"zfocus_var_{channel_structure}",
],
] = (
in_focus_mean,
in_focus_var,
)
metadata.to_csv(target_dir / "metadata.csv")
with open(target_dir / "processed_images.txt", "a") as f:
f.write(img_name + f"/channel{channel}\n")