diff --git a/.github/actions/cache/package-lock.json b/.github/actions/cache/package-lock.json
index d452b53dccbc22..3c3887ba4b29c3 100644
--- a/.github/actions/cache/package-lock.json
+++ b/.github/actions/cache/package-lock.json
@@ -4283,9 +4283,9 @@
}
},
"node_modules/cross-spawn": {
- "version": "7.0.3",
- "resolved": "https://registry.npmjs.org/cross-spawn/-/cross-spawn-7.0.3.tgz",
- "integrity": "sha512-iRDPJKUPVEND7dHPO8rkbOnPpyDygcDFtWjpeWNCgy8WP2rXcxXL8TskReQl6OrB2G7+UJrags1q15Fudc7G6w==",
+ "version": "7.0.6",
+ "resolved": "https://registry.npmjs.org/cross-spawn/-/cross-spawn-7.0.6.tgz",
+ "integrity": "sha512-uV2QOWP2nWzsy2aMp8aRibhi9dlzF5Hgh5SHaB9OiTGEyDTiJJyx0uy51QXdyWbtAHNua4XJzUKca3OzKUd3vA==",
"dev": true,
"license": "MIT",
"dependencies": {
diff --git a/docs/articles_en/about-openvino/performance-benchmarks.rst b/docs/articles_en/about-openvino/performance-benchmarks.rst
index 8a58dc27df1f83..5d9abfe891584f 100644
--- a/docs/articles_en/about-openvino/performance-benchmarks.rst
+++ b/docs/articles_en/about-openvino/performance-benchmarks.rst
@@ -64,7 +64,7 @@ implemented in your solutions. Click the buttons below to see the chosen benchma
:outline:
:expand:
- :material-regular:`bar_chart;1.4em` OVMS for GenAI (coming soon)
+ :material-regular:`bar_chart;1.4em` OVMS for GenAI
@@ -163,7 +163,7 @@ For a listing of all platforms and configurations used for testing, refer to the
2024.5, as of November 20, 2024.
* OpenVINO Model Server performance results are based on release
- 2024.4, as of Sept. 30, 2024.
+ 2024.5, as of November 20, 2024.
The results may not reflect all publicly available updates. Intel technologies' features and
benefits depend on system configuration and may require enabled hardware, software, or service
diff --git a/docs/articles_en/about-openvino/release-notes-openvino.rst b/docs/articles_en/about-openvino/release-notes-openvino.rst
index 343c9e780f05dc..9e7673d7d0910d 100644
--- a/docs/articles_en/about-openvino/release-notes-openvino.rst
+++ b/docs/articles_en/about-openvino/release-notes-openvino.rst
@@ -32,7 +32,7 @@ What's new
* New models supported: Llama 3.2 (1B & 3B), Gemma 2 (2B & 9B), and YOLO11.
* LLM support on NPU: Llama 3 8B, Llama 2 7B, Mistral-v0.2-7B, Qwen2-7B-Instruct and Phi-3
- Mini-Instruct.
+ Mini-Instruct.
* Noteworthy notebooks added: Sam2, Llama3.2, Llama3.2 - Vision, Wav2Lip, Whisper, and Llava.
* Preview: support for Flax, a high-performance Python neural network library based on JAX.
Its modular design allows for easy customization and accelerated inference on GPUs.
@@ -87,8 +87,8 @@ Common
* A new constant constructor has been added, enabling constants to be created from data pointer
as shared memory. Additionally, it can take ownership of a shared, or other, object, avoiding
a two-step process to wrap memory into ``ov::Tensor``.
-* Files are now read via the async ReadFile API, reducing the bottleneck for LLM model load
- times on GPU.
+* Asynchronous file reading with mmap library has been implemented, reducing loading times for
+ model files, especially for LLMs.
* CPU implementation of SliceScatter operator is now available, used for models such as Gemma,
supporting increased LLM performance.
diff --git a/docs/articles_en/about-openvino/release-notes-openvino/system-requirements.rst b/docs/articles_en/about-openvino/release-notes-openvino/system-requirements.rst
index a12cacf8402953..79a9f63821c16f 100644
--- a/docs/articles_en/about-openvino/release-notes-openvino/system-requirements.rst
+++ b/docs/articles_en/about-openvino/release-notes-openvino/system-requirements.rst
@@ -37,7 +37,7 @@ CPU
* Ubuntu 20.04 long-term support (LTS), 64-bit (Kernel 5.15+)
* macOS 12.6 and above, 64-bit and ARM64
* CentOS 7
- * Red Hat Enterprise Linux 9.3-9.4, 64-bit
+ * Red Hat Enterprise Linux (RHEL) 8 and 9, 64-bit
* openSUSE Tumbleweed, 64-bit and ARM64
* Ubuntu 20.04 ARM64
@@ -65,7 +65,7 @@ GPU
* Ubuntu 22.04 long-term support (LTS), 64-bit
* Ubuntu 20.04 long-term support (LTS), 64-bit
* CentOS 7
- * Red Hat Enterprise Linux 9.3-9.4, 64-bit
+ * Red Hat Enterprise Linux (RHEL) 8 and 9, 64-bit
.. tab-item:: Additional considerations
diff --git a/docs/articles_en/get-started/install-openvino.rst b/docs/articles_en/get-started/install-openvino.rst
index be00804faa01d2..48ea0a434c5388 100644
--- a/docs/articles_en/get-started/install-openvino.rst
+++ b/docs/articles_en/get-started/install-openvino.rst
@@ -21,7 +21,7 @@ Install OpenVINO™ 2024.5
-
+
OpenVINO 2024.5, described here, is not a Long-Term-Support version!
All currently supported versions are:
diff --git a/docs/articles_en/learn-openvino.rst b/docs/articles_en/learn-openvino.rst
index 4fca64051003a7..98797c9c67c126 100644
--- a/docs/articles_en/learn-openvino.rst
+++ b/docs/articles_en/learn-openvino.rst
@@ -14,7 +14,7 @@ Learn OpenVINO
Interactive Tutorials (Python)
Sample Applications (Python & C++)
- Large Language Model Inference Guide
+ Generative AI workflow
@@ -29,5 +29,5 @@ as well as an experienced user.
| :doc:`OpenVINO Samples `
| The OpenVINO samples (Python and C++) are simple console applications that show how to use specific OpenVINO API features. They can assist you in executing tasks such as loading a model, running inference, querying particular device capabilities, etc.
-| :doc:`Large Language Models in OpenVINO `
+| :doc:`Generative AI workflow `
| Detailed information on how OpenVINO accelerates Generative AI use cases and what models it supports. This tutorial provides instructions for running Generative AI models using Hugging Face Optimum Intel and Native OpenVINO APIs.
diff --git a/docs/articles_en/learn-openvino/llm_inference_guide.rst b/docs/articles_en/learn-openvino/llm_inference_guide.rst
index 36c001c015f744..bfc4f9b4c49173 100644
--- a/docs/articles_en/learn-openvino/llm_inference_guide.rst
+++ b/docs/articles_en/learn-openvino/llm_inference_guide.rst
@@ -1,140 +1,106 @@
-Large Language Model Inference Guide
+Generative AI workflow
========================================
.. meta::
- :description: Explore learning materials, including interactive
- Python tutorials and sample console applications that explain
- how to use OpenVINO features.
+ :description: learn how to use OpenVINO to run generative AI models.
.. toctree::
:maxdepth: 1
:hidden:
- Run LLMs with Optimum Intel
- Run LLMs on OpenVINO GenAI Flavor
- Run LLMs on Base OpenVINO
+ Inference with OpenVINO GenAI
+ Inference with Optimum Intel
+ Generative AI with Base OpenVINO (not recommended)
OpenVINO Tokenizers
-Large Language Models (LLMs) like GPT are transformative deep learning networks capable of a
-broad range of natural language tasks, from text generation to language translation. OpenVINO
-optimizes the deployment of these models, enhancing their performance and integration into
-various applications. This guide shows how to use LLMs with OpenVINO, from model loading and
-conversion to advanced use cases.
+
+
+Generative AI is a specific area of Deep Learning models used for producing new and “original”
+data, based on input in the form of image, sound, or natural language text. Due to their
+complexity and size, generative AI pipelines are more difficult to deploy and run efficiently.
+OpenVINO simplifies the process and ensures high-performance integrations, with the following
+options:
+
+.. tab-set::
+
+ .. tab-item:: OpenVINO GenAI
+
+ | - Suggested for production deployment for the supported use cases.
+ | - Smaller footprint and fewer dependencies.
+ | - More optimization and customization options.
+ | - Available in both Python and C++.
+ | - A limited set of supported use cases.
+
+ :doc:`Install the OpenVINO GenAI package <../get-started/install-openvino/install-openvino-genai>`
+ and run generative models out of the box. With custom
+ API and tokenizers, among other components, it manages the essential tasks such as the
+ text generation loop, tokenization, and scheduling, offering ease of use and high
+ performance.
+
+ .. tab-item:: Hugging Face integration
+
+ | - Suggested for prototyping and, if the use case is not covered by OpenVINO GenAI, production.
+ | - Bigger footprint and more dependencies.
+ | - Limited customization due to Hugging Face dependency.
+ | - Not usable for C++ applications.
+ | - A very wide range of supported models.
+
+ Using Optimum Intel is a great way to experiment with different models and scenarios,
+ thanks to a simple interface for the popular API and infrastructure offered by Hugging Face.
+ It also enables weight compression with
+ `Neural Network Compression Framework (NNCF) `__,
+ as well as conversion on the fly. For integration with the final product it may offer
+ lower performance, though.
+
+`Check out the GenAI Quick-start Guide [PDF] `__
The advantages of using OpenVINO for LLM deployment:
-* **OpenVINO offers optimized LLM inference**:
- provides a full C/C++ API, leading to faster operation than Python-based runtimes; includes a
- Python API for rapid development, with the option for further optimization in C++.
-* **Compatible with diverse hardware**:
- supports CPUs, GPUs, and neural accelerators across ARM and x86/x64 architectures, integrated
- Intel® Processor Graphics, discrete Intel® Arc™ A-Series Graphics, and discrete Intel® Data
- Center GPU Flex Series; features automated optimization to maximize performance on target
- hardware.
-* **Requires fewer dependencies**:
- than frameworks like Hugging Face and PyTorch, resulting in a smaller binary size and reduced
- memory footprint, making deployments easier and updates more manageable.
-* **Provides compression and precision management techniques**:
- such as 8-bit and 4-bit weight compression, including embedding layers, and storage format
- reduction. This includes fp16 precision for non-compressed models and int8/int4 for compressed
- models, like GPTQ models from `Hugging Face `__.
-* **Supports a wide range of deep learning models and architectures**:
- including text, image, and audio generative models like Llama 2, MPT, OPT, Stable Diffusion,
- Stable Diffusion XL. This enables the development of multimodal applications, allowing for
- write-once, deploy-anywhere capabilities.
-* **Enhances inference capabilities**:
- fused inference primitives such as Scaled Dot Product Attention, Rotary Positional Embedding,
- Group Query Attention, and Mixture of Experts. It also offers advanced features like in-place
- KV-cache, dynamic quantization, KV-cache quantization and encapsulation, dynamic beam size
- configuration, and speculative sampling.
-* **Provides stateful model optimization**:
- models from the Hugging Face Transformers are converted into a stateful form, optimizing
- inference performance and memory usage in long-running text generation tasks by managing past
- KV-cache tensors more efficiently internally. This feature is automatically activated for many
- supported models, while unsupported ones remain stateless. Learn more about the
- :doc:`Stateful models and State API <../openvino-workflow/running-inference/stateful-models>`.
-
-OpenVINO offers three main paths for Generative AI use cases:
-
-* **Hugging Face**: use OpenVINO as a backend for Hugging Face frameworks (transformers,
- diffusers) through the `Optimum Intel `__
- extension.
-* **OpenVINO GenAI Flavor**: use OpenVINO GenAI APIs (Python and C++).
-* **Base OpenVINO**: use OpenVINO native APIs (Python and C++) with
- `custom pipeline code `__.
-
-In both cases, the OpenVINO runtime is used for inference, and OpenVINO tools are used for
-optimization. The main differences are in footprint size, ease of use, and customizability.
-
-The Hugging Face API is easy to learn, provides a simple interface and hides the complexity of
-model initialization and text generation for a better developer experience. However, it has more
-dependencies, less customization, and cannot be ported to C/C++.
-
-The OpenVINO GenAI Flavor reduces the complexity of LLMs implementation by
-automatically managing essential tasks like the text generation loop, tokenization,
-and scheduling. The Native OpenVINO API provides a more hands-on experience,
-requiring manual setup of these functions. Both methods are designed to minimize dependencies
-and the overall application footprint and enable the use of generative models in C++ applications.
-
-It is recommended to start with Hugging Face frameworks to experiment with different models and
-scenarios. Then the model can be used with OpenVINO APIs if it needs to be optimized
-further. Optimum Intel provides interfaces that enable model optimization (weight compression)
-using `Neural Network Compression Framework (NNCF) `__,
-and export models to the OpenVINO model format for use in native API applications.
-
-Proceed to run LLMs with:
+.. dropdown:: Fewer dependencies and smaller footprint
+ :animate: fade-in-slide-down
+ :color: secondary
+
+ Less bloated than frameworks such as Hugging Face and PyTorch, with a smaller binary size and reduced
+ memory footprint, makes deployments easier and updates more manageable.
+
+.. dropdown:: Compression and precision management
+ :animate: fade-in-slide-down
+ :color: secondary
+
+ Techniques such as 8-bit and 4-bit weight compression, including embedding layers, and storage
+ format reduction. This includes fp16 precision for non-compressed models and int8/int4 for
+ compressed models, like GPTQ models from `Hugging Face `__.
+
+.. dropdown:: Enhanced inference capabilities
+ :animate: fade-in-slide-down
+ :color: secondary
+
+ Advanced features like in-place KV-cache, dynamic quantization, KV-cache quantization and
+ encapsulation, dynamic beam size configuration, and speculative sampling, and more are
+ available.
+
+.. dropdown:: Stateful model optimization
+ :animate: fade-in-slide-down
+ :color: secondary
+
+ Models from the Hugging Face Transformers are converted into a stateful form, optimizing
+ inference performance and memory usage in long-running text generation tasks by managing past
+ KV-cache tensors more efficiently internally. This feature is automatically activated for
+ many supported models, while unsupported ones remain stateless. Learn more about the
+ :doc:`Stateful models and State API <../openvino-workflow/running-inference/stateful-models>`.
+
+.. dropdown:: Optimized LLM inference
+ :animate: fade-in-slide-down
+ :color: secondary
+
+ Includes a Python API for rapid development and C++ for further optimization, offering
+ better performance than Python-based runtimes.
+
+
+Proceed to guides on:
-* :doc:`Hugging Face and Optimum Intel <./llm_inference_guide/llm-inference-hf>`
* :doc:`OpenVINO GenAI Flavor <./llm_inference_guide/genai-guide>`
-* :doc:`Native OpenVINO API <./llm_inference_guide/llm-inference-native-ov>`
-
-The table below summarizes the differences between Hugging Face and the native OpenVINO API
-approaches.
-
-.. dropdown:: Differences between Hugging Face and the native OpenVINO API
-
- .. list-table::
- :widths: 20 25 55
- :header-rows: 1
-
- * -
- - Hugging Face through OpenVINO
- - OpenVINO Native API
- * - Model support
- - Supports transformer-based models such as LLMs
- - Supports all model architectures from most frameworks
- * - APIs
- - Python (Hugging Face API)
- - Python, C++ (OpenVINO API)
- * - Model Format
- - Source Framework / OpenVINO
- - Source Framework / OpenVINO
- * - Inference code
- - Hugging Face based
- - Custom inference pipelines
- * - Additional dependencies
- - Many Hugging Face dependencies
- - Lightweight (e.g. numpy, etc.)
- * - Application footprint
- - Large
- - Small
- * - Pre/post-processing and glue code
- - Provided through high-level Hugging Face APIs
- - Must be custom implemented (see OpenVINO samples and notebooks)
- * - Performance
- - Good, but less efficient compared to native APIs
- - Inherent speed advantage with C++, but requires hands-on optimization
- * - Flexibility
- - Constrained to Hugging Face API
- - High flexibility with Python and C++; allows custom coding
- * - Learning Curve and Effort
- - Lower learning curve; quick to integrate
- - Higher learning curve; requires more effort in integration
- * - Ideal Use Case
- - Ideal for quick prototyping and Python-centric projects
- - Best suited for high-performance, resource-optimized production environments
- * - Model Serving
- - Paid service, based on CPU/GPU usage with Hugging Face
- - Free code solution, run script for own server; costs may incur for cloud services
- like AWS but generally cheaper than Hugging Face rates
+* :doc:`Hugging Face and Optimum Intel <./llm_inference_guide/llm-inference-hf>`
+
+
diff --git a/docs/articles_en/learn-openvino/llm_inference_guide/genai-guide-npu.rst b/docs/articles_en/learn-openvino/llm_inference_guide/genai-guide-npu.rst
index 5a641300a68edb..d725b306d57908 100644
--- a/docs/articles_en/learn-openvino/llm_inference_guide/genai-guide-npu.rst
+++ b/docs/articles_en/learn-openvino/llm_inference_guide/genai-guide-npu.rst
@@ -1,4 +1,4 @@
-Run LLMs with OpenVINO GenAI Flavor on NPU
+Inference with OpenVINO GenAI
==========================================
.. meta::
@@ -20,21 +20,22 @@ Install required dependencies:
pip install nncf==2.12 onnx==1.16.1 optimum-intel==1.19.0
pip install --pre openvino openvino-tokenizers openvino-genai --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly
-NOTE that for systems based on Intel® Core Ultra Processors Series 2 and 16 GB of RAM,
-prompts longer then 1024 characters will not work with a model of 7B or more parameters,
+Note that for systems based on Intel® Core™ Ultra Processors Series 2, more than 16GB of RAM
+may be required to run prompts over 1024 tokens on models exceeding 7B parameters,
such as Llama-2-7B, Mistral-0.2-7B, and Qwen-2-7B.
Export an LLM model via Hugging Face Optimum-Intel
##################################################
-Since **symmetrically-quantized 4-bit (INT4) models are preffered for inference on NPU**, make sure to export
-the model with the proper conversion and optimization settings.
+Since **symmetrically-quantized 4-bit (INT4) models are preffered for inference on NPU**, make
+sure to export the model with the proper conversion and optimization settings.
| You may export LLMs via Optimum-Intel, using one of two compression methods:
| **group quantization** - for both smaller and larger models,
| **channel-wise quantization** - remarkably effective but for models exceeding 1 billion parameters.
-You select one of the methods by setting the ``--group-size`` parameter to either ``128`` or ``-1``, respectively. See the following examples:
+You select one of the methods by setting the ``--group-size`` parameter to either ``128`` or
+``-1``, respectively. See the following examples:
.. tab-set::
diff --git a/docs/articles_en/learn-openvino/llm_inference_guide/genai-guide.rst b/docs/articles_en/learn-openvino/llm_inference_guide/genai-guide.rst
index ebd4667d544616..9998b3989486d2 100644
--- a/docs/articles_en/learn-openvino/llm_inference_guide/genai-guide.rst
+++ b/docs/articles_en/learn-openvino/llm_inference_guide/genai-guide.rst
@@ -1,4 +1,4 @@
-Run LLM Inference on OpenVINO with the GenAI Flavor
+Inference with OpenVINO GenAI
===============================================================================================
.. meta::
@@ -9,39 +9,326 @@ Run LLM Inference on OpenVINO with the GenAI Flavor
:hidden:
NPU inference of LLMs
- genai-guide/genai-use-cases
-This guide will show you how to integrate the OpenVINO GenAI flavor into your application, covering
-loading a model and passing the input context to receive generated text. Note that the vanilla flavor of OpenVINO
-will not work with these instructions, make sure to
-:doc:`install OpenVINO GenAI <../../get-started/install-openvino/install-openvino-genai>`.
+This article provides reference code and guidance on running generative AI models,
+using OpenVINO GenAI. Note that the base OpenVINO version will not work with these instructions,
+make sure to :doc:`install OpenVINO GenAI <../../get-started/install-openvino/install-openvino-genai>`.
-.. note::
+| Here is sample code for several Generative AI use case scenarios. Note that these are very basic
+ examples and may need adjustments for your specific needs, like changing the inference device.
+| For a more extensive instruction and additional options, see the
+ `step-by-step chat-bot guide <#chat-bot-use-case-step-by-step>`__ below.
- The examples use the CPU as the target device, however, the GPU is also supported.
- Note that for the LLM pipeline, the GPU is used only for inference, while token selection, tokenization, and
- detokenization remain on the CPU, for efficiency. Tokenizers are represented as a separate model and also run
- on the CPU.
+.. dropdown:: Text-to-Image Generation
-1. Export an LLM model via Hugging Face Optimum-Intel. A chat-tuned TinyLlama model is used in this example:
+ .. tab-set::
+
+ .. tab-item:: Python
+ :sync: python
+
+ .. tab-set::
+
+ .. tab-item:: main.py
+ :name: mainpy
+
+ .. code-block:: python
+
+ import openvino_genai
+ from PIL import Image
+ import numpy as np
+
+ class Generator(openvino_genai.Generator):
+ def __init__(self, seed, mu=0.0, sigma=1.0):
+ openvino_genai.Generator.__init__(self)
+ np.random.seed(seed)
+ self.mu = mu
+ self.sigma = sigma
+
+ def next(self):
+ return np.random.normal(self.mu, self.sigma)
+
+
+ def infer(model_dir: str, prompt: str):
+ device = 'CPU' # GPU can be used as well
+ random_generator = Generator(42)
+ pipe = openvino_genai.Text2ImagePipeline(model_dir, device)
+ image_tensor = pipe.generate(
+ prompt,
+ width=512,
+ height=512,
+ num_inference_steps=20,
+ num_images_per_prompt=1,
+ random_generator=random_generator
+ )
+
+ image = Image.fromarray(image_tensor.data[0])
+ image.save("image.bmp")
+
+ .. tab-item:: LoRA.py
+ :name: lorapy
+
+ .. code-block:: python
+
+ import openvino as ov
+ import openvino_genai
+ import numpy as np
+ import sys
+
+
+ class Generator(openvino_genai.Generator):
+ def __init__(self, seed, mu=0.0, sigma=1.0):
+ openvino_genai.Generator.__init__(self)
+ np.random.seed(seed)
+ self.mu = mu
+ self.sigma = sigma
+
+ def next(self):
+ return np.random.normal(self.mu, self.sigma)
+
+
+ def image_write(path: str, image_tensor: ov.Tensor):
+ from PIL import Image
+ image = Image.fromarray(image_tensor.data[0])
+ image.save(path)
+
+
+ def infer(models_path: str, prompt: str):
+ prompt = "cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting"
+
+ device = "CPU" # GPU, NPU can be used as well
+ adapter_config = openvino_genai.AdapterConfig()
+
+ for i in range(int(len(adapters) / 2)):
+ adapter = openvino_genai.Adapter(adapters[2 * i])
+ alpha = float(adapters[2 * i + 1])
+ adapter_config.add(adapter, alpha)
+
+ pipe = openvino_genai.Text2ImagePipeline(models_path, device, adapters=adapter_config)
+ print("Generating image with LoRA adapters applied, resulting image will be in lora.bmp")
+ image = pipe.generate(prompt,
+ random_generator=Generator(42),
+ width=512,
+ height=896,
+ num_inference_steps=20)
+
+ image_write("lora.bmp", image)
+ print("Generating image without LoRA adapters applied, resulting image will be in baseline.bmp")
+ image = pipe.generate(prompt,
+ adapters=openvino_genai.AdapterConfig(),
+ random_generator=Generator(42),
+ width=512,
+ height=896,
+ num_inference_steps=20
+ )
+ image_write("baseline.bmp", image)
+
+ For more information, refer to the
+ `Python sample `__
+
+ .. tab-item:: C++
+ :sync: cpp
+
+ .. tab-set::
+
+ .. tab-item:: main.cpp
+ :name: maincpp
+
+ .. code-block:: cpp
+
+ #include "openvino/genai/text2image/pipeline.hpp"
+
+ #include "imwrite.hpp"
+
+ int32_t main(int32_t argc, char* argv[]) try {
+ OPENVINO_ASSERT(argc == 3, "Usage: ", argv[0], " ''");
+
+ const std::string models_path = argv[1], prompt = argv[2];
+ const std::string device = "CPU"; // GPU, NPU can be used as well
+
+ ov::genai::Text2ImagePipeline pipe(models_path, device);
+ ov::Tensor image = pipe.generate(prompt,
+ ov::genai::width(512),
+ ov::genai::height(512),
+ ov::genai::num_inference_steps(20),
+ ov::genai::num_images_per_prompt(1));
+
+ imwrite("image_%d.bmp", image, true);
+
+ return EXIT_SUCCESS;
+ } catch (const std::exception& error) {
+ try {
+ std::cerr << error.what() << '\n';
+ } catch (const std::ios_base::failure&) {}
+ return EXIT_FAILURE;
+ } catch (...) {
+ try {
+ std::cerr << "Non-exception object thrown\n";
+ } catch (const std::ios_base::failure&) {}
+ return EXIT_FAILURE;
+ }
+
+ .. tab-item:: LoRA.cpp
+ :name: loracpp
+
+ .. code-block:: cpp
+
+ #include "openvino/genai/text2image/pipeline.hpp"
+
+ #include "imwrite.hpp"
+
+ int32_t main(int32_t argc, char* argv[]) try {
+ OPENVINO_ASSERT(argc >= 3 && (argc - 3) % 2 == 0, "Usage: ", argv[0], " '' [ ...]]");
+
+ const std::string models_path = argv[1], prompt = argv[2];
+ const std::string device = "CPU"; // GPU, NPU can be used as well
+
+ ov::genai::AdapterConfig adapter_config;
+ for(size_t i = 0; i < (argc - 3)/2; ++i) {
+ ov::genai::Adapter adapter(argv[3 + 2*i]);
+ float alpha = std::atof(argv[3 + 2*i + 1]);
+ adapter_config.add(adapter, alpha);
+ }
+
+ ov::genai::Text2ImagePipeline pipe(models_path, device, ov::genai::adapters(adapter_config));
+
+ std::cout << "Generating image with LoRA adapters applied, resulting image will be in lora.bmp\n";
+ ov::Tensor image = pipe.generate(prompt,
+ ov::genai::random_generator(std::make_shared(42)),
+ ov::genai::width(512),
+ ov::genai::height(896),
+ ov::genai::num_inference_steps(20));
+ imwrite("lora.bmp", image, true);
+
+ std::cout << "Generating image without LoRA adapters applied, resulting image will be in baseline.bmp\n";
+ image = pipe.generate(prompt,
+ ov::genai::adapters(),
+ ov::genai::random_generator(std::make_shared(42)),
+ ov::genai::width(512),
+ ov::genai::height(896),
+ ov::genai::num_inference_steps(20));
+ imwrite("baseline.bmp", image, true);
+
+ return EXIT_SUCCESS;
+ } catch (const std::exception& error) {
+ try {
+ std::cerr << error.what() << '\n';
+ } catch (const std::ios_base::failure&) {}
+ return EXIT_FAILURE;
+ } catch (...) {
+ try {
+ std::cerr << "Non-exception object thrown\n";
+ } catch (const std::ios_base::failure&) {}
+ return EXIT_FAILURE;
+ }
+
+ For more information, refer to the
+ `C++ sample `__
+
+
+.. dropdown:: Speech Recognition
- .. code-block:: python
+ The application performs inference on speech recognition Whisper Models. The samples include
+ the ``WhisperPipeline`` class and use audio files in WAV format at a sampling rate of 16 kHz
+ as input.
- optimum-cli export openvino --model "TinyLlama/TinyLlama-1.1B-Chat-v1.0" --weight-format fp16 --trust-remote-code "TinyLlama-1.1B-Chat-v1.0"
+ .. tab-set::
+
+ .. tab-item:: Python
+ :sync: cpp
+
+ .. code-block:: python
+
+ import openvino_genai
+ import librosa
- *Optional*. Optimize the model:
- The model is an optimized OpenVINO IR with FP16 precision. For enhanced LLM performance,
- it is recommended to use lower precision for model weights, such as INT4, and to compress weights
- using NNCF during model export directly:
+ def read_wav(filepath):
+ raw_speech, samplerate = librosa.load(filepath, sr=16000)
+ return raw_speech.tolist()
- .. code-block:: python
- optimum-cli export openvino --model "TinyLlama/TinyLlama-1.1B-Chat-v1.0" --weight-format int4 --trust-remote-code "TinyLlama-1.1B-Chat-v1.0"
+ def infer(model_dir: str, wav_file_path: str):
+ device = "CPU" # GPU or NPU can be used as well.
+ pipe = openvino_genai.WhisperPipeline(model_dir, device)
+ # The pipeline expects normalized audio with a sampling rate of 16kHz.
+ raw_speech = read_wav(wav_file_path)
+ result = pipe.generate(
+ raw_speech,
+ max_new_tokens=100,
+ language="<|en|>",
+ task="transcribe",
+ return_timestamps=True,
+ )
-2. Perform generation using the new GenAI API:
+ print(result)
+
+ for chunk in result.chunks:
+ print(f"timestamps: [{chunk.start_ts}, {chunk.end_ts}] text: {chunk.text}")
+
+
+ For more information, refer to the
+ `Python sample `__.
+
+ .. tab-item:: C++
+ :sync: cpp
+
+ .. code-block:: cpp
+
+ #include "audio_utils.hpp"
+ #include "openvino/genai/whisper_pipeline.hpp"
+
+ int main(int argc, char* argv[]) try {
+ if (3 > argc) {
+ throw std::runtime_error(std::string{"Usage: "} + argv[0] + " \"\"");
+ }
+
+ std::filesystem::path models_path = argv[1];
+ std::string wav_file_path = argv[2];
+ std::string device = "CPU"; // GPU or NPU can be used as well.
+
+ ov::genai::WhisperPipeline pipeline(models_path, device);
+
+ ov::genai::WhisperGenerationConfig config(models_path / "generation_config.json");
+ config.max_new_tokens = 100;
+ config.language = "<|en|>";
+ config.task = "transcribe";
+ config.return_timestamps = true;
+
+ // The pipeline expects normalized audio with a sampling rate of 16kHz.
+ ov::genai::RawSpeechInput raw_speech = utils::audio::read_wav(wav_file_path);
+ auto result = pipeline.generate(raw_speech, config);
+
+ std::cout << result << "\n";
+
+ for (auto& chunk : *result.chunks) {
+ std::cout << "timestamps: [" << chunk.start_ts << ", " << chunk.end_ts << "] text: " << chunk.text << "\n";
+ }
+
+ } catch (const std::exception& error) {
+ try {
+ std::cerr << error.what() << '\n';
+ } catch (const std::ios_base::failure&) {
+ }
+ return EXIT_FAILURE;
+ } catch (...) {
+ try {
+ std::cerr << "Non-exception object thrown\n";
+ } catch (const std::ios_base::failure&) {
+ }
+ return EXIT_FAILURE;
+ }
+
+ For more information, refer to the
+ `C++ sample `__.
+
+
+.. dropdown:: Using GenAI in Chat Scenario
+
+ For chat scenarios where inputs and outputs represent a conversation, maintaining KVCache
+ across inputs may prove beneficial. The ``start_chat`` and ``finish_chat`` chat-specific
+ methods are used to mark a conversation session, as shown in the samples below:
.. tab-set::
@@ -50,9 +337,35 @@ will not work with these instructions, make sure to
.. code-block:: python
- import openvino_genai as ov_genai
- pipe = ov_genai.LLMPipeline(model_path, "CPU")
- print(pipe.generate("The Sun is yellow because", max_new_tokens=100))
+ import openvino_genai
+
+
+ def streamer(subword):
+ print(subword, end='', flush=True)
+ return False
+
+
+ def infer(model_dir: str):
+ device = 'CPU' # GPU can be used as well.
+ pipe = openvino_genai.LLMPipeline(model_dir, device)
+
+ config = openvino_genai.GenerationConfig()
+ config.max_new_tokens = 100
+
+ pipe.start_chat()
+ while True:
+ try:
+ prompt = input('question:\n')
+ except EOFError:
+ break
+ pipe.generate(prompt, config, streamer)
+ print('\n----------')
+ pipe.finish_chat()
+
+
+
+ For more information, refer to the
+ `Python sample `__.
.. tab-item:: C++
:sync: cpp
@@ -60,27 +373,250 @@ will not work with these instructions, make sure to
.. code-block:: cpp
#include "openvino/genai/llm_pipeline.hpp"
- #include
- int main(int argc, char* argv[]) {
- std::string model_path = argv[1];
- ov::genai::LLMPipeline pipe(model_path, "CPU");
- std::cout << pipe.generate("The Sun is yellow because", ov::genai::max_new_tokens(100));
+ int main(int argc, char* argv[]) try {
+ if (2 != argc) {
+ throw std::runtime_error(std::string{"Usage: "} + argv[0] + " ");
+ }
+ std::string prompt;
+ std::string models_path = argv[1];
+
+ std::string device = "CPU"; // GPU, NPU can be used as well
+ ov::genai::LLMPipeline pipe(models_path, device);
+
+ ov::genai::GenerationConfig config;
+ config.max_new_tokens = 100;
+ std::function streamer = [](std::string word) {
+ std::cout << word << std::flush;
+ return false;
+ };
+
+ pipe.start_chat();
+ std::cout << "question:\n";
+ while (std::getline(std::cin, prompt)) {
+ pipe.generate(prompt, config, streamer);
+ std::cout << "\n----------\n"
+ "question:\n";
+ }
+ pipe.finish_chat();
+ } catch (const std::exception& error) {
+ try {
+ std::cerr << error.what() << '\n';
+ } catch (const std::ios_base::failure&) {}
+ return EXIT_FAILURE;
+ } catch (...) {
+ try {
+ std::cerr << "Non-exception object thrown\n";
+ } catch (const std::ios_base::failure&) {}
+ return EXIT_FAILURE;
+ }
+
+
+ For more information, refer to the
+ `C++ sample `__
+
+
+.. dropdown:: Using GenAI with Vision Language Models
+
+ OpenVINO GenAI introduces the ``openvino_genai.VLMPipeline`` pipeline for
+ inference of multimodal text-generation Vision Language Models (VLMs).
+ With a text prompt and an image as input, VLMPipeline can generate text using
+ models such as LLava or MiniCPM-V. See the chat scenario presented
+ in the samples below:
+
+ .. tab-set::
+
+ .. tab-item:: Python
+ :sync: py
+
+ .. code-block:: python
+
+ import numpy as np
+ import openvino_genai
+ from PIL import Image
+ from openvino import Tensor
+ from pathlib import Path
+
+
+ def streamer(subword: str) -> bool:
+ print(subword, end='', flush=True)
+
+
+ def read_image(path: str) -> Tensor:
+ pic = Image.open(path).convert("RGB")
+ image_data = np.array(pic.getdata()).reshape(1, pic.size[1], pic.size[0], 3).astype(np.uint8)
+ return Tensor(image_data)
+
+
+ def read_images(path: str) -> list[Tensor]:
+ entry = Path(path)
+ if entry.is_dir():
+ return [read_image(str(file)) for file in sorted(entry.iterdir())]
+ return [read_image(path)]
+
+
+ def infer(model_dir: str, image_dir: str):
+ rgbs = read_images(image_dir)
+ device = 'CPU' # GPU can be used as well.
+ enable_compile_cache = dict()
+ if "GPU" == device:
+ enable_compile_cache["CACHE_DIR"] = "vlm_cache"
+ pipe = openvino_genai.VLMPipeline(model_dir, device, **enable_compile_cache)
+
+ config = openvino_genai.GenerationConfig()
+ config.max_new_tokens = 100
+
+ pipe.start_chat()
+ prompt = input('question:\n')
+ pipe.generate(prompt, images=rgbs, generation_config=config, streamer=streamer)
+
+ while True:
+ try:
+ prompt = input("\n----------\n"
+ "question:\n")
+ except EOFError:
+ break
+ pipe.generate(prompt, generation_config=config, streamer=streamer)
+ pipe.finish_chat()
+
+
+ For more information, refer to the
+ `Python sample `__.
+
+ .. tab-item:: C++
+ :sync: cpp
+
+ .. code-block:: cpp
+
+ #include "load_image.hpp"
+ #include
+ #include
+
+ bool print_subword(std::string&& subword) {
+ return !(std::cout << subword << std::flush);
}
-The `LLMPipeline` is the main object used for decoding. You can construct it directly from the
-folder with the converted model. It will automatically load the main model, tokenizer, detokenizer,
-and the default generation configuration.
+ int main(int argc, char* argv[]) try {
+ if (3 != argc) {
+ throw std::runtime_error(std::string{"Usage "} + argv[0] + " ");
+ }
+
+ std::vector rgbs = utils::load_images(argv[2]);
+
+ std::string device = "CPU"; // GPU can be used as well.
+ ov::AnyMap enable_compile_cache;
+ if ("GPU" == device) {
+ enable_compile_cache.insert({ov::cache_dir("vlm_cache")});
+ }
+ ov::genai::VLMPipeline pipe(argv[1], device, enable_compile_cache);
+
+ ov::genai::GenerationConfig generation_config;
+ generation_config.max_new_tokens = 100;
+
+ std::string prompt;
+
+ pipe.start_chat();
+ std::cout << "question:\n";
+
+ std::getline(std::cin, prompt);
+ pipe.generate(prompt,
+ ov::genai::images(rgbs),
+ ov::genai::generation_config(generation_config),
+ ov::genai::streamer(print_subword));
+ std::cout << "\n----------\n"
+ "question:\n";
+ while (std::getline(std::cin, prompt)) {
+ pipe.generate(prompt,
+ ov::genai::generation_config(generation_config),
+ ov::genai::streamer(print_subword));
+ std::cout << "\n----------\n"
+ "question:\n";
+ }
+ pipe.finish_chat();
+ } catch (const std::exception& error) {
+ try {
+ std::cerr << error.what() << '\n';
+ } catch (const std::ios_base::failure&) {}
+ return EXIT_FAILURE;
+ } catch (...) {
+ try {
+ std::cerr << "Non-exception object thrown\n";
+ } catch (const std::ios_base::failure&) {}
+ return EXIT_FAILURE;
+ }
+
+
+ For more information, refer to the
+ `C++ sample `__
+
+
+|
+
+
+Chat-bot use case - step by step
+###############################################################################################
+
+This example will show you how to create a chat-bot functionality, using the ``ov_genai.LLMPipeline``
+and a chat-tuned TinyLlama model. Apart from the basic implementation, it provides additional
+optimization methods.
+
+Although CPU is used as inference device in the samples below, you may choose GPU instead.
+Note that tasks such as token selection, tokenization, and detokenization are always handled
+by CPU only. Tokenizers, represented as a separate model, are also run on CPU.
+
+Running the model
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+
+You start with exporting an LLM model via Hugging Face Optimum-Intel. Note that the precision
+of ``int4`` is used, instead of the original ``fp16``, for better performance. The weight
+compression is done by NNCF at the model export stage. The exported model contains all the
+information necessary for execution, including the tokenizer/detokenizer and the generation
+config, ensuring that its results match those generated by Hugging Face.
+
+The `LLMPipeline` is the main object used for decoding and handles all the necessary steps.
+You can construct it directly from the folder with the converted model.
+
+
+.. tab-set::
+
+ .. tab-item:: Python
+ :sync: py
+
+ .. code-block:: console
+
+ optimum-cli export openvino --model "TinyLlama/TinyLlama-1.1B-Chat-v1.0" --weight-format int4 --trust-remote-code "TinyLlama-1.1B-Chat-v1.0"
+
+ .. code-block:: python
+
+ import openvino_genai as ov_genai
+ pipe = ov_genai.LLMPipeline(model_path, "CPU")
+ print(pipe.generate("The Sun is yellow because", max_new_tokens=100))
+
+ .. tab-item:: C++
+ :sync: cpp
+
+ .. code-block:: console
+
+ optimum-cli export openvino --model "TinyLlama/TinyLlama-1.1B-Chat-v1.0" --weight-format int4 --trust-remote-code "TinyLlama-1.1B-Chat-v1.0"
+
+ .. code-block:: cpp
+
+ #include "openvino/genai/llm_pipeline.hpp"
+ #include
+
+ int main(int argc, char* argv[]) {
+ std::string model_path = argv[1];
+ ov::genai::LLMPipeline pipe(model_path, "CPU");
+ std::cout << pipe.generate("The Sun is yellow because", ov::genai::max_new_tokens(100));
+ }
+
-Once the model is exported from Hugging Face Optimum-Intel, it already contains all the information
-necessary for execution, including the tokenizer/detokenizer and the generation config, ensuring that
-its results match those generated by Hugging Face.
Streaming the Output
-###########################
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
-For more interactive UIs during generation, streaming of model output tokens is supported. See the example
-below, where a lambda function outputs words to the console immediately upon generation:
+For more interactive UIs during generation, you can stream output tokens. In this example, a
+lambda function outputs words to the console immediately upon generation:
.. tab-set::
@@ -177,12 +713,10 @@ You can also create your custom streamer for more sophisticated processing:
Optimizing Generation with Grouped Beam Search
-#######################################################
-
-Leverage grouped beam search decoding and configure generation_config for better text generation
-quality and efficient batch processing in GenAI applications.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
-Specify generation_config to use grouped beam search:
+For better text generation quality and more efficient batch processing, specify
+``generation_config`` to leverage grouped beam search decoding.
.. tab-set::
@@ -219,10 +753,123 @@ Specify generation_config to use grouped beam search:
}
+Efficient Text Generation via Speculative Decoding
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+
+Speculative decoding (or assisted-generation) enables faster token generation
+when an additional smaller draft model is used alongside the main model. This reduces the
+number of infer requests to the main model, increasing performance.
+
+The draft model predicts the next K tokens one by one in an autoregressive manner. The main
+model validates these predictions and corrects them if necessary - in case of
+a discrepancy, the main model prediction is used. Then, the draft model acquires this token and
+runs prediction of the next K tokens, thus repeating the cycle.
+
+
+.. tab-set::
+
+ .. tab-item:: Python
+ :sync: py
+
+ .. code-block:: python
+
+ import openvino_genai
+ import queue
+ import threading
+
+ def streamer(subword):
+ print(subword, end='', flush=True)
+ return False
+
+ def infer(model_dir: str, draft_model_dir: str, prompt: str):
+ main_device = 'CPU' # GPU can be used as well.
+ draft_device = 'CPU'
+
+ scheduler_config = openvino_genai.SchedulerConfig()
+ scheduler_config.cache_size = 2
+
+ draft_model = openvino_genai.draft_model(draft_model_dir, draft_device)
+
+ pipe = openvino_genai.LLMPipeline(model_dir, main_device, scheduler_config=scheduler_config, draft_model=draft_model)
+
+ config = openvino_genai.GenerationConfig()
+ config.max_new_tokens = 100
+ config.num_assistant_tokens = 5
+
+ pipe.generate("The Sun is yellow because", config, streamer)
+
+
+ For more information, refer to the
+ `Python sample `__.
+
+
+ .. tab-item:: C++
+ :sync: cpp
+
+ .. code-block:: cpp
+
+ #include
+
+ #include "openvino/genai/llm_pipeline.hpp"
+
+ int main(int argc, char* argv[]) try {
+ if (4 != argc) {
+ throw std::runtime_error(std::string{"Usage: "} + argv[0] + " ''");
+ }
+
+ ov::genai::GenerationConfig config;
+ config.max_new_tokens = 100;
+ config.num_assistant_tokens = 5;
+
+ std::string main_model_path = argv[1];
+ std::string draft_model_path = argv[2];
+ std::string prompt = argv[3];
+
+ std::string main_device = "CPU", draft_device = "CPU";
+
+ ov::genai::SchedulerConfig scheduler_config;
+ scheduler_config.cache_size = 5;
+
+ ov::genai::LLMPipeline pipe(
+ main_model_path,
+ main_device,
+ ov::genai::draft_model(draft_model_path, draft_device),
+ ov::genai::scheduler_config(scheduler_config));
+
+ auto streamer = [](std::string subword) {
+ std::cout << subword << std::flush;
+ return false;
+ };
+
+ pipe.generate("The Sun is yellow because", config, streamer);
+ } catch (const std::exception& error) {
+ try {
+ std::cerr << error.what() << '\n';
+ } catch (const std::ios_base::failure&) {}
+ return EXIT_FAILURE;
+ } catch (...) {
+ try {
+ std::cerr << "Non-exception object thrown\n";
+ } catch (const std::ios_base::failure&) {}
+ return EXIT_FAILURE;
+ }
+
+
+ For more information, refer to the
+ `C++ sample `__
+
+
+
+
+
+
+
+
Comparing with Hugging Face Results
#######################################
-Compare and analyze results with those generated by Hugging Face models.
+You can compare the results of the above example with those generated by Hugging Face models by
+running the following code:
.. tab-set::
@@ -250,30 +897,35 @@ Compare and analyze results with those generated by Hugging Face models.
assert hf_output == ov_output
-GenAI API
-#######################################
-OpenVINO GenAI Flavor includes the following API:
-* generation_config - defines a configuration class for text generation, enabling customization of the generation process such as the maximum length of the generated text, whether to ignore end-of-sentence tokens, and the specifics of the decoding strategy (greedy, beam search, or multinomial sampling).
-* llm_pipeline - provides classes and utilities for text generation, including a pipeline for processing inputs, generating text, and managing outputs with configurable options.
-* streamer_base - an abstract base class for creating streamers.
-* tokenizer - the tokenizer class for text encoding and decoding.
+GenAI API
+#######################################
+
+The use case described here uses the following OpenVINO GenAI API methods:
+* generation_config - defines a configuration class for text generation,
+ enabling customization of the generation process such as the maximum length of
+ the generated text, whether to ignore end-of-sentence tokens, and the specifics
+ of the decoding strategy (greedy, beam search, or multinomial sampling).
+* llm_pipeline - provides classes and utilities for processing inputs,
+ text generation, and managing outputs with configurable options.
+* streamer_base - an abstract base class for creating streamers.
+* tokenizer - the tokenizer class for text encoding and decoding.
* visibility - controls the visibility of the GenAI library.
-Learn more in the `GenAI API reference `__.
+Learn more from the `GenAI API reference `__.
Additional Resources
####################
* `OpenVINO GenAI Repo `__
* `OpenVINO GenAI Samples `__
+* A Jupyter notebook demonstrating
+ `Visual-language assistant with MiniCPM-V2 and OpenVINO `__
* `OpenVINO Tokenizers `__
* `Neural Network Compression Framework `__
-
-
diff --git a/docs/articles_en/learn-openvino/llm_inference_guide/genai-guide/genai-use-cases.rst b/docs/articles_en/learn-openvino/llm_inference_guide/genai-guide/genai-use-cases.rst
deleted file mode 100644
index 6033bd8ed96106..00000000000000
--- a/docs/articles_en/learn-openvino/llm_inference_guide/genai-guide/genai-use-cases.rst
+++ /dev/null
@@ -1,426 +0,0 @@
-GenAI Use Cases
-=====================
-
-This article provides several use case scenarios for Generative AI model
-inference. The applications presented in the code samples below
-only require minimal configuration, like setting an inference device. Feel free
-to explore and modify the source code as you need.
-
-
-Using GenAI for Text-to-Image Generation
-########################################
-
-Examples below demonstrate inference on text-to-image models, like Stable Diffusion
-1.5, 2.1, and LCM, with a text prompt as input. The :ref:`main.cpp `
-sample shows basic usage of the ``Text2ImagePipeline`` pipeline.
-:ref:`lora.cpp ` shows how to apply LoRA adapters to the pipeline.
-
-
-.. tab-set::
-
- .. tab-item:: Python
- :sync: python
-
- .. tab-set::
-
- .. tab-item:: main.py
- :name: mainpy
-
- .. code-block:: python
-
- import openvino_genai
- from PIL import Image
- import numpy as np
-
- class Generator(openvino_genai.Generator):
- def __init__(self, seed, mu=0.0, sigma=1.0):
- openvino_genai.Generator.__init__(self)
- np.random.seed(seed)
- self.mu = mu
- self.sigma = sigma
-
- def next(self):
- return np.random.normal(self.mu, self.sigma)
-
-
- def infer(model_dir: str, prompt: str):
- device = 'CPU' # GPU can be used as well
- random_generator = Generator(42)
- pipe = openvino_genai.Text2ImagePipeline(model_dir, device)
- image_tensor = pipe.generate(
- prompt,
- width=512,
- height=512,
- num_inference_steps=20,
- num_images_per_prompt=1,
- random_generator=random_generator
- )
-
- image = Image.fromarray(image_tensor.data[0])
- image.save("image.bmp")
-
- .. tab-item:: LoRA.py
- :name: lorapy
-
- .. code-block:: python
-
- import openvino as ov
- import openvino_genai
- import numpy as np
- import sys
-
-
- class Generator(openvino_genai.Generator):
- def __init__(self, seed, mu=0.0, sigma=1.0):
- openvino_genai.Generator.__init__(self)
- np.random.seed(seed)
- self.mu = mu
- self.sigma = sigma
-
- def next(self):
- return np.random.normal(self.mu, self.sigma)
-
-
- def image_write(path: str, image_tensor: ov.Tensor):
- from PIL import Image
- image = Image.fromarray(image_tensor.data[0])
- image.save(path)
-
-
- def infer(models_path: str, prompt: str):
- prompt = "cyberpunk cityscape like Tokyo New York with tall buildings at dusk golden hour cinematic lighting"
-
- device = "CPU" # GPU, NPU can be used as well
- adapter_config = openvino_genai.AdapterConfig()
-
- for i in range(int(len(adapters) / 2)):
- adapter = openvino_genai.Adapter(adapters[2 * i])
- alpha = float(adapters[2 * i + 1])
- adapter_config.add(adapter, alpha)
-
- pipe = openvino_genai.Text2ImagePipeline(models_path, device, adapters=adapter_config)
- print("Generating image with LoRA adapters applied, resulting image will be in lora.bmp")
- image = pipe.generate(prompt,
- random_generator=Generator(42),
- width=512,
- height=896,
- num_inference_steps=20)
-
- image_write("lora.bmp", image)
- print("Generating image without LoRA adapters applied, resulting image will be in baseline.bmp")
- image = pipe.generate(prompt,
- adapters=openvino_genai.AdapterConfig(),
- random_generator=Generator(42),
- width=512,
- height=896,
- num_inference_steps=20
- )
- image_write("baseline.bmp", image)
-
- For more information, refer to the
- `Python sample `__
-
- .. tab-item:: C++
- :sync: cpp
-
- .. tab-set::
-
- .. tab-item:: main.cpp
- :name: maincpp
-
- .. code-block:: cpp
-
- #include "openvino/genai/text2image/pipeline.hpp"
-
- #include "imwrite.hpp"
-
- int32_t main(int32_t argc, char* argv[]) try {
- OPENVINO_ASSERT(argc == 3, "Usage: ", argv[0], " ''");
-
- const std::string models_path = argv[1], prompt = argv[2];
- const std::string device = "CPU"; // GPU, NPU can be used as well
-
- ov::genai::Text2ImagePipeline pipe(models_path, device);
- ov::Tensor image = pipe.generate(prompt,
- ov::genai::width(512),
- ov::genai::height(512),
- ov::genai::num_inference_steps(20),
- ov::genai::num_images_per_prompt(1));
-
- imwrite("image_%d.bmp", image, true);
-
- return EXIT_SUCCESS;
- } catch (const std::exception& error) {
- try {
- std::cerr << error.what() << '\n';
- } catch (const std::ios_base::failure&) {}
- return EXIT_FAILURE;
- } catch (...) {
- try {
- std::cerr << "Non-exception object thrown\n";
- } catch (const std::ios_base::failure&) {}
- return EXIT_FAILURE;
- }
-
- .. tab-item:: LoRA.cpp
- :name: loracpp
-
- .. code-block:: cpp
-
- #include "openvino/genai/text2image/pipeline.hpp"
-
- #include "imwrite.hpp"
-
- int32_t main(int32_t argc, char* argv[]) try {
- OPENVINO_ASSERT(argc >= 3 && (argc - 3) % 2 == 0, "Usage: ", argv[0], " '' [ ...]]");
-
- const std::string models_path = argv[1], prompt = argv[2];
- const std::string device = "CPU"; // GPU, NPU can be used as well
-
- ov::genai::AdapterConfig adapter_config;
- for(size_t i = 0; i < (argc - 3)/2; ++i) {
- ov::genai::Adapter adapter(argv[3 + 2*i]);
- float alpha = std::atof(argv[3 + 2*i + 1]);
- adapter_config.add(adapter, alpha);
- }
-
- ov::genai::Text2ImagePipeline pipe(models_path, device, ov::genai::adapters(adapter_config));
-
- std::cout << "Generating image with LoRA adapters applied, resulting image will be in lora.bmp\n";
- ov::Tensor image = pipe.generate(prompt,
- ov::genai::random_generator(std::make_shared(42)),
- ov::genai::width(512),
- ov::genai::height(896),
- ov::genai::num_inference_steps(20));
- imwrite("lora.bmp", image, true);
-
- std::cout << "Generating image without LoRA adapters applied, resulting image will be in baseline.bmp\n";
- image = pipe.generate(prompt,
- ov::genai::adapters(),
- ov::genai::random_generator(std::make_shared(42)),
- ov::genai::width(512),
- ov::genai::height(896),
- ov::genai::num_inference_steps(20));
- imwrite("baseline.bmp", image, true);
-
- return EXIT_SUCCESS;
- } catch (const std::exception& error) {
- try {
- std::cerr << error.what() << '\n';
- } catch (const std::ios_base::failure&) {}
- return EXIT_FAILURE;
- } catch (...) {
- try {
- std::cerr << "Non-exception object thrown\n";
- } catch (const std::ios_base::failure&) {}
- return EXIT_FAILURE;
- }
-
-
- For more information, refer to the
- `C++ sample `__
-
-
-
-
-
-Using GenAI in Speech Recognition
-#################################
-
-
-The application, shown in code samples below, performs inference on speech
-recognition Whisper Models. The samples include the ``WhisperPipeline`` class
-and use audio files in WAV format at a sampling rate of 16 kHz as input.
-
-.. tab-set::
-
- .. tab-item:: Python
- :sync: cpp
-
- .. code-block:: python
-
- import openvino_genai
- import librosa
-
-
- def read_wav(filepath):
- raw_speech, samplerate = librosa.load(filepath, sr=16000)
- return raw_speech.tolist()
-
-
- def infer(model_dir: str, wav_file_path: str):
- device = "CPU" # GPU or NPU can be used as well.
- pipe = openvino_genai.WhisperPipeline(model_dir, device)
-
- # The pipeline expects normalized audio with a sampling rate of 16kHz.
- raw_speech = read_wav(wav_file_path)
- result = pipe.generate(
- raw_speech,
- max_new_tokens=100,
- language="<|en|>",
- task="transcribe",
- return_timestamps=True,
- )
-
- print(result)
-
- for chunk in result.chunks:
- print(f"timestamps: [{chunk.start_ts}, {chunk.end_ts}] text: {chunk.text}")
-
-
- For more information, refer to the
- `Python sample `__.
-
- .. tab-item:: C++
- :sync: cpp
-
- .. code-block:: cpp
-
- #include "audio_utils.hpp"
- #include "openvino/genai/whisper_pipeline.hpp"
-
- int main(int argc, char* argv[]) try {
- if (3 > argc) {
- throw std::runtime_error(std::string{"Usage: "} + argv[0] + " \"\"");
- }
-
- std::filesystem::path models_path = argv[1];
- std::string wav_file_path = argv[2];
- std::string device = "CPU"; // GPU or NPU can be used as well.
-
- ov::genai::WhisperPipeline pipeline(models_path, device);
-
- ov::genai::WhisperGenerationConfig config(models_path / "generation_config.json");
- config.max_new_tokens = 100;
- config.language = "<|en|>";
- config.task = "transcribe";
- config.return_timestamps = true;
-
- // The pipeline expects normalized audio with a sampling rate of 16kHz.
- ov::genai::RawSpeechInput raw_speech = utils::audio::read_wav(wav_file_path);
- auto result = pipeline.generate(raw_speech, config);
-
- std::cout << result << "\n";
-
- for (auto& chunk : *result.chunks) {
- std::cout << "timestamps: [" << chunk.start_ts << ", " << chunk.end_ts << "] text: " << chunk.text << "\n";
- }
-
- } catch (const std::exception& error) {
- try {
- std::cerr << error.what() << '\n';
- } catch (const std::ios_base::failure&) {
- }
- return EXIT_FAILURE;
- } catch (...) {
- try {
- std::cerr << "Non-exception object thrown\n";
- } catch (const std::ios_base::failure&) {
- }
- return EXIT_FAILURE;
- }
-
-
- For more information, refer to the
- `C++ sample `__.
-
-
-Using GenAI in Chat Scenario
-############################
-
-For chat scenarios where inputs and outputs represent a conversation, maintaining KVCache across inputs
-may prove beneficial. The ``start_chat`` and ``finish_chat`` chat-specific methods are used to
-mark a conversation session, as shown in the samples below:
-
-.. tab-set::
-
- .. tab-item:: Python
- :sync: py
-
- .. code-block:: python
-
- import openvino_genai
-
-
- def streamer(subword):
- print(subword, end='', flush=True)
- return False
-
-
- def infer(model_dir: str):
- device = 'CPU' # GPU can be used as well.
- pipe = openvino_genai.LLMPipeline(model_dir, device)
-
- config = openvino_genai.GenerationConfig()
- config.max_new_tokens = 100
-
- pipe.start_chat()
- while True:
- try:
- prompt = input('question:\n')
- except EOFError:
- break
- pipe.generate(prompt, config, streamer)
- print('\n----------')
- pipe.finish_chat()
-
-
-
- For more information, refer to the
- `Python sample `__.
-
- .. tab-item:: C++
- :sync: cpp
-
- .. code-block:: cpp
-
- #include "openvino/genai/llm_pipeline.hpp"
-
- int main(int argc, char* argv[]) try {
- if (2 != argc) {
- throw std::runtime_error(std::string{"Usage: "} + argv[0] + " ");
- }
- std::string prompt;
- std::string models_path = argv[1];
-
- std::string device = "CPU"; // GPU, NPU can be used as well
- ov::genai::LLMPipeline pipe(models_path, device);
-
- ov::genai::GenerationConfig config;
- config.max_new_tokens = 100;
- std::function streamer = [](std::string word) {
- std::cout << word << std::flush;
- return false;
- };
-
- pipe.start_chat();
- std::cout << "question:\n";
- while (std::getline(std::cin, prompt)) {
- pipe.generate(prompt, config, streamer);
- std::cout << "\n----------\n"
- "question:\n";
- }
- pipe.finish_chat();
- } catch (const std::exception& error) {
- try {
- std::cerr << error.what() << '\n';
- } catch (const std::ios_base::failure&) {}
- return EXIT_FAILURE;
- } catch (...) {
- try {
- std::cerr << "Non-exception object thrown\n";
- } catch (const std::ios_base::failure&) {}
- return EXIT_FAILURE;
- }
-
-
- For more information, refer to the
- `C++ sample `__
-
-Additional Resources
-#####################
-
-* :doc:`Install OpenVINO GenAI <../../../get-started/install-openvino/install-openvino-genai>`
-* `OpenVINO GenAI Repo `__
-* `OpenVINO GenAI Samples `__
-* `OpenVINO Tokenizers `__
diff --git a/docs/articles_en/learn-openvino/llm_inference_guide/llm-inference-hf.rst b/docs/articles_en/learn-openvino/llm_inference_guide/llm-inference-hf.rst
index a26b670b5314d0..4fec1acd23e6a7 100644
--- a/docs/articles_en/learn-openvino/llm_inference_guide/llm-inference-hf.rst
+++ b/docs/articles_en/learn-openvino/llm_inference_guide/llm-inference-hf.rst
@@ -1,4 +1,4 @@
-Run LLMs with Hugging Face and Optimum Intel
+Inference with Optimum Intel
===============================================================================================
.. meta::
@@ -276,9 +276,10 @@ includes **Dynamic quantization** of activations of 4/8-bit quantized MatMuls an
ov_config={"KV_CACHE_PRECISION": "u8", "DYNAMIC_QUANTIZATION_GROUP_SIZE": "32", "PERFORMANCE_HINT": "LATENCY"}
)
-.. note::
+ .. note::
+ Currently, for KV-cache quantization, GPU ignores the DYNAMIC_QUANTIZATION_GROUP_SIZE property, using ``group_size = head_size``. Additionally, it does not support the ``get_state()`` and ``set_state()`` APIs when KV-cache quantization is enabled.
- Currently, both Dynamic quantization and KV-cache quantization are available for CPU device.
+ For GPU, KV-cache quantization is enabled by default on platforms without XMX support, and can be disabled by setting KV_CACHE_PRECISION to ``undefined``.
Working with Models Tuned with LoRA
diff --git a/docs/articles_en/learn-openvino/llm_inference_guide/llm-inference-native-ov.rst b/docs/articles_en/learn-openvino/llm_inference_guide/llm-inference-native-ov.rst
index 2476a0423e30e1..d33ae05f68f462 100644
--- a/docs/articles_en/learn-openvino/llm_inference_guide/llm-inference-native-ov.rst
+++ b/docs/articles_en/learn-openvino/llm_inference_guide/llm-inference-native-ov.rst
@@ -1,4 +1,4 @@
-Run LLM Inference on Native OpenVINO (not recommended)
+Generative AI with Base OpenVINO (not recommended)
===============================================================================================
To run Generative AI models using native OpenVINO APIs you need to follow regular
diff --git a/docs/articles_en/openvino-workflow/running-inference/inference-devices-and-modes/npu-device.rst b/docs/articles_en/openvino-workflow/running-inference/inference-devices-and-modes/npu-device.rst
index 7b135fa7ff0b14..436d383ebf787e 100644
--- a/docs/articles_en/openvino-workflow/running-inference/inference-devices-and-modes/npu-device.rst
+++ b/docs/articles_en/openvino-workflow/running-inference/inference-devices-and-modes/npu-device.rst
@@ -146,6 +146,8 @@ offer a limited set of supported OpenVINO features.
ov::intel_npu::turbo
ov::intel_npu::tiles
ov::intel_npu::max_tiles
+ ov::intel_npu::bypass_umd_caching
+ ov::intel_npu::defer_weights_load
.. tab-item:: Read-only properties
@@ -168,7 +170,6 @@ offer a limited set of supported OpenVINO features.
ov::intel_npu::device_alloc_mem_size
ov::intel_npu::device_total_mem_size
ov::intel_npu::driver_version
- ov::intel_npu::bypass_umd_caching
.. note::
diff --git a/docs/sphinx_setup/_static/benchmarks_files/OV-2024.5-Performance-Data.xlsx b/docs/sphinx_setup/_static/benchmarks_files/OV-2024.5-Performance-Data.xlsx
index 0c29b3282790fa..e5a6a4b039b029 100644
Binary files a/docs/sphinx_setup/_static/benchmarks_files/OV-2024.5-Performance-Data.xlsx and b/docs/sphinx_setup/_static/benchmarks_files/OV-2024.5-Performance-Data.xlsx differ
diff --git a/docs/sphinx_setup/_static/benchmarks_files/data/graph-data-ov.json b/docs/sphinx_setup/_static/benchmarks_files/data/graph-data-ov.json
index 59e06ef51f812d..44b5b5707042df 100644
--- a/docs/sphinx_setup/_static/benchmarks_files/data/graph-data-ov.json
+++ b/docs/sphinx_setup/_static/benchmarks_files/data/graph-data-ov.json
@@ -13,10 +13,7 @@
"int8": 312.06,
"fp16": 345.49,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -51,10 +48,7 @@
"int8": 328.55,
"fp16": 285.3,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -85,14 +79,11 @@
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
+ "int4": 20.07,
+ "int8": 17.42,
"fp16": "",
"fp32": "",
- "bf16": "",
- "token_int4": 20.07,
- "token_int8": 17.42,
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -117,20 +108,17 @@
"Platform": "Intel® Arc™ A-Series Graphics dGPU",
"Model": "glm-4-9b-chat",
"featured_SKU": true,
- "whats_new_model": true,
+ "whats_new_model": "false",
"PlatformType": "Accelerator Platforms",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
+ "int4": 36.48,
+ "int8": 27.59,
"fp16": "",
"fp32": "",
- "bf16": "",
- "token_int4": 36.48,
- "token_int8": 27.59,
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -161,14 +149,11 @@
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 42.82,
+ "int8": 33.97,
+ "fp16": 22.23,
"fp32": "",
- "bf16": "",
- "token_int4": 42.82,
- "token_int8": 33.97,
- "token_fp16": 22.23
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -193,20 +178,17 @@
"Platform": "Intel® Arc™ A-Series Graphics dGPU",
"Model": "llama-3-8b",
"featured_SKU": true,
- "whats_new_model": false,
+ "whats_new_model": "false",
"PlatformType": "Accelerator Platforms",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
+ "int4": 39.6,
+ "int8": 30.59,
"fp16": "",
"fp32": "",
- "bf16": "",
- "token_int4": 39.6,
- "token_int8": 30.59,
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -237,14 +219,11 @@
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 55.37,
+ "int8": 51.62,
+ "fp16": 35.82,
"fp32": "",
- "bf16": "",
- "token_int4": 55.37,
- "token_int8": 51.62,
- "token_fp16": 35.82
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -279,10 +258,7 @@
"int8": 34.84,
"fp16": 19.43,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -313,14 +289,11 @@
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 43.4,
+ "int8": 32.32,
+ "fp16": 20.91,
"fp32": "",
- "bf16": "",
- "token_int4": 43.4,
- "token_int8": 32.32,
- "token_fp16": 20.91
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -355,10 +328,7 @@
"int8": 2348.6,
"fp16": 2074.34,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -383,20 +353,17 @@
"Platform": "Intel® Arc™ A-Series Graphics dGPU",
"Model": "phi-3-mini-4k-instruct",
"featured_SKU": true,
- "whats_new_model": false,
+ "whats_new_model": true,
"PlatformType": "Accelerator Platforms",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 59.06,
+ "int8": 47.96,
+ "fp16": 29.29,
"fp32": "",
- "bf16": "",
- "token_int4": 59.06,
- "token_int8": 47.96,
- "token_fp16": 29.29
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -427,14 +394,11 @@
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 40.48,
+ "int8": 32.79,
+ "fp16": 20.67,
"fp32": "",
- "bf16": "",
- "token_int4": 40.48,
- "token_int8": 32.79,
- "token_fp16": 20.67
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -469,10 +433,7 @@
"int8": 1401.85,
"fp16": 1046.9,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -507,10 +468,7 @@
"int8": 112.21,
"fp16": 73.01,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -545,10 +503,7 @@
"int8": 1308.1,
"fp16": 1201.69,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -583,10 +538,7 @@
"int8": "",
"fp16": "",
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -621,10 +573,7 @@
"int8": 517.1,
"fp16": 550.33,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -650,7 +599,7 @@
"Model": "efficientdet-d0",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -659,10 +608,7 @@
"int8": 23.3,
"fp16": "",
"fp32": 23.72,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -688,7 +634,7 @@
"Model": "mobilenet-v2",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -697,10 +643,7 @@
"int8": 228.97,
"fp16": "",
"fp32": 219.37,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -726,7 +669,7 @@
"Model": "resnet-50",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -735,10 +678,7 @@
"int8": 59.38,
"fp16": "",
"fp32": 54.24,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -764,7 +704,7 @@
"Model": "ssd-resnet34-1200",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -773,10 +713,7 @@
"int8": 1.26,
"fp16": "",
"fp32": 1.08,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -802,7 +739,7 @@
"Model": "ssd_mobilenet_v1_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -811,10 +748,7 @@
"int8": 111.92,
"fp16": "",
"fp32": 98.44,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -839,8 +773,8 @@
"Platform": "Intel® Atom® X6425E CPU+iGPU",
"Model": "yolo11",
"featured_SKU": false,
- "whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "whats_new_model": "false",
+ "PlatformType": "Intel® Atom™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -849,10 +783,7 @@
"int8": "",
"fp16": "",
"fp32": 34.99,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -878,7 +809,7 @@
"Model": "yolo_v8n",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -887,10 +818,7 @@
"int8": 36.35,
"fp16": "",
"fp32": 33.97,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -916,7 +844,7 @@
"Model": "efficientdet-d0",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -925,10 +853,7 @@
"int8": 7.26,
"fp16": "",
"fp32": 5.01,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -954,7 +879,7 @@
"Model": "mobilenet-v2",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -963,10 +888,7 @@
"int8": 134.16,
"fp16": "",
"fp32": 80.45,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -992,7 +914,7 @@
"Model": "resnet-50",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -1001,10 +923,7 @@
"int8": 19.87,
"fp16": "",
"fp32": 8.15,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -1030,7 +949,7 @@
"Model": "ssd-resnet34-1200",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -1039,10 +958,7 @@
"int8": 0.33,
"fp16": "",
"fp32": 0.13,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -1068,7 +984,7 @@
"Model": "ssd_mobilenet_v1_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -1077,10 +993,7 @@
"int8": 45.84,
"fp16": "",
"fp32": 21.63,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -1105,8 +1018,8 @@
"Platform": "Intel® Atom® X6425E CPU-only",
"Model": "yolo11",
"featured_SKU": false,
- "whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "whats_new_model": "false",
+ "PlatformType": "Intel® Atom™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -1115,10 +1028,7 @@
"int8": "",
"fp16": "",
"fp32": 5.3,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -1144,7 +1054,7 @@
"Model": "yolo_v8n",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -1153,10 +1063,7 @@
"int8": 10.31,
"fp16": "",
"fp32": 5.12,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -1182,7 +1089,7 @@
"Model": "efficientdet-d0",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -1191,10 +1098,7 @@
"int8": 22.02,
"fp16": 25.05,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -1220,7 +1124,7 @@
"Model": "mobilenet-v2",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -1229,10 +1133,7 @@
"int8": 187.37,
"fp16": 222.58,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -1258,7 +1159,7 @@
"Model": "resnet-50",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -1267,10 +1168,7 @@
"int8": 48.1,
"fp16": 51.68,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -1296,7 +1194,7 @@
"Model": "ssd-resnet34-1200",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -1305,10 +1203,7 @@
"int8": 1.16,
"fp16": 1.16,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -1334,7 +1229,7 @@
"Model": "ssd_mobilenet_v1_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -1343,10 +1238,7 @@
"int8": 93.36,
"fp16": 95.62,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -1372,7 +1264,7 @@
"Model": "yolo_v8n",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -1381,10 +1273,7 @@
"int8": 31.79,
"fp16": 33.13,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -1410,7 +1299,7 @@
"Model": "efficientdet-d0",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -1419,10 +1308,7 @@
"int8": 39.3,
"fp16": "",
"fp32": 28.97,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -1448,7 +1334,7 @@
"Model": "mobilenet-v2",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -1457,10 +1343,7 @@
"int8": 480.45,
"fp16": "",
"fp32": 302.75,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -1486,7 +1369,7 @@
"Model": "resnet-50",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -1495,10 +1378,7 @@
"int8": 129.7,
"fp16": "",
"fp32": 54.69,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -1524,7 +1404,7 @@
"Model": "ssd-resnet34-1200",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -1533,10 +1413,7 @@
"int8": 2.49,
"fp16": "",
"fp32": 0.86,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -1562,7 +1439,7 @@
"Model": "ssd_mobilenet_v1_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -1571,10 +1448,7 @@
"int8": 233.16,
"fp16": "",
"fp32": 114.81,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -1599,8 +1473,8 @@
"Platform": "Intel® Atom® x7425E CPU+iGPU",
"Model": "yolo11",
"featured_SKU": false,
- "whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "whats_new_model": "false",
+ "PlatformType": "Intel® Atom™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -1609,10 +1483,7 @@
"int8": "",
"fp16": "",
"fp32": 41.37,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -1638,7 +1509,7 @@
"Model": "yolo_v8n",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -1647,10 +1518,7 @@
"int8": 67.73,
"fp16": "",
"fp32": 36.05,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -1676,7 +1544,7 @@
"Model": "efficientdet-d0",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -1685,10 +1553,7 @@
"int8": 14.29,
"fp16": "",
"fp32": 11.18,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -1714,7 +1579,7 @@
"Model": "mobilenet-v2",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -1723,10 +1588,7 @@
"int8": 273.98,
"fp16": "",
"fp32": 169.54,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -1752,7 +1614,7 @@
"Model": "resnet-50",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -1761,10 +1623,7 @@
"int8": 45.27,
"fp16": "",
"fp32": 18.84,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -1790,7 +1649,7 @@
"Model": "ssd-resnet34-1200",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -1799,10 +1658,7 @@
"int8": 0.76,
"fp16": "",
"fp32": 0.31,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -1828,7 +1684,7 @@
"Model": "ssd_mobilenet_v1_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -1837,10 +1693,7 @@
"int8": 98.2,
"fp16": "",
"fp32": 45.36,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -1865,8 +1718,8 @@
"Platform": "Intel® Atom® x7425E CPU-only",
"Model": "yolo11",
"featured_SKU": false,
- "whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "whats_new_model": "false",
+ "PlatformType": "Intel® Atom™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -1875,10 +1728,7 @@
"int8": "",
"fp16": "",
"fp32": 13.77,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -1904,7 +1754,7 @@
"Model": "yolo_v8n",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -1913,10 +1763,7 @@
"int8": 21.58,
"fp16": "",
"fp32": 11.78,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -1942,7 +1789,7 @@
"Model": "efficientdet-d0",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -1951,10 +1798,7 @@
"int8": 40.0,
"fp16": 34.31,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -1980,7 +1824,7 @@
"Model": "mobilenet-v2",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -1989,10 +1833,7 @@
"int8": 414.66,
"fp16": 324.8,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -2018,7 +1859,7 @@
"Model": "resnet-50",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -2027,10 +1868,7 @@
"int8": 106.34,
"fp16": 64.69,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -2056,7 +1894,7 @@
"Model": "ssd-resnet34-1200",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -2065,10 +1903,7 @@
"int8": 2.16,
"fp16": 1.32,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -2094,7 +1929,7 @@
"Model": "ssd_mobilenet_v1_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -2103,10 +1938,7 @@
"int8": 211.07,
"fp16": 137.13,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -2132,7 +1964,7 @@
"Model": "yolo_v8n",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -2141,10 +1973,7 @@
"int8": 60.92,
"fp16": 44.64,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -2170,7 +1999,7 @@
"Model": "bert-base-cased",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -2179,10 +2008,7 @@
"int8": 45.34,
"fp16": "",
"fp32": 33.5,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -2208,7 +2034,7 @@
"Model": "efficientdet-d0",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -2217,10 +2043,7 @@
"int8": 57.78,
"fp16": "",
"fp32": 48.75,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -2246,7 +2069,7 @@
"Model": "mask_rcnn_resnet50_atrous_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -2255,10 +2078,7 @@
"int8": 0.56,
"fp16": "",
"fp32": 0.51,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -2284,7 +2104,7 @@
"Model": "mobilenet-v2",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -2293,10 +2113,7 @@
"int8": 525.47,
"fp16": "",
"fp32": 392.65,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -2322,7 +2139,7 @@
"Model": "resnet-50",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -2331,10 +2148,7 @@
"int8": 197.41,
"fp16": "",
"fp32": 115.71,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -2360,7 +2174,7 @@
"Model": "ssd-resnet34-1200",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -2369,10 +2183,7 @@
"int8": 5.38,
"fp16": "",
"fp32": 2.71,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -2398,7 +2209,7 @@
"Model": "ssd_mobilenet_v1_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -2407,10 +2218,7 @@
"int8": 316.13,
"fp16": "",
"fp32": 194.29,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -2435,8 +2243,8 @@
"Platform": "Intel® Celeron® 6305E CPU+iGPU",
"Model": "yolo11",
"featured_SKU": false,
- "whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "whats_new_model": "false",
+ "PlatformType": "Intel® Atom™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -2445,10 +2253,7 @@
"int8": "",
"fp16": "",
"fp32": 80.2,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -2474,7 +2279,7 @@
"Model": "yolo_v8n",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -2483,10 +2288,7 @@
"int8": 114.67,
"fp16": "",
"fp32": 78.26,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -2512,7 +2314,7 @@
"Model": "bert-base-cased",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -2521,10 +2323,7 @@
"int8": 11.77,
"fp16": "",
"fp32": 4.32,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -2550,7 +2349,7 @@
"Model": "efficientdet-d0",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -2559,10 +2358,7 @@
"int8": 18.94,
"fp16": "",
"fp32": 11.49,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -2588,7 +2384,7 @@
"Model": "mask_rcnn_resnet50_atrous_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -2597,10 +2393,7 @@
"int8": 0.17,
"fp16": "",
"fp32": 0.04,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -2626,7 +2419,7 @@
"Model": "mobilenet-v2",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -2635,10 +2428,7 @@
"int8": 301.05,
"fp16": "",
"fp32": 132.91,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -2664,7 +2454,7 @@
"Model": "resnet-50",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -2673,10 +2463,7 @@
"int8": 51.66,
"fp16": "",
"fp32": 14.45,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -2702,7 +2489,7 @@
"Model": "ssd-resnet34-1200",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -2711,10 +2498,7 @@
"int8": 0.89,
"fp16": "",
"fp32": 0.23,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -2740,7 +2524,7 @@
"Model": "ssd_mobilenet_v1_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -2749,10 +2533,7 @@
"int8": 115.03,
"fp16": "",
"fp32": 36.99,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -2777,8 +2558,8 @@
"Platform": "Intel® Celeron® 6305E CPU-only",
"Model": "yolo11",
"featured_SKU": false,
- "whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "whats_new_model": "false",
+ "PlatformType": "Intel® Atom™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -2787,10 +2568,7 @@
"int8": "",
"fp16": "",
"fp32": 11.94,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -2816,7 +2594,7 @@
"Model": "yolo_v8n",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -2825,10 +2603,7 @@
"int8": 25.97,
"fp16": "",
"fp32": 9.66,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -2854,7 +2629,7 @@
"Model": "bert-base-cased",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -2863,10 +2638,7 @@
"int8": 43.69,
"fp16": 33.8,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -2892,7 +2664,7 @@
"Model": "efficientdet-d0",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -2901,10 +2673,7 @@
"int8": 73.58,
"fp16": 58.53,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -2930,7 +2699,7 @@
"Model": "mask_rcnn_resnet50_atrous_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -2939,10 +2708,7 @@
"int8": 0.48,
"fp16": 0.52,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -2968,7 +2734,7 @@
"Model": "mobilenet-v2",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -2977,10 +2743,7 @@
"int8": 671.35,
"fp16": 504.8,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -3006,7 +2769,7 @@
"Model": "resnet-50",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -3015,10 +2778,7 @@
"int8": 203.17,
"fp16": 118.59,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -3044,7 +2804,7 @@
"Model": "ssd-resnet34-1200",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -3053,10 +2813,7 @@
"int8": 5.09,
"fp16": 2.78,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -3082,7 +2839,7 @@
"Model": "ssd_mobilenet_v1_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -3091,10 +2848,7 @@
"int8": 396.07,
"fp16": 221.18,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -3120,7 +2874,7 @@
"Model": "yolo_v8n",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -3129,10 +2883,7 @@
"int8": 121.77,
"fp16": 81.6,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -3158,7 +2909,7 @@
"Model": "bert-base-cased",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -3167,10 +2918,7 @@
"int8": 243.99,
"fp16": "",
"fp32": 157.96,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -3196,7 +2944,7 @@
"Model": "efficientdet-d0",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -3205,10 +2953,7 @@
"int8": 189.52,
"fp16": "",
"fp32": 154.61,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -3234,7 +2979,7 @@
"Model": "mask_rcnn_resnet50_atrous_coco",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -3243,10 +2988,7 @@
"int8": 2.45,
"fp16": "",
"fp32": 1.19,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -3272,7 +3014,7 @@
"Model": "mobilenet-v2",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -3281,10 +3023,7 @@
"int8": 4485.9,
"fp16": "",
"fp32": 2415.8,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -3310,7 +3049,7 @@
"Model": "resnet-50",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -3319,10 +3058,7 @@
"int8": 1097.16,
"fp16": "",
"fp32": 475.61,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -3348,7 +3084,7 @@
"Model": "ssd-resnet34-1200",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -3357,10 +3093,7 @@
"int8": 18.81,
"fp16": "",
"fp32": 9.71,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -3386,7 +3119,7 @@
"Model": "ssd_mobilenet_v1_coco",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -3395,10 +3128,7 @@
"int8": 1120.99,
"fp16": "",
"fp32": 624.14,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -3424,7 +3154,7 @@
"Model": "yolo_v8n",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -3433,10 +3163,7 @@
"int8": 374.74,
"fp16": "",
"fp32": 236.96,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -3462,7 +3189,7 @@
"Model": "bert-base-cased",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -3471,10 +3198,7 @@
"int8": 76.15,
"fp16": "",
"fp32": 30.19,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -3500,7 +3224,7 @@
"Model": "efficientdet-d0",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -3509,10 +3233,7 @@
"int8": 97.68,
"fp16": "",
"fp32": 66.63,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -3538,7 +3259,7 @@
"Model": "mask_rcnn_resnet50_atrous_coco",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -3547,10 +3268,7 @@
"int8": 1.2,
"fp16": "",
"fp32": 0.3,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -3576,7 +3294,7 @@
"Model": "mobilenet-v2",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -3585,10 +3303,7 @@
"int8": 1969.75,
"fp16": "",
"fp32": 815.83,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -3614,7 +3329,7 @@
"Model": "resnet-50",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -3623,10 +3338,7 @@
"int8": 390.17,
"fp16": "",
"fp32": 94.82,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -3652,7 +3364,7 @@
"Model": "ssd-resnet34-1200",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -3661,10 +3373,7 @@
"int8": 6.38,
"fp16": "",
"fp32": 1.6,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -3690,7 +3399,7 @@
"Model": "ssd_mobilenet_v1_coco",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -3699,10 +3408,7 @@
"int8": 685.79,
"fp16": "",
"fp32": 242.78,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -3728,7 +3434,7 @@
"Model": "yolo_v8n",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -3737,10 +3443,7 @@
"int8": 166.55,
"fp16": "",
"fp32": 64.31,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -3766,7 +3469,7 @@
"Model": "bert-base-cased",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, NPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -3775,10 +3478,7 @@
"int8": 88.41,
"fp16": 74.04,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -3804,7 +3504,7 @@
"Model": "efficientdet-d0",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, NPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -3813,10 +3513,7 @@
"int8": 37.81,
"fp16": 34.74,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -3842,19 +3539,16 @@
"Model": "llama-2-7b-chat",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, NPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
"int4": "",
- "int8": "",
- "fp16": "",
+ "int8": 0.27,
+ "fp16": 2.55,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": 0.27,
- "token_fp16": 2.55
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -3880,7 +3574,7 @@
"Model": "mobilenet-v2",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, NPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -3889,10 +3583,7 @@
"int8": 1966.11,
"fp16": 1346.18,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -3917,20 +3608,17 @@
"Platform": "Intel® Core™ Ultra 7 processor 155H NPU-only",
"Model": "phi-3-mini-4k-instruct",
"featured_SKU": true,
- "whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "whats_new_model": true,
+ "PlatformType": "Intel® Core™, NPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 3.7,
+ "int8": 0.49,
+ "fp16": 3.91,
"fp32": "",
- "bf16": "",
- "token_int4": 3.7,
- "token_int8": 0.49,
- "token_fp16": 3.91
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -3956,7 +3644,7 @@
"Model": "resnet-50",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, NPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -3965,10 +3653,7 @@
"int8": 771.23,
"fp16": 382.83,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -3994,7 +3679,7 @@
"Model": "ssd_mobilenet_v1_coco",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, NPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -4003,10 +3688,7 @@
"int8": 705.76,
"fp16": 453.35,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -4032,7 +3714,7 @@
"Model": "yolo_v8n",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, NPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -4041,10 +3723,7 @@
"int8": 126.18,
"fp16": 129.18,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -4070,7 +3749,7 @@
"Model": "bert-base-cased",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -4079,10 +3758,7 @@
"int8": 164.18,
"fp16": 107.12,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -4108,7 +3784,7 @@
"Model": "efficientdet-d0",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -4117,10 +3793,7 @@
"int8": 195.27,
"fp16": 164.33,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -4146,19 +3819,16 @@
"Model": "gemma-2-9b",
"featured_SKU": true,
"whats_new_model": true,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
+ "int4": 8.94,
"int8": "",
- "fp16": "",
+ "fp16": 0.94,
"fp32": "",
- "bf16": "",
- "token_int4": 8.94,
- "token_int8": "",
- "token_fp16": 0.94
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -4183,20 +3853,17 @@
"Platform": "Intel® Core™ Ultra 7 processor 155H iGPU-only",
"Model": "glm-4-9b-chat",
"featured_SKU": true,
- "whats_new_model": true,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "whats_new_model": "false",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 10.82,
+ "int8": 6.3,
+ "fp16": 1.1,
"fp32": "",
- "bf16": "",
- "token_int4": 10.82,
- "token_int8": 6.3,
- "token_fp16": 1.1
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -4222,19 +3889,16 @@
"Model": "llama-2-7b-chat",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
+ "int4": 14.62,
+ "int8": 8.53,
"fp16": "",
"fp32": "",
- "bf16": "",
- "token_int4": 14.62,
- "token_int8": 8.53,
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -4259,20 +3923,17 @@
"Platform": "Intel® Core™ Ultra 7 processor 155H iGPU-only",
"Model": "llama-3-8b",
"featured_SKU": true,
- "whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "whats_new_model": "false",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 14.82,
+ "int8": 7.84,
+ "fp16": 4.04,
"fp32": "",
- "bf16": "",
- "token_int4": 14.82,
- "token_int8": 7.84,
- "token_fp16": 4.04
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -4298,19 +3959,16 @@
"Model": "llama-3.2-3b-instruct",
"featured_SKU": true,
"whats_new_model": true,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 26.17,
+ "int8": 20.38,
+ "fp16": 10.76,
"fp32": "",
- "bf16": "",
- "token_int4": 26.17,
- "token_int8": 20.38,
- "token_fp16": 10.76
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -4336,7 +3994,7 @@
"Model": "mask_rcnn_resnet50_atrous_coco",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -4345,10 +4003,7 @@
"int8": 2.35,
"fp16": 1.58,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -4374,19 +4029,16 @@
"Model": "mistral-7b-v0.1",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
+ "int4": 15.03,
+ "int8": 8.94,
"fp16": "",
"fp32": "",
- "bf16": "",
- "token_int4": 15.03,
- "token_int8": 8.94,
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -4412,7 +4064,7 @@
"Model": "mobilenet-v2",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -4421,10 +4073,7 @@
"int8": 1293.98,
"fp16": 1371.59,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -4449,20 +4098,17 @@
"Platform": "Intel® Core™ Ultra 7 processor 155H iGPU-only",
"Model": "phi-3-mini-4k-instruct",
"featured_SKU": true,
- "whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "whats_new_model": true,
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 23.61,
+ "int8": 18.01,
+ "fp16": 9.36,
"fp32": "",
- "bf16": "",
- "token_int4": 23.61,
- "token_int8": 18.01,
- "token_fp16": 9.36
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -4488,19 +4134,16 @@
"Model": "qwen2-7b",
"featured_SKU": true,
"whats_new_model": true,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
+ "int4": 16.68,
+ "int8": 9.5,
"fp16": "",
"fp32": "",
- "bf16": "",
- "token_int4": 16.68,
- "token_int8": 9.5,
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -4526,7 +4169,7 @@
"Model": "resnet-50",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -4535,10 +4178,7 @@
"int8": 563.96,
"fp16": 416.13,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -4564,7 +4204,7 @@
"Model": "ssd-resnet34-1200",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -4573,10 +4213,7 @@
"int8": 21.26,
"fp16": 12.84,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -4602,7 +4239,7 @@
"Model": "ssd_mobilenet_v1_coco",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -4611,10 +4248,7 @@
"int8": 1030.66,
"fp16": 811.13,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -4640,7 +4274,7 @@
"Model": "yolo_v8n",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -4649,10 +4283,7 @@
"int8": 403.44,
"fp16": 306.22,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -4678,7 +4309,7 @@
"Model": "bert-base-cased",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -4687,10 +4318,7 @@
"int8": 223.99,
"fp16": "",
"fp32": 189.97,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -4716,7 +4344,7 @@
"Model": "efficientdet-d0",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -4725,10 +4353,7 @@
"int8": 174.87,
"fp16": "",
"fp32": 149.3,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -4754,7 +4379,7 @@
"Model": "mask_rcnn_resnet50_atrous_coco",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -4763,10 +4388,7 @@
"int8": 7.24,
"fp16": "",
"fp32": 3.52,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -4792,7 +4414,7 @@
"Model": "mobilenet-v2",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -4801,10 +4423,7 @@
"int8": 4846.91,
"fp16": "",
"fp32": 2888.98,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -4830,7 +4449,7 @@
"Model": "resnet-50",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -4839,10 +4458,7 @@
"int8": 1975.45,
"fp16": "",
"fp32": 922.35,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -4868,7 +4484,7 @@
"Model": "ssd-resnet34-1200",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -4877,10 +4493,7 @@
"int8": "",
"fp16": "",
"fp32": 20.97,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -4906,7 +4519,7 @@
"Model": "ssd_mobilenet_v1_coco",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -4915,10 +4528,7 @@
"int8": "",
"fp16": "",
"fp32": 585.46,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -4944,7 +4554,7 @@
"Model": "yolo_v8n",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -4953,10 +4563,7 @@
"int8": 343.07,
"fp16": "",
"fp32": 274.85,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -4982,7 +4589,7 @@
"Model": "bert-base-cased",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -4991,10 +4598,7 @@
"int8": 44.06,
"fp16": "",
"fp32": 16.03,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -5020,7 +4624,7 @@
"Model": "efficientdet-d0",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -5029,10 +4633,7 @@
"int8": 53.32,
"fp16": "",
"fp32": 38.06,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -5058,7 +4659,7 @@
"Model": "mask_rcnn_resnet50_atrous_coco",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -5067,10 +4668,7 @@
"int8": 0.65,
"fp16": "",
"fp32": 0.16,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -5096,7 +4694,7 @@
"Model": "mobilenet-v2",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -5105,10 +4703,7 @@
"int8": 917.84,
"fp16": "",
"fp32": 490.87,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -5134,7 +4729,7 @@
"Model": "resnet-50",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -5143,10 +4738,7 @@
"int8": 194.09,
"fp16": "",
"fp32": 52.09,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -5172,7 +4764,7 @@
"Model": "ssd-resnet34-1200",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -5181,10 +4773,7 @@
"int8": 3.52,
"fp16": "",
"fp32": 0.87,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -5210,7 +4799,7 @@
"Model": "ssd_mobilenet_v1_coco",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -5219,10 +4808,7 @@
"int8": 380.37,
"fp16": "",
"fp32": 135.96,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -5248,7 +4834,7 @@
"Model": "yolo_v8n",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -5257,10 +4843,7 @@
"int8": 80.52,
"fp16": "",
"fp32": 34.88,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -5286,7 +4869,7 @@
"Model": "bert-base-cased",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, NPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -5295,10 +4878,7 @@
"int8": 265.97,
"fp16": 198.16,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -5324,7 +4904,7 @@
"Model": "efficientdet-d0",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, NPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -5333,10 +4913,7 @@
"int8": 13.69,
"fp16": 13.65,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -5362,19 +4939,16 @@
"Model": "llama-2-7b-chat",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, NPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
"int4": "",
- "int8": "",
- "fp16": "",
+ "int8": 0.24,
+ "fp16": 4.4,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": 0.24,
- "token_fp16": 4.4
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -5400,7 +4974,7 @@
"Model": "mobilenet-v2",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, NPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -5409,10 +4983,7 @@
"int8": 3799.36,
"fp16": 3178.95,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -5437,20 +5008,17 @@
"Platform": "Intel® Core™ Ultra 7 processor 268V NPU-only",
"Model": "phi-3-mini-4k-instruct",
"featured_SKU": true,
- "whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "whats_new_model": true,
+ "PlatformType": "Intel® Core™, NPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 3.31,
+ "int8": 0.72,
+ "fp16": 6.86,
"fp32": "",
- "bf16": "",
- "token_int4": 3.31,
- "token_int8": 0.72,
- "token_fp16": 6.86
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -5476,7 +5044,7 @@
"Model": "resnet-50",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, NPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -5485,10 +5053,7 @@
"int8": 2161.26,
"fp16": 948.32,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -5514,7 +5079,7 @@
"Model": "ssd_mobilenet_v1_coco",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, NPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -5523,10 +5088,7 @@
"int8": 230.18,
"fp16": 192.78,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -5552,7 +5114,7 @@
"Model": "yolo_v8n",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, NPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -5561,10 +5123,7 @@
"int8": 401.12,
"fp16": 497.56,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -5590,7 +5149,7 @@
"Model": "bert-base-cased",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -5599,10 +5158,7 @@
"int8": 225.83,
"fp16": 298.39,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -5628,7 +5184,7 @@
"Model": "efficientdet-d0",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -5637,10 +5193,7 @@
"int8": 114.57,
"fp16": 121.87,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -5666,19 +5219,16 @@
"Model": "gemma-2-9b",
"featured_SKU": true,
"whats_new_model": true,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 14.49,
+ "int8": 8.34,
+ "fp16": 0.59,
"fp32": "",
- "bf16": "",
- "token_int4": 14.49,
- "token_int8": 8.34,
- "token_fp16": 0.59
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -5703,20 +5253,17 @@
"Platform": "Intel® Core™ Ultra 7 processor 268V iGPU-only",
"Model": "glm-4-9b-chat",
"featured_SKU": true,
- "whats_new_model": true,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "whats_new_model": "false",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 17.63,
+ "int8": 9.8,
+ "fp16": 0.71,
"fp32": "",
- "bf16": "",
- "token_int4": 17.63,
- "token_int8": 9.8,
- "token_fp16": 0.71
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -5742,19 +5289,16 @@
"Model": "llama-2-7b-chat",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 18.48,
+ "int8": 11.87,
+ "fp16": 6.44,
"fp32": "",
- "bf16": "",
- "token_int4": 18.48,
- "token_int8": 11.87,
- "token_fp16": 6.44
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -5779,20 +5323,17 @@
"Platform": "Intel® Core™ Ultra 7 processor 268V iGPU-only",
"Model": "llama-3-8b",
"featured_SKU": true,
- "whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "whats_new_model": "false",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 20.41,
+ "int8": 11.07,
+ "fp16": 5.81,
"fp32": "",
- "bf16": "",
- "token_int4": 20.41,
- "token_int8": 11.07,
- "token_fp16": 5.81
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -5818,19 +5359,16 @@
"Model": "llama-3.2-3b-instruct",
"featured_SKU": true,
"whats_new_model": true,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 36.58,
+ "int8": 23.94,
+ "fp16": 12.86,
"fp32": "",
- "bf16": "",
- "token_int4": 36.58,
- "token_int8": 23.94,
- "token_fp16": 12.86
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -5856,7 +5394,7 @@
"Model": "mask_rcnn_resnet50_atrous_coco",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -5865,10 +5403,7 @@
"int8": 10.4,
"fp16": 5.7,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -5894,19 +5429,16 @@
"Model": "mistral-7b-v0.1",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 20.06,
+ "int8": 11.6,
+ "fp16": 6.05,
"fp32": "",
- "bf16": "",
- "token_int4": 20.06,
- "token_int8": 11.6,
- "token_fp16": 6.05
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -5932,7 +5464,7 @@
"Model": "mobilenet-v2",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -5941,10 +5473,7 @@
"int8": 1007.75,
"fp16": 862.8,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -5969,20 +5498,17 @@
"Platform": "Intel® Core™ Ultra 7 processor 268V iGPU-only",
"Model": "phi-3-mini-4k-instruct",
"featured_SKU": true,
- "whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "whats_new_model": true,
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 31.27,
+ "int8": 20.55,
+ "fp16": 11.04,
"fp32": "",
- "bf16": "",
- "token_int4": 31.27,
- "token_int8": 20.55,
- "token_fp16": 11.04
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -6008,19 +5534,16 @@
"Model": "qwen2-7b",
"featured_SKU": true,
"whats_new_model": true,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 20.99,
+ "int8": 12.69,
+ "fp16": 6.07,
"fp32": "",
- "bf16": "",
- "token_int4": 20.99,
- "token_int8": 12.69,
- "token_fp16": 6.07
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -6046,7 +5569,7 @@
"Model": "resnet-50",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -6055,10 +5578,7 @@
"int8": 830.46,
"fp16": 585.38,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -6084,7 +5604,7 @@
"Model": "ssd-resnet34-1200",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -6093,10 +5613,7 @@
"int8": 57.99,
"fp16": 32.18,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -6122,7 +5639,7 @@
"Model": "ssd_mobilenet_v1_coco",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -6131,10 +5648,7 @@
"int8": 485.85,
"fp16": 555.71,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -6160,7 +5674,7 @@
"Model": "yolo_v8n",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -6169,10 +5683,7 @@
"int8": 362.75,
"fp16": 375.06,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -6198,7 +5709,7 @@
"Model": "bert-base-cased",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -6207,10 +5718,7 @@
"int8": 34.21,
"fp16": "",
"fp32": 15.71,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -6236,7 +5744,7 @@
"Model": "efficientdet-d0",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -6245,10 +5753,7 @@
"int8": 47.95,
"fp16": "",
"fp32": 29.38,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -6274,7 +5779,7 @@
"Model": "mask_rcnn_resnet50_atrous_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -6283,10 +5788,7 @@
"int8": 0.5,
"fp16": "",
"fp32": 0.18,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -6312,7 +5814,7 @@
"Model": "mobilenet-v2",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -6321,10 +5823,7 @@
"int8": 742.67,
"fp16": "",
"fp32": 331.98,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -6350,7 +5849,7 @@
"Model": "resnet-50",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -6359,10 +5858,7 @@
"int8": 162.84,
"fp16": "",
"fp32": 51.66,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -6388,7 +5884,7 @@
"Model": "ssd-resnet34-1200",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -6397,10 +5893,7 @@
"int8": "",
"fp16": "",
"fp32": 1.03,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -6426,7 +5919,7 @@
"Model": "ssd_mobilenet_v1_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -6435,10 +5928,7 @@
"int8": 328.29,
"fp16": "",
"fp32": 115.41,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -6463,8 +5953,8 @@
"Platform": "Intel® Core™ i5-1235U Processor CPU+iGPU",
"Model": "yolo11",
"featured_SKU": false,
- "whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "whats_new_model": "false",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -6473,10 +5963,7 @@
"int8": "",
"fp16": "",
"fp32": 41.68,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -6502,7 +5989,7 @@
"Model": "yolo_v8n",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -6511,10 +5998,7 @@
"int8": 79.4,
"fp16": "",
"fp32": 35.44,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -6540,7 +6024,7 @@
"Model": "bert-base-cased",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -6549,10 +6033,7 @@
"int8": 31.55,
"fp16": "",
"fp32": 12.38,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -6578,7 +6059,7 @@
"Model": "efficientdet-d0",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -6587,10 +6068,7 @@
"int8": 43.39,
"fp16": "",
"fp32": 23.14,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -6616,7 +6094,7 @@
"Model": "mask_rcnn_resnet50_atrous_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -6625,10 +6103,7 @@
"int8": 0.45,
"fp16": "",
"fp32": 0.12,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -6654,7 +6129,7 @@
"Model": "mobilenet-v2",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -6663,10 +6138,7 @@
"int8": 789.02,
"fp16": "",
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -6692,7 +6164,7 @@
"Model": "resnet-50",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -6701,10 +6173,7 @@
"int8": 147.74,
"fp16": "",
"fp32": 38.84,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -6730,7 +6199,7 @@
"Model": "ssd-resnet34-1200",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -6739,10 +6208,7 @@
"int8": 2.66,
"fp16": "",
"fp32": 0.77,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -6768,7 +6234,7 @@
"Model": "ssd_mobilenet_v1_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -6777,10 +6243,7 @@
"int8": 313.17,
"fp16": "",
"fp32": 95.81,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -6805,8 +6268,8 @@
"Platform": "Intel® Core™ i5-1235U Processor CPU-only",
"Model": "yolo11",
"featured_SKU": false,
- "whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "whats_new_model": "false",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -6815,10 +6278,7 @@
"int8": "",
"fp16": "",
"fp32": 31.84,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -6844,7 +6304,7 @@
"Model": "yolo_v8n",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -6853,10 +6313,7 @@
"int8": 67.43,
"fp16": "",
"fp32": 26.68,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -6882,7 +6339,7 @@
"Model": "bert-base-cased",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -6891,10 +6348,7 @@
"int8": 46.15,
"fp16": 38.3,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -6920,7 +6374,7 @@
"Model": "efficientdet-d0",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -6929,10 +6383,7 @@
"int8": 64.24,
"fp16": 50.43,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -6958,7 +6409,7 @@
"Model": "mask_rcnn_resnet50_atrous_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -6967,10 +6418,7 @@
"int8": 0.5,
"fp16": 0.51,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -6996,7 +6444,7 @@
"Model": "mobilenet-v2",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -7005,10 +6453,7 @@
"int8": 768.31,
"fp16": 485.7,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -7034,7 +6479,7 @@
"Model": "resnet-50",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -7043,10 +6488,7 @@
"int8": 208.55,
"fp16": 117.84,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -7072,7 +6514,7 @@
"Model": "ssd-resnet34-1200",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -7081,10 +6523,7 @@
"int8": 5.64,
"fp16": 2.72,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -7110,7 +6549,7 @@
"Model": "ssd_mobilenet_v1_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -7119,10 +6558,7 @@
"int8": 382.92,
"fp16": 223.39,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -7148,7 +6584,7 @@
"Model": "yolo_v8n",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -7157,10 +6593,7 @@
"int8": 126.83,
"fp16": 77.91,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -7186,7 +6619,7 @@
"Model": "bert-base-cased",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -7195,10 +6628,7 @@
"int8": 49.68,
"fp16": "",
"fp32": 26.85,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -7224,7 +6654,7 @@
"Model": "efficientdet-d0",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -7233,10 +6663,7 @@
"int8": 73.94,
"fp16": "",
"fp32": 48.63,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -7262,7 +6689,7 @@
"Model": "mask_rcnn_resnet50_atrous_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -7271,10 +6698,7 @@
"int8": 0.69,
"fp16": "",
"fp32": 0.3,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -7300,7 +6724,7 @@
"Model": "mobilenet-v2",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -7309,10 +6733,7 @@
"int8": 1050.26,
"fp16": "",
"fp32": 535.0,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -7338,7 +6759,7 @@
"Model": "resnet-50",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -7347,10 +6768,7 @@
"int8": 234.19,
"fp16": "",
"fp32": 87.89,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -7376,7 +6794,7 @@
"Model": "ssd-resnet34-1200",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -7385,10 +6803,7 @@
"int8": 4.74,
"fp16": "",
"fp32": 1.74,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -7414,7 +6829,7 @@
"Model": "ssd_mobilenet_v1_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -7423,10 +6838,7 @@
"int8": 466.65,
"fp16": "",
"fp32": 188.83,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -7451,8 +6863,8 @@
"Platform": "Intel® Core™ i5-1335U Processor CPU+iGPU",
"Model": "yolo11",
"featured_SKU": false,
- "whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "whats_new_model": "false",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -7461,10 +6873,7 @@
"int8": "",
"fp16": "",
"fp32": 65.34,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -7490,7 +6899,7 @@
"Model": "yolo_v8n",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -7499,10 +6908,7 @@
"int8": 125.18,
"fp16": "",
"fp32": 58.13,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -7528,7 +6934,7 @@
"Model": "bert-base-cased",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -7537,10 +6943,7 @@
"int8": 39.97,
"fp16": "",
"fp32": 15.97,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -7566,7 +6969,7 @@
"Model": "efficientdet-d0",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -7575,10 +6978,7 @@
"int8": 56.15,
"fp16": "",
"fp32": 35.76,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -7604,7 +7004,7 @@
"Model": "mask_rcnn_resnet50_atrous_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -7613,10 +7013,7 @@
"int8": 0.57,
"fp16": "",
"fp32": 0.16,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -7642,7 +7039,7 @@
"Model": "mobilenet-v2",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -7651,10 +7048,7 @@
"int8": 951.93,
"fp16": "",
"fp32": 463.06,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -7680,7 +7074,7 @@
"Model": "resnet-50",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -7689,10 +7083,7 @@
"int8": 184.54,
"fp16": "",
"fp32": 52.88,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -7718,7 +7109,7 @@
"Model": "ssd-resnet34-1200",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -7727,10 +7118,7 @@
"int8": 3.16,
"fp16": "",
"fp32": 0.92,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -7756,7 +7144,7 @@
"Model": "ssd_mobilenet_v1_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -7765,10 +7153,7 @@
"int8": 383.62,
"fp16": "",
"fp32": 134.93,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -7793,8 +7178,8 @@
"Platform": "Intel® Core™ i5-1335U Processor CPU-only",
"Model": "yolo11",
"featured_SKU": false,
- "whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "whats_new_model": "false",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -7803,10 +7188,7 @@
"int8": "",
"fp16": "",
"fp32": 43.64,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -7832,7 +7214,7 @@
"Model": "yolo_v8n",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -7841,10 +7223,7 @@
"int8": 91.3,
"fp16": "",
"fp32": 36.39,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -7870,7 +7249,7 @@
"Model": "bert-base-cased",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -7879,10 +7258,7 @@
"int8": 47.17,
"fp16": 39.79,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -7908,7 +7284,7 @@
"Model": "efficientdet-d0",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -7917,10 +7293,7 @@
"int8": 80.6,
"fp16": 59.92,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -7946,7 +7319,7 @@
"Model": "mask_rcnn_resnet50_atrous_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -7955,10 +7328,7 @@
"int8": 0.52,
"fp16": 0.58,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -7984,7 +7354,7 @@
"Model": "mobilenet-v2",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -7993,10 +7363,7 @@
"int8": 778.4,
"fp16": 509.56,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -8022,7 +7389,7 @@
"Model": "resnet-50",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -8031,10 +7398,7 @@
"int8": 225.12,
"fp16": 127.27,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -8060,7 +7424,7 @@
"Model": "ssd-resnet34-1200",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -8069,10 +7433,7 @@
"int8": 5.79,
"fp16": 2.86,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -8098,7 +7459,7 @@
"Model": "ssd_mobilenet_v1_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -8107,10 +7468,7 @@
"int8": 404.76,
"fp16": 237.61,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -8136,7 +7494,7 @@
"Model": "yolo_v8n",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -8145,10 +7503,7 @@
"int8": 131.89,
"fp16": 83.17,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -8174,7 +7529,7 @@
"Model": "bert-base-cased",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -8183,10 +7538,7 @@
"int8": 120.44,
"fp16": "",
"fp32": 47.21,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -8212,7 +7564,7 @@
"Model": "efficientdet-d0",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -8221,10 +7573,7 @@
"int8": 148.91,
"fp16": "",
"fp32": 93.08,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -8250,7 +7599,7 @@
"Model": "mask_rcnn_resnet50_atrous_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -8259,10 +7608,7 @@
"int8": "",
"fp16": "",
"fp32": 0.49,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -8288,7 +7634,7 @@
"Model": "mobilenet-v2",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -8297,10 +7643,7 @@
"int8": 2974.41,
"fp16": "",
"fp32": 1317.04,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -8326,7 +7669,7 @@
"Model": "resnet-50",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -8335,10 +7678,7 @@
"int8": 537.98,
"fp16": "",
"fp32": 148.85,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -8364,7 +7704,7 @@
"Model": "ssd-resnet34-1200",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -8373,10 +7713,7 @@
"int8": 8.8,
"fp16": "",
"fp32": 2.47,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -8402,7 +7739,7 @@
"Model": "ssd_mobilenet_v1_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -8411,10 +7748,7 @@
"int8": 1068.19,
"fp16": "",
"fp32": 379.85,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -8439,8 +7773,8 @@
"Platform": "Intel® Core™ i5-13600K CPU-only",
"Model": "yolo11",
"featured_SKU": false,
- "whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "whats_new_model": "false",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -8449,10 +7783,7 @@
"int8": "",
"fp16": "",
"fp32": 122.62,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -8478,7 +7809,7 @@
"Model": "yolo_v8n",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -8487,10 +7818,7 @@
"int8": 266.57,
"fp16": "",
"fp32": 102.14,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -8516,7 +7844,7 @@
"Model": "bert-base-cased",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -8525,10 +7853,7 @@
"int8": 84.71,
"fp16": "",
"fp32": 51.06,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -8554,7 +7879,7 @@
"Model": "efficientdet-d0",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -8563,10 +7888,7 @@
"int8": 98.02,
"fp16": "",
"fp32": 65.51,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -8592,7 +7914,7 @@
"Model": "mask_rcnn_resnet50_atrous_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -8601,10 +7923,7 @@
"int8": 1.16,
"fp16": "",
"fp32": 0.64,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -8630,7 +7949,7 @@
"Model": "mobilenet-v2",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -8639,10 +7958,7 @@
"int8": 1353.32,
"fp16": "",
"fp32": 683.15,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -8668,7 +7984,7 @@
"Model": "resnet-50",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -8677,10 +7993,7 @@
"int8": 365.63,
"fp16": "",
"fp32": 164.12,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -8706,7 +8019,7 @@
"Model": "ssd-resnet34-1200",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -8715,10 +8028,7 @@
"int8": 8.65,
"fp16": "",
"fp32": 3.77,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -8744,7 +8054,7 @@
"Model": "ssd_mobilenet_v1_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -8753,10 +8063,7 @@
"int8": 657.26,
"fp16": "",
"fp32": 293.93,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -8781,8 +8088,8 @@
"Platform": "Intel® Core™ i7-1185G7 CPU+iGPU",
"Model": "yolo11",
"featured_SKU": false,
- "whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "whats_new_model": "false",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -8791,10 +8098,7 @@
"int8": "",
"fp16": "",
"fp32": 107.24,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -8820,7 +8124,7 @@
"Model": "yolo_v8n",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -8829,10 +8133,7 @@
"int8": 182.9,
"fp16": "",
"fp32": 101.97,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -8858,7 +8159,7 @@
"Model": "bert-base-cased",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -8867,10 +8168,7 @@
"int8": 50.21,
"fp16": "",
"fp32": 18.33,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -8896,7 +8194,7 @@
"Model": "efficientdet-d0",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -8905,10 +8203,7 @@
"int8": 71.27,
"fp16": "",
"fp32": 41.39,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -8934,7 +8229,7 @@
"Model": "mask_rcnn_resnet50_atrous_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -8943,10 +8238,7 @@
"int8": 0.71,
"fp16": "",
"fp32": 0.19,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -8972,7 +8264,7 @@
"Model": "mobilenet-v2",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -8981,10 +8273,7 @@
"int8": 1291.06,
"fp16": "",
"fp32": 507.09,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -9010,7 +8299,7 @@
"Model": "resnet-50",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -9019,10 +8308,7 @@
"int8": 224.68,
"fp16": "",
"fp32": 60.81,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -9048,7 +8334,7 @@
"Model": "ssd-resnet34-1200",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -9057,10 +8343,7 @@
"int8": 3.84,
"fp16": "",
"fp32": 1.01,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -9086,7 +8369,7 @@
"Model": "ssd_mobilenet_v1_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -9095,10 +8378,7 @@
"int8": 491.99,
"fp16": "",
"fp32": 146.3,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -9123,8 +8403,8 @@
"Platform": "Intel® Core™ i7-1185G7 CPU-only",
"Model": "yolo11",
"featured_SKU": false,
- "whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "whats_new_model": "false",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -9133,10 +8413,7 @@
"int8": "",
"fp16": "",
"fp32": 48.0,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -9162,7 +8439,7 @@
"Model": "yolo_v8n",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -9171,10 +8448,7 @@
"int8": 106.45,
"fp16": "",
"fp32": 40.14,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -9200,7 +8474,7 @@
"Model": "bert-base-cased",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -9209,10 +8483,7 @@
"int8": 68.4,
"fp16": 53.22,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -9238,7 +8509,7 @@
"Model": "efficientdet-d0",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -9247,10 +8518,7 @@
"int8": 91.46,
"fp16": 72.22,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -9276,7 +8544,7 @@
"Model": "mask_rcnn_resnet50_atrous_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -9285,10 +8553,7 @@
"int8": 0.82,
"fp16": 0.88,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -9314,7 +8579,7 @@
"Model": "mobilenet-v2",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -9323,10 +8588,7 @@
"int8": 729.72,
"fp16": 569.2,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -9352,7 +8614,7 @@
"Model": "resnet-50",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -9361,10 +8623,7 @@
"int8": 262.94,
"fp16": 174.98,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -9390,7 +8649,7 @@
"Model": "ssd-resnet34-1200",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -9399,10 +8658,7 @@
"int8": 8.29,
"fp16": 4.67,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -9428,7 +8684,7 @@
"Model": "ssd_mobilenet_v1_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -9437,10 +8693,7 @@
"int8": 447.59,
"fp16": 299.29,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -9466,7 +8719,7 @@
"Model": "yolo_v8n",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -9475,10 +8728,7 @@
"int8": 161.26,
"fp16": 111.45,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -9504,7 +8754,7 @@
"Model": "bert-base-cased",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -9513,10 +8763,7 @@
"int8": 50.01,
"fp16": "",
"fp32": 25.82,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -9542,7 +8789,7 @@
"Model": "efficientdet-d0",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -9551,10 +8798,7 @@
"int8": 57.69,
"fp16": "",
"fp32": 28.41,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -9580,7 +8824,7 @@
"Model": "mask_rcnn_resnet50_atrous_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -9589,10 +8833,7 @@
"int8": 0.69,
"fp16": "",
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -9618,7 +8859,7 @@
"Model": "mobilenet-v2",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -9627,10 +8868,7 @@
"int8": 958.94,
"fp16": "",
"fp32": 350.53,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -9656,7 +8894,7 @@
"Model": "resnet-50",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -9665,10 +8903,7 @@
"int8": 230.4,
"fp16": "",
"fp32": 85.03,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -9694,7 +8929,7 @@
"Model": "ssd-resnet34-1200",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -9703,10 +8938,7 @@
"int8": 4.44,
"fp16": "",
"fp32": 1.75,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -9732,7 +8964,7 @@
"Model": "ssd_mobilenet_v1_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -9741,10 +8973,7 @@
"int8": 456.16,
"fp16": "",
"fp32": 162.16,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -9769,8 +8998,8 @@
"Platform": "Intel® Core™ i7-1185GRE CPU+iGPU",
"Model": "yolo11",
"featured_SKU": false,
- "whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "whats_new_model": "false",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -9779,10 +9008,7 @@
"int8": "",
"fp16": "",
"fp32": 55.98,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -9808,7 +9034,7 @@
"Model": "yolo_v8n",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -9817,10 +9043,7 @@
"int8": 103.63,
"fp16": "",
"fp32": 53.56,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -9846,7 +9069,7 @@
"Model": "bert-base-cased",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -9855,10 +9078,7 @@
"int8": 38.28,
"fp16": "",
"fp32": 13.87,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -9884,7 +9104,7 @@
"Model": "efficientdet-d0",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -9893,10 +9113,7 @@
"int8": 53.34,
"fp16": "",
"fp32": 22.26,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -9922,7 +9139,7 @@
"Model": "mask_rcnn_resnet50_atrous_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -9931,10 +9148,7 @@
"int8": 0.52,
"fp16": "",
"fp32": 0.14,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -9960,7 +9174,7 @@
"Model": "mobilenet-v2",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -9969,10 +9183,7 @@
"int8": 972.25,
"fp16": "",
"fp32": 311.82,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -9998,7 +9209,7 @@
"Model": "resnet-50",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -10007,10 +9218,7 @@
"int8": 174.69,
"fp16": "",
"fp32": 45.52,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -10036,7 +9244,7 @@
"Model": "ssd-resnet34-1200",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -10045,10 +9253,7 @@
"int8": 2.72,
"fp16": "",
"fp32": 0.78,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -10074,7 +9279,7 @@
"Model": "ssd_mobilenet_v1_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -10083,10 +9288,7 @@
"int8": 386.67,
"fp16": "",
"fp32": 99.8,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -10111,8 +9313,8 @@
"Platform": "Intel® Core™ i7-1185GRE CPU-only",
"Model": "yolo11",
"featured_SKU": false,
- "whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "whats_new_model": "false",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -10121,10 +9323,7 @@
"int8": "",
"fp16": "",
"fp32": 32.19,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -10150,7 +9349,7 @@
"Model": "yolo_v8n",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -10159,10 +9358,7 @@
"int8": 76.54,
"fp16": "",
"fp32": 27.6,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -10188,7 +9384,7 @@
"Model": "bert-base-cased",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -10197,10 +9393,7 @@
"int8": 45.77,
"fp16": 40.93,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -10226,7 +9419,7 @@
"Model": "efficientdet-d0",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -10235,10 +9428,7 @@
"int8": 56.2,
"fp16": 41.8,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -10264,7 +9454,7 @@
"Model": "mask_rcnn_resnet50_atrous_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -10273,10 +9463,7 @@
"int8": 0.56,
"fp16": 0.54,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -10302,7 +9489,7 @@
"Model": "mobilenet-v2",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -10311,10 +9498,7 @@
"int8": 648.66,
"fp16": 431.47,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -10340,7 +9524,7 @@
"Model": "resnet-50",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -10349,10 +9533,7 @@
"int8": 208.21,
"fp16": 122.24,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -10378,7 +9559,7 @@
"Model": "ssd-resnet34-1200",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -10387,10 +9568,7 @@
"int8": 5.71,
"fp16": 3.09,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -10416,7 +9594,7 @@
"Model": "ssd_mobilenet_v1_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -10425,10 +9603,7 @@
"int8": 348.95,
"fp16": 224.45,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -10454,7 +9629,7 @@
"Model": "yolo_v8n",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -10463,10 +9638,7 @@
"int8": 113.89,
"fp16": 78.71,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -10492,7 +9664,7 @@
"Model": "bert-base-cased",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -10501,10 +9673,7 @@
"int8": 111.58,
"fp16": "",
"fp32": 57.55,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -10530,7 +9699,7 @@
"Model": "efficientdet-d0",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -10539,10 +9708,7 @@
"int8": 141.13,
"fp16": "",
"fp32": 75.23,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -10568,7 +9734,7 @@
"Model": "mask_rcnn_resnet50_atrous_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -10577,10 +9743,7 @@
"int8": 1.63,
"fp16": "",
"fp32": 0.68,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -10606,7 +9769,7 @@
"Model": "mobilenet-v2",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -10615,10 +9778,7 @@
"int8": 2287.47,
"fp16": "",
"fp32": 1150.08,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -10644,7 +9804,7 @@
"Model": "resnet-50",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -10653,10 +9813,7 @@
"int8": 532.56,
"fp16": "",
"fp32": 180.65,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -10682,7 +9839,7 @@
"Model": "ssd-resnet34-1200",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -10691,10 +9848,7 @@
"int8": 10.33,
"fp16": "",
"fp32": 3.81,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -10720,7 +9874,7 @@
"Model": "ssd_mobilenet_v1_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -10729,10 +9883,7 @@
"int8": 1013.57,
"fp16": "",
"fp32": 403.5,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -10757,8 +9908,8 @@
"Platform": "Intel® Core™ i7-12700H CPU+iGPU",
"Model": "yolo11",
"featured_SKU": false,
- "whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "whats_new_model": "false",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -10767,10 +9918,7 @@
"int8": "",
"fp16": "",
"fp32": 133.88,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -10796,7 +9944,7 @@
"Model": "yolo_v8n",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -10805,10 +9953,7 @@
"int8": 268.57,
"fp16": "",
"fp32": 120.55,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -10834,7 +9979,7 @@
"Model": "bert-base-cased",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -10843,10 +9988,7 @@
"int8": 87.88,
"fp16": "",
"fp32": 34.76,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -10872,7 +10014,7 @@
"Model": "efficientdet-d0",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -10881,10 +10023,7 @@
"int8": 113.82,
"fp16": "",
"fp32": 62.45,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -10910,7 +10049,7 @@
"Model": "mask_rcnn_resnet50_atrous_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -10919,10 +10058,7 @@
"int8": 1.27,
"fp16": "",
"fp32": 0.36,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -10948,7 +10084,7 @@
"Model": "mobilenet-v2",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -10957,10 +10093,7 @@
"int8": 1982.75,
"fp16": "",
"fp32": 968.72,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -10986,7 +10119,7 @@
"Model": "resnet-50",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -10995,10 +10128,7 @@
"int8": 429.58,
"fp16": "",
"fp32": 107.58,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -11024,7 +10154,7 @@
"Model": "ssd-resnet34-1200",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -11033,10 +10163,7 @@
"int8": 7.11,
"fp16": "",
"fp32": 1.96,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -11062,7 +10189,7 @@
"Model": "ssd_mobilenet_v1_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -11071,10 +10198,7 @@
"int8": 854.13,
"fp16": "",
"fp32": 289.32,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -11099,8 +10223,8 @@
"Platform": "Intel® Core™ i7-12700H CPU-only",
"Model": "yolo11",
"featured_SKU": false,
- "whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "whats_new_model": "false",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -11109,10 +10233,7 @@
"int8": "",
"fp16": "",
"fp32": 90.72,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -11138,7 +10259,7 @@
"Model": "yolo_v8n",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -11147,10 +10268,7 @@
"int8": 206.32,
"fp16": "",
"fp32": 78.09,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -11176,7 +10294,7 @@
"Model": "bert-base-cased",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -11185,10 +10303,7 @@
"int8": 89.81,
"fp16": 69.99,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -11214,7 +10329,7 @@
"Model": "efficientdet-d0",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -11223,10 +10338,7 @@
"int8": 128.07,
"fp16": 97.39,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -11252,7 +10364,7 @@
"Model": "mask_rcnn_resnet50_atrous_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -11261,10 +10373,7 @@
"int8": 1.04,
"fp16": 1.15,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -11290,7 +10399,7 @@
"Model": "mobilenet-v2",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -11299,10 +10408,7 @@
"int8": 1281.93,
"fp16": 912.69,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -11328,7 +10434,7 @@
"Model": "resnet-50",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -11337,10 +10443,7 @@
"int8": 381.27,
"fp16": 226.42,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -11366,7 +10469,7 @@
"Model": "ssd-resnet34-1200",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -11375,10 +10478,7 @@
"int8": 10.47,
"fp16": 6.14,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -11404,7 +10504,7 @@
"Model": "ssd_mobilenet_v1_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -11413,10 +10513,7 @@
"int8": 744.92,
"fp16": 407.72,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -11442,7 +10539,7 @@
"Model": "yolo_v8n",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -11451,10 +10548,7 @@
"int8": 215.67,
"fp16": 148.01,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -11480,7 +10574,7 @@
"Model": "bert-base-cased",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -11489,10 +10583,7 @@
"int8": 61.33,
"fp16": "",
"fp32": 32.27,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -11518,7 +10609,7 @@
"Model": "efficientdet-d0",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -11527,10 +10618,7 @@
"int8": 88.48,
"fp16": "",
"fp32": 59.03,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -11556,7 +10644,7 @@
"Model": "mask_rcnn_resnet50_atrous_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -11565,10 +10653,7 @@
"int8": 0.81,
"fp16": "",
"fp32": 0.43,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -11594,7 +10679,7 @@
"Model": "mobilenet-v2",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -11603,10 +10688,7 @@
"int8": 1218.37,
"fp16": "",
"fp32": 644.91,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -11632,7 +10714,7 @@
"Model": "resnet-50",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -11641,10 +10723,7 @@
"int8": 284.91,
"fp16": "",
"fp32": 109.93,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -11670,7 +10749,7 @@
"Model": "ssd-resnet34-1200",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -11679,10 +10758,7 @@
"int8": 5.67,
"fp16": "",
"fp32": 2.15,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -11708,7 +10784,7 @@
"Model": "ssd_mobilenet_v1_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -11717,10 +10793,7 @@
"int8": 554.73,
"fp16": "",
"fp32": 228.8,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -11745,8 +10818,8 @@
"Platform": "Intel® Core™ i7-1355U Processor CPU+iGPU",
"Model": "yolo11",
"featured_SKU": false,
- "whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "whats_new_model": "false",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -11755,10 +10828,7 @@
"int8": "",
"fp16": "",
"fp32": 80.32,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -11784,7 +10854,7 @@
"Model": "yolo_v8n",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -11793,10 +10863,7 @@
"int8": 154.56,
"fp16": "",
"fp32": 72.19,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -11822,7 +10889,7 @@
"Model": "bert-base-cased",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -11831,10 +10898,7 @@
"int8": 44.62,
"fp16": "",
"fp32": 17.96,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -11860,7 +10924,7 @@
"Model": "efficientdet-d0",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -11869,10 +10933,7 @@
"int8": 61.85,
"fp16": "",
"fp32": 39.52,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -11898,7 +10959,7 @@
"Model": "mask_rcnn_resnet50_atrous_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -11907,10 +10968,7 @@
"int8": 0.64,
"fp16": "",
"fp32": 0.17,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -11936,7 +10994,7 @@
"Model": "mobilenet-v2",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -11945,10 +11003,7 @@
"int8": 1042.94,
"fp16": "",
"fp32": 515.99,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -11974,7 +11029,7 @@
"Model": "resnet-50",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -11983,10 +11038,7 @@
"int8": 203.02,
"fp16": "",
"fp32": 59.12,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -12012,7 +11064,7 @@
"Model": "ssd-resnet34-1200",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -12021,10 +11073,7 @@
"int8": 3.48,
"fp16": "",
"fp32": 1.03,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -12050,7 +11099,7 @@
"Model": "ssd_mobilenet_v1_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -12059,10 +11108,7 @@
"int8": 422.9,
"fp16": "",
"fp32": 151.69,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -12087,8 +11133,8 @@
"Platform": "Intel® Core™ i7-1355U Processor CPU-only",
"Model": "yolo11",
"featured_SKU": false,
- "whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "whats_new_model": "false",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -12097,10 +11143,7 @@
"int8": "",
"fp16": "",
"fp32": 48.93,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -12126,7 +11169,7 @@
"Model": "yolo_v8n",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -12135,10 +11178,7 @@
"int8": 101.73,
"fp16": "",
"fp32": 40.76,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -12164,7 +11204,7 @@
"Model": "bert-base-cased",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -12173,10 +11213,7 @@
"int8": 67.08,
"fp16": 52.9,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -12202,7 +11239,7 @@
"Model": "efficientdet-d0",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -12211,10 +11248,7 @@
"int8": 98.8,
"fp16": 73.53,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -12240,19 +11274,16 @@
"Model": "gemma-2-9b",
"featured_SKU": false,
"whats_new_model": true,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
+ "int4": 6.21,
+ "int8": 3.88,
"fp16": "",
"fp32": "",
- "bf16": "",
- "token_int4": 6.21,
- "token_int8": 3.88,
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -12277,20 +11308,17 @@
"Platform": "Intel® Core™ i7-1355U Processor iGPU-only",
"Model": "glm-4-9b-chat",
"featured_SKU": false,
- "whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "whats_new_model": "false",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
+ "int4": 7.25,
+ "int8": 4.27,
"fp16": "",
"fp32": "",
- "bf16": "",
- "token_int4": 7.25,
- "token_int8": 4.27,
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -12316,19 +11344,16 @@
"Model": "llama-2-7b-chat",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
+ "int4": 8.53,
+ "int8": 5.74,
"fp16": "",
"fp32": "",
- "bf16": "",
- "token_int4": 8.53,
- "token_int8": 5.74,
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -12353,20 +11378,17 @@
"Platform": "Intel® Core™ i7-1355U Processor iGPU-only",
"Model": "llama-3-8b",
"featured_SKU": false,
- "whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "whats_new_model": "false",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
+ "int4": 8.49,
+ "int8": 5.06,
"fp16": "",
"fp32": "",
- "bf16": "",
- "token_int4": 8.49,
- "token_int8": 5.06,
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -12392,19 +11414,16 @@
"Model": "llama-3.2-3b-instruct",
"featured_SKU": false,
"whats_new_model": true,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 16.79,
+ "int8": 11.89,
+ "fp16": 6.7,
"fp32": "",
- "bf16": "",
- "token_int4": 16.79,
- "token_int8": 11.89,
- "token_fp16": 6.7
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -12430,7 +11449,7 @@
"Model": "mask_rcnn_resnet50_atrous_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -12439,10 +11458,7 @@
"int8": 0.73,
"fp16": 0.77,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -12468,19 +11484,16 @@
"Model": "mistral-7b-v0.1",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
+ "int4": 8.86,
+ "int8": 5.44,
"fp16": "",
"fp32": "",
- "bf16": "",
- "token_int4": 8.86,
- "token_int8": 5.44,
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -12506,7 +11519,7 @@
"Model": "mobilenet-v2",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -12515,10 +11528,7 @@
"int8": 869.88,
"fp16": 621.94,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -12544,19 +11554,16 @@
"Model": "phi-3-mini-4k-instruct",
"featured_SKU": false,
"whats_new_model": true,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 14.78,
+ "int8": 9.98,
+ "fp16": 5.45,
"fp32": "",
- "bf16": "",
- "token_int4": 14.78,
- "token_int8": 9.98,
- "token_fp16": 5.45
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -12582,19 +11589,16 @@
"Model": "qwen2-7b",
"featured_SKU": false,
"whats_new_model": true,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
+ "int4": 9.11,
+ "int8": 5.39,
"fp16": "",
"fp32": "",
- "bf16": "",
- "token_int4": 9.11,
- "token_int8": 5.39,
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -12620,7 +11624,7 @@
"Model": "resnet-50",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -12629,10 +11633,7 @@
"int8": 277.06,
"fp16": 164.27,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -12658,7 +11659,7 @@
"Model": "ssd-resnet34-1200",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -12667,10 +11668,7 @@
"int8": 7.1,
"fp16": 3.99,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -12696,7 +11694,7 @@
"Model": "ssd_mobilenet_v1_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -12705,10 +11703,7 @@
"int8": 484.13,
"fp16": 298.47,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -12734,7 +11729,7 @@
"Model": "stable-diffusion-v1-5",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -12743,10 +11738,7 @@
"int8": "",
"fp16": "",
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -12772,7 +11764,7 @@
"Model": "yolo_v8n",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -12781,10 +11773,7 @@
"int8": 162.35,
"fp16": 106.83,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -12810,7 +11799,7 @@
"Model": "bert-base-cased",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -12819,10 +11808,7 @@
"int8": 170.14,
"fp16": "",
"fp32": 67.07,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -12848,7 +11834,7 @@
"Model": "efficientdet-d0",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -12857,10 +11843,7 @@
"int8": 219.8,
"fp16": "",
"fp32": 126.91,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -12886,19 +11869,16 @@
"Model": "gemma-2-9b",
"featured_SKU": false,
"whats_new_model": true,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 9.43,
+ "int8": 6.9,
+ "fp16": 3.59,
"fp32": "",
- "bf16": "",
- "token_int4": 9.42,
- "token_int8": 6.89,
- "token_fp16": 3.59
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -12908,7 +11888,7 @@
"Precisions": [
{
"int4": 106.06,
- "int8": 144.95,
+ "int8": 144.96,
"fp16": 278.42,
"fp32": "",
"bf16": ""
@@ -12923,20 +11903,17 @@
"Platform": "Intel® Core™ i9-13900K CPU-only",
"Model": "glm-4-9b-chat",
"featured_SKU": false,
- "whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "whats_new_model": "false",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 10.66,
+ "int8": 7.47,
+ "fp16": 3.84,
"fp32": "",
- "bf16": "",
- "token_int4": 10.65,
- "token_int8": 7.46,
- "token_fp16": 3.83
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -12947,7 +11924,7 @@
{
"int4": 93.82,
"int8": 133.88,
- "fp16": 260.66,
+ "fp16": 260.67,
"fp32": "",
"bf16": ""
}
@@ -12962,19 +11939,16 @@
"Model": "llama-2-7b-chat",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 13.44,
+ "int8": 9.29,
+ "fp16": 4.94,
"fp32": "",
- "bf16": "",
- "token_int4": 13.44,
- "token_int8": 9.29,
- "token_fp16": 4.94
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -12999,20 +11973,17 @@
"Platform": "Intel® Core™ i9-13900K CPU-only",
"Model": "llama-3-8b",
"featured_SKU": false,
- "whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "whats_new_model": "false",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 11.91,
+ "int8": 8.66,
+ "fp16": 4.81,
"fp32": "",
- "bf16": "",
- "token_int4": 11.91,
- "token_int8": 8.65,
- "token_fp16": 4.48
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -13022,7 +11993,7 @@
"Precisions": [
{
"int4": 83.93,
- "int8": 115.48,
+ "int8": 115.49,
"fp16": 223.15,
"fp32": "",
"bf16": ""
@@ -13038,19 +12009,16 @@
"Model": "llama-3.2-3b-instruct",
"featured_SKU": false,
"whats_new_model": true,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 25.41,
+ "int8": 19.0,
+ "fp16": 10.18,
"fp32": "",
- "bf16": "",
- "token_int4": 25.41,
- "token_int8": 18.99,
- "token_fp16": 10.18
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -13059,9 +12027,9 @@
"latency": {
"Precisions": [
{
- "int4": 39.35,
+ "int4": 39.36,
"int8": 52.64,
- "fp16": 98.23,
+ "fp16": 98.24,
"fp32": "",
"bf16": ""
}
@@ -13076,7 +12044,7 @@
"Model": "mask_rcnn_resnet50_atrous_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -13085,10 +12053,7 @@
"int8": 2.49,
"fp16": "",
"fp32": 0.71,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -13114,19 +12079,16 @@
"Model": "mistral-7b-v0.1",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 14.41,
+ "int8": 9.13,
+ "fp16": 4.72,
"fp32": "",
- "bf16": "",
- "token_int4": 14.41,
- "token_int8": 9.12,
- "token_fp16": 4.71
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -13135,9 +12097,9 @@
"latency": {
"Precisions": [
{
- "int4": 69.39,
+ "int4": 69.4,
"int8": 109.54,
- "fp16": 211.91,
+ "fp16": 211.92,
"fp32": "",
"bf16": ""
}
@@ -13152,7 +12114,7 @@
"Model": "mobilenet-v2",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -13161,10 +12123,7 @@
"int8": 4239.14,
"fp16": "",
"fp32": 2047.2,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -13190,19 +12149,16 @@
"Model": "phi-3-mini-4k-instruct",
"featured_SKU": false,
"whats_new_model": true,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
"int4": "",
- "int8": "",
- "fp16": "",
+ "int8": 15.66,
+ "fp16": 8.52,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": 15.66,
- "token_fp16": 8.52
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -13212,7 +12168,7 @@
"Precisions": [
{
"int4": "",
- "int8": 63.84,
+ "int8": 63.85,
"fp16": 117.37,
"fp32": "",
"bf16": ""
@@ -13228,19 +12184,16 @@
"Model": "qwen2-7b",
"featured_SKU": false,
"whats_new_model": true,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 13.1,
+ "int8": 9.24,
+ "fp16": 4.75,
"fp32": "",
- "bf16": "",
- "token_int4": 13.1,
- "token_int8": 9.24,
- "token_fp16": 4.75
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -13249,9 +12202,9 @@
"latency": {
"Precisions": [
{
- "int4": 76.33,
- "int8": 108.16,
- "fp16": 210.38,
+ "int4": "",
+ "int8": 63.85,
+ "fp16": 117.37,
"fp32": "",
"bf16": ""
}
@@ -13266,7 +12219,7 @@
"Model": "resnet-50",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -13275,10 +12228,7 @@
"int8": 762.32,
"fp16": "",
"fp32": 234.53,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -13304,7 +12254,7 @@
"Model": "ssd-resnet34-1200",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -13313,10 +12263,7 @@
"int8": 12.97,
"fp16": "",
"fp32": 3.84,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -13342,7 +12289,7 @@
"Model": "ssd_mobilenet_v1_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -13351,10 +12298,7 @@
"int8": 1606.89,
"fp16": "",
"fp32": 589.62,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -13380,7 +12324,7 @@
"Model": "stable-diffusion-v1-5",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -13389,10 +12333,7 @@
"int8": "",
"fp16": "",
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -13417,8 +12358,8 @@
"Platform": "Intel® Core™ i9-13900K CPU-only",
"Model": "yolo11",
"featured_SKU": false,
- "whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "whats_new_model": "false",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -13427,10 +12368,7 @@
"int8": "",
"fp16": "",
"fp32": 187.66,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -13456,7 +12394,7 @@
"Model": "yolo_v8n",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Client Platforms (Intel® Core™)",
+ "PlatformType": "Intel® Core™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -13465,10 +12403,7 @@
"int8": 389.04,
"fp16": "",
"fp32": 154.4,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -13492,7 +12427,7 @@
{
"Platform": "Intel® Data Center GPU Flex 170 dGPU",
"Model": "bert-base-cased",
- "featured_SKU": false,
+ "featured_SKU": "false",
"whats_new_model": false,
"PlatformType": "Accelerator Platforms",
"Parameters": {
@@ -13503,10 +12438,7 @@
"int8": 385.87,
"fp16": 420.99,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -13530,7 +12462,7 @@
{
"Platform": "Intel® Data Center GPU Flex 170 dGPU",
"Model": "efficientdet-d0",
- "featured_SKU": false,
+ "featured_SKU": "false",
"whats_new_model": false,
"PlatformType": "Accelerator Platforms",
"Parameters": {
@@ -13541,10 +12473,7 @@
"int8": 426.56,
"fp16": 362.73,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -13568,21 +12497,18 @@
{
"Platform": "Intel® Data Center GPU Flex 170 dGPU",
"Model": "gemma-2-9b",
- "featured_SKU": false,
+ "featured_SKU": "false",
"whats_new_model": true,
"PlatformType": "Accelerator Platforms",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
+ "int4": 22.66,
+ "int8": 18.13,
"fp16": "",
"fp32": "",
- "bf16": "",
- "token_int4": 22.66,
- "token_int8": 18.13,
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -13606,21 +12532,18 @@
{
"Platform": "Intel® Data Center GPU Flex 170 dGPU",
"Model": "glm-4-9b-chat",
- "featured_SKU": false,
- "whats_new_model": false,
+ "featured_SKU": "false",
+ "whats_new_model": "false",
"PlatformType": "Accelerator Platforms",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
+ "int4": 40.04,
+ "int8": 26.95,
"fp16": "",
"fp32": "",
- "bf16": "",
- "token_int4": 40.04,
- "token_int8": 26.95,
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -13644,21 +12567,18 @@
{
"Platform": "Intel® Data Center GPU Flex 170 dGPU",
"Model": "llama-2-7b-chat",
- "featured_SKU": false,
+ "featured_SKU": "false",
"whats_new_model": false,
"PlatformType": "Accelerator Platforms",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 45.22,
+ "int8": 33.88,
+ "fp16": 21.45,
"fp32": "",
- "bf16": "",
- "token_int4": 45.22,
- "token_int8": 33.88,
- "token_fp16": 21.45
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -13682,21 +12602,18 @@
{
"Platform": "Intel® Data Center GPU Flex 170 dGPU",
"Model": "llama-3-8b",
- "featured_SKU": false,
- "whats_new_model": false,
+ "featured_SKU": "false",
+ "whats_new_model": "false",
"PlatformType": "Accelerator Platforms",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
+ "int4": 45.55,
+ "int8": 30.8,
"fp16": "",
"fp32": "",
- "bf16": "",
- "token_int4": 45.55,
- "token_int8": 30.8,
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -13720,21 +12637,18 @@
{
"Platform": "Intel® Data Center GPU Flex 170 dGPU",
"Model": "llama-3.2-3b-instruct",
- "featured_SKU": false,
+ "featured_SKU": "false",
"whats_new_model": true,
"PlatformType": "Accelerator Platforms",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 69.44,
+ "int8": 57.9,
+ "fp16": 37.69,
"fp32": "",
- "bf16": "",
- "token_int4": 69.44,
- "token_int8": 57.9,
- "token_fp16": 37.69
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -13758,7 +12672,7 @@
{
"Platform": "Intel® Data Center GPU Flex 170 dGPU",
"Model": "mask_rcnn_resnet50_atrous_coco",
- "featured_SKU": false,
+ "featured_SKU": "false",
"whats_new_model": false,
"PlatformType": "Accelerator Platforms",
"Parameters": {
@@ -13769,10 +12683,7 @@
"int8": 33.38,
"fp16": 19.04,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -13796,21 +12707,18 @@
{
"Platform": "Intel® Data Center GPU Flex 170 dGPU",
"Model": "mistral-7b-v0.1",
- "featured_SKU": false,
+ "featured_SKU": "false",
"whats_new_model": false,
"PlatformType": "Accelerator Platforms",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 45.53,
+ "int8": 32.37,
+ "fp16": 20.21,
"fp32": "",
- "bf16": "",
- "token_int4": 45.53,
- "token_int8": 32.37,
- "token_fp16": 20.21
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -13834,7 +12742,7 @@
{
"Platform": "Intel® Data Center GPU Flex 170 dGPU",
"Model": "mobilenet-v2",
- "featured_SKU": false,
+ "featured_SKU": "false",
"whats_new_model": false,
"PlatformType": "Accelerator Platforms",
"Parameters": {
@@ -13845,10 +12753,7 @@
"int8": 3134.27,
"fp16": 3004.5,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -13872,21 +12777,18 @@
{
"Platform": "Intel® Data Center GPU Flex 170 dGPU",
"Model": "phi-3-mini-4k-instruct",
- "featured_SKU": false,
+ "featured_SKU": "false",
"whats_new_model": true,
"PlatformType": "Accelerator Platforms",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 69.93,
+ "int8": 51.51,
+ "fp16": 32.84,
"fp32": "",
- "bf16": "",
- "token_int4": 69.93,
- "token_int8": 51.51,
- "token_fp16": 32.84
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -13910,21 +12812,18 @@
{
"Platform": "Intel® Data Center GPU Flex 170 dGPU",
"Model": "qwen2-7b",
- "featured_SKU": false,
+ "featured_SKU": "false",
"whats_new_model": true,
"PlatformType": "Accelerator Platforms",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
+ "int4": 45.8,
+ "int8": 32.78,
"fp16": "",
"fp32": "",
- "bf16": "",
- "token_int4": 45.8,
- "token_int8": 32.78,
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -13948,7 +12847,7 @@
{
"Platform": "Intel® Data Center GPU Flex 170 dGPU",
"Model": "resnet-50",
- "featured_SKU": false,
+ "featured_SKU": "false",
"whats_new_model": false,
"PlatformType": "Accelerator Platforms",
"Parameters": {
@@ -13959,10 +12858,7 @@
"int8": 1921.18,
"fp16": 1329.28,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -13986,7 +12882,7 @@
{
"Platform": "Intel® Data Center GPU Flex 170 dGPU",
"Model": "ssd-resnet34-1200",
- "featured_SKU": false,
+ "featured_SKU": "false",
"whats_new_model": false,
"PlatformType": "Accelerator Platforms",
"Parameters": {
@@ -13997,10 +12893,7 @@
"int8": 133.77,
"fp16": "",
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -14024,7 +12917,7 @@
{
"Platform": "Intel® Data Center GPU Flex 170 dGPU",
"Model": "ssd_mobilenet_v1_coco",
- "featured_SKU": false,
+ "featured_SKU": "false",
"whats_new_model": false,
"PlatformType": "Accelerator Platforms",
"Parameters": {
@@ -14035,10 +12928,7 @@
"int8": 2200.83,
"fp16": 1665.15,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -14062,7 +12952,7 @@
{
"Platform": "Intel® Data Center GPU Flex 170 dGPU",
"Model": "stable-diffusion-v1-5",
- "featured_SKU": false,
+ "featured_SKU": "false",
"whats_new_model": false,
"PlatformType": "Accelerator Platforms",
"Parameters": {
@@ -14073,10 +12963,7 @@
"int8": "",
"fp16": "",
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -14100,7 +12987,7 @@
{
"Platform": "Intel® Data Center GPU Flex 170 dGPU",
"Model": "yolo_v8n",
- "featured_SKU": false,
+ "featured_SKU": "false",
"whats_new_model": false,
"PlatformType": "Accelerator Platforms",
"Parameters": {
@@ -14111,10 +12998,7 @@
"int8": 759.93,
"fp16": 694.57,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -14140,7 +13024,7 @@
"Model": "efficientdet-d0",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -14149,10 +13033,7 @@
"int8": 36.93,
"fp16": "",
"fp32": 27.64,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -14178,7 +13059,7 @@
"Model": "mobilenet-v2",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -14187,10 +13068,7 @@
"int8": 484.32,
"fp16": "",
"fp32": 278.4,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -14216,7 +13094,7 @@
"Model": "resnet-50",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -14225,10 +13103,7 @@
"int8": 112.23,
"fp16": "",
"fp32": 42.14,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -14254,7 +13129,7 @@
"Model": "ssd-resnet34-1200",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -14263,10 +13138,7 @@
"int8": 2.04,
"fp16": "",
"fp32": 0.6,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -14292,7 +13164,7 @@
"Model": "ssd_mobilenet_v1_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -14301,10 +13173,7 @@
"int8": 216.96,
"fp16": "",
"fp32": 94.92,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -14329,8 +13198,8 @@
"Platform": "Intel® Processor N100 CPU+iGPU",
"Model": "yolo11",
"featured_SKU": false,
- "whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "whats_new_model": "false",
+ "PlatformType": "Intel® Atom™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -14339,10 +13208,7 @@
"int8": "",
"fp16": "",
"fp32": 34.52,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -14368,7 +13234,7 @@
"Model": "yolo_v8n",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU+iGPU",
"Parameters": {
"throughput": {
"Precisions": [
@@ -14377,10 +13243,7 @@
"int8": 61.06,
"fp16": "",
"fp32": 28.61,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -14406,7 +13269,7 @@
"Model": "efficientdet-d0",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -14415,10 +13278,7 @@
"int8": 15.44,
"fp16": "",
"fp32": 12.75,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -14444,7 +13304,7 @@
"Model": "mobilenet-v2",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -14453,10 +13313,7 @@
"int8": 296.53,
"fp16": "",
"fp32": 183.3,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -14482,7 +13339,7 @@
"Model": "resnet-50",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -14491,10 +13348,7 @@
"int8": 48.77,
"fp16": "",
"fp32": 20.13,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -14520,7 +13374,7 @@
"Model": "ssd-resnet34-1200",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -14529,10 +13383,7 @@
"int8": 0.82,
"fp16": "",
"fp32": 0.31,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -14558,7 +13409,7 @@
"Model": "ssd_mobilenet_v1_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -14567,10 +13418,7 @@
"int8": 106.12,
"fp16": "",
"fp32": 49.52,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -14595,8 +13443,8 @@
"Platform": "Intel® Processor N100 CPU-only",
"Model": "yolo11",
"featured_SKU": false,
- "whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "whats_new_model": "false",
+ "PlatformType": "Intel® Atom™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -14605,10 +13453,7 @@
"int8": "",
"fp16": "",
"fp32": 15.36,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -14634,7 +13479,7 @@
"Model": "yolo_v8n",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -14643,10 +13488,7 @@
"int8": 23.65,
"fp16": "",
"fp32": 12.86,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -14672,7 +13514,7 @@
"Model": "efficientdet-d0",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -14681,10 +13523,7 @@
"int8": 33.69,
"fp16": 30.91,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -14710,7 +13549,7 @@
"Model": "mobilenet-v2",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -14719,10 +13558,7 @@
"int8": 337.95,
"fp16": 267.38,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -14748,7 +13584,7 @@
"Model": "resnet-50",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -14757,10 +13593,7 @@
"int8": 81.72,
"fp16": 49.76,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -14786,7 +13619,7 @@
"Model": "ssd-resnet34-1200",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -14795,10 +13628,7 @@
"int8": 1.62,
"fp16": 1.01,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -14824,7 +13654,7 @@
"Model": "ssd_mobilenet_v1_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -14833,10 +13663,7 @@
"int8": 164.31,
"fp16": 106.85,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -14862,7 +13689,7 @@
"Model": "yolo_v8n",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Mobile Platforms (Intel® Atom™)",
+ "PlatformType": "Intel® Atom™, iGPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -14871,10 +13698,7 @@
"int8": 47.04,
"fp16": 34.97,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -14900,7 +13724,7 @@
"Model": "bert-base-cased",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -14909,10 +13733,7 @@
"int8": 218.18,
"fp16": "",
"fp32": 80.36,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -14938,7 +13759,7 @@
"Model": "efficientdet-d0",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -14947,10 +13768,7 @@
"int8": 271.94,
"fp16": "",
"fp32": 167.25,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -14976,7 +13794,7 @@
"Model": "mask_rcnn_resnet50_atrous_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -14985,10 +13803,7 @@
"int8": 3.26,
"fp16": "",
"fp32": 0.9,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -15014,7 +13829,7 @@
"Model": "mobilenet-v2",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -15023,10 +13838,7 @@
"int8": 5417.98,
"fp16": "",
"fp32": 1926.0,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -15052,7 +13864,7 @@
"Model": "resnet-50",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -15061,10 +13873,7 @@
"int8": 979.5,
"fp16": "",
"fp32": 267.16,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -15090,7 +13899,7 @@
"Model": "ssd-resnet34-1200",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -15099,10 +13908,7 @@
"int8": 17.65,
"fp16": "",
"fp32": 4.58,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -15128,7 +13934,7 @@
"Model": "ssd_mobilenet_v1_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -15137,10 +13943,7 @@
"int8": 2104.85,
"fp16": "",
"fp32": 639.65,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -15165,8 +13968,8 @@
"Platform": "Intel® Xeon® Gold 5218T CPU-only",
"Model": "yolo11",
"featured_SKU": false,
- "whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "whats_new_model": "false",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -15175,10 +13978,7 @@
"int8": "",
"fp16": "",
"fp32": 206.18,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -15204,7 +14004,7 @@
"Model": "yolo_v8n",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -15213,10 +14013,7 @@
"int8": 440.56,
"fp16": "",
"fp32": 173.57,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -15242,7 +14039,7 @@
"Model": "bert-base-cased",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -15251,10 +14048,7 @@
"int8": 426.19,
"fp16": "",
"fp32": 162.63,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -15280,7 +14074,7 @@
"Model": "efficientdet-d0",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -15289,10 +14083,7 @@
"int8": 411.51,
"fp16": "",
"fp32": 254.65,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -15318,7 +14109,7 @@
"Model": "mask_rcnn_resnet50_atrous_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -15327,10 +14118,7 @@
"int8": 6.45,
"fp16": "",
"fp32": 1.65,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -15356,7 +14144,7 @@
"Model": "mobilenet-v2",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -15365,10 +14153,7 @@
"int8": 10273.19,
"fp16": "",
"fp32": 3342.96,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -15394,7 +14179,7 @@
"Model": "resnet-50",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -15403,10 +14188,7 @@
"int8": 2125.81,
"fp16": "",
"fp32": 570.61,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -15432,7 +14214,7 @@
"Model": "ssd-resnet34-1200",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -15441,10 +14223,7 @@
"int8": 41.83,
"fp16": "",
"fp32": 10.91,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -15470,7 +14249,7 @@
"Model": "ssd_mobilenet_v1_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -15479,10 +14258,7 @@
"int8": 4376.71,
"fp16": "",
"fp32": 1244.57,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -15507,8 +14283,8 @@
"Platform": "Intel® Xeon® Gold 6238L CPU-only",
"Model": "yolo11",
"featured_SKU": false,
- "whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "whats_new_model": "false",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -15517,10 +14293,7 @@
"int8": "",
"fp16": "",
"fp32": 383.86,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -15546,7 +14319,7 @@
"Model": "yolo_v8n",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -15555,10 +14328,7 @@
"int8": 749.14,
"fp16": "",
"fp32": 338.04,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -15584,7 +14354,7 @@
"Model": "bert-base-cased",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -15593,10 +14363,7 @@
"int8": 622.71,
"fp16": "",
"fp32": 240.52,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -15622,7 +14389,7 @@
"Model": "efficientdet-d0",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -15631,10 +14398,7 @@
"int8": 721.9,
"fp16": "",
"fp32": 423.3,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -15660,7 +14424,7 @@
"Model": "mask_rcnn_resnet50_atrous_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -15669,10 +14433,7 @@
"int8": 10.46,
"fp16": "",
"fp32": 2.45,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -15698,7 +14459,7 @@
"Model": "mobilenet-v2",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -15707,10 +14468,7 @@
"int8": 16509.95,
"fp16": "",
"fp32": 5201.56,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -15736,7 +14494,7 @@
"Model": "resnet-50",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -15745,10 +14503,7 @@
"int8": 3352.09,
"fp16": "",
"fp32": 825.5,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -15774,7 +14529,7 @@
"Model": "ssd-resnet34-1200",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -15783,10 +14538,7 @@
"int8": 60.91,
"fp16": "",
"fp32": 15.11,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -15812,7 +14564,7 @@
"Model": "ssd_mobilenet_v1_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -15821,10 +14573,7 @@
"int8": 6975.09,
"fp16": "",
"fp32": 1755.62,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -15849,8 +14598,8 @@
"Platform": "Intel® Xeon® Gold 6338N CPU-only",
"Model": "yolo11",
"featured_SKU": false,
- "whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "whats_new_model": "false",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -15859,10 +14608,7 @@
"int8": "",
"fp16": "",
"fp32": 571.3,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -15888,7 +14634,7 @@
"Model": "yolo_v8n",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -15897,10 +14643,7 @@
"int8": 1224.86,
"fp16": "",
"fp32": 495.73,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -15926,7 +14669,7 @@
"Model": "bert-base-cased",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -15935,10 +14678,7 @@
"int8": 587.54,
"fp16": "",
"fp32": 225.64,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -15964,7 +14704,7 @@
"Model": "efficientdet-d0",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -15973,10 +14713,7 @@
"int8": 580.8,
"fp16": "",
"fp32": 343.39,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -16002,7 +14739,7 @@
"Model": "mask_rcnn_resnet50_atrous_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -16011,10 +14748,7 @@
"int8": 8.58,
"fp16": "",
"fp32": 2.26,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -16040,7 +14774,7 @@
"Model": "mobilenet-v2",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -16049,10 +14783,7 @@
"int8": 14930.31,
"fp16": "",
"fp32": 4646.16,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -16078,7 +14809,7 @@
"Model": "resnet-50",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -16087,10 +14818,7 @@
"int8": 2965.31,
"fp16": "",
"fp32": 761.01,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -16116,7 +14844,7 @@
"Model": "ssd-resnet34-1200",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -16125,10 +14853,7 @@
"int8": 58.15,
"fp16": "",
"fp32": 15.0,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -16154,7 +14879,7 @@
"Model": "ssd_mobilenet_v1_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -16163,10 +14888,7 @@
"int8": 6130.48,
"fp16": "",
"fp32": 1654.84,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -16191,8 +14913,8 @@
"Platform": "Intel® Xeon® Platinum 8280 CPU-only",
"Model": "yolo11",
"featured_SKU": false,
- "whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "whats_new_model": "false",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -16201,10 +14923,7 @@
"int8": "",
"fp16": "",
"fp32": 512.57,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -16230,7 +14949,7 @@
"Model": "yolo_v8n",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -16239,10 +14958,7 @@
"int8": 996.59,
"fp16": "",
"fp32": 452.05,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -16268,7 +14984,7 @@
"Model": "bert-base-cased",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -16277,10 +14993,7 @@
"int8": 881.04,
"fp16": "",
"fp32": 338.12,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -16306,7 +15019,7 @@
"Model": "efficientdet-d0",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -16315,10 +15028,7 @@
"int8": 1009.71,
"fp16": "",
"fp32": 562.38,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -16344,19 +15054,16 @@
"Model": "gemma-2-9b",
"featured_SKU": false,
"whats_new_model": true,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 20.78,
+ "int8": 14.18,
+ "fp16": 7.72,
"fp32": "",
- "bf16": "",
- "token_int4": 20.78,
- "token_int8": 14.18,
- "token_fp16": 7.72
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -16381,20 +15088,17 @@
"Platform": "Intel® Xeon® Platinum 8380 CPU-only",
"Model": "glm-4-9b-chat",
"featured_SKU": false,
- "whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "whats_new_model": "false",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 22.79,
+ "int8": 15.56,
+ "fp16": 8.48,
"fp32": "",
- "bf16": "",
- "token_int4": 22.79,
- "token_int8": 15.56,
- "token_fp16": 8.48
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -16420,19 +15124,16 @@
"Model": "llama-2-7b-chat",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 25.41,
+ "int8": 18.68,
+ "fp16": 10.61,
"fp32": "",
- "bf16": "",
- "token_int4": 25.41,
- "token_int8": 18.68,
- "token_fp16": 10.61
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -16457,20 +15158,17 @@
"Platform": "Intel® Xeon® Platinum 8380 CPU-only",
"Model": "llama-3-8b",
"featured_SKU": false,
- "whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "whats_new_model": "false",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 26.07,
+ "int8": 17.66,
+ "fp16": 9.72,
"fp32": "",
- "bf16": "",
- "token_int4": 26.07,
- "token_int8": 17.66,
- "token_fp16": 9.72
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -16496,19 +15194,16 @@
"Model": "llama-3.2-3b-instruct",
"featured_SKU": false,
"whats_new_model": true,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 46.81,
+ "int8": 33.54,
+ "fp16": 19.32,
"fp32": "",
- "bf16": "",
- "token_int4": 46.81,
- "token_int8": 33.54,
- "token_fp16": 19.32
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -16534,7 +15229,7 @@
"Model": "mask_rcnn_resnet50_atrous_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -16543,10 +15238,7 @@
"int8": 14.73,
"fp16": "",
"fp32": 3.42,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -16572,19 +15264,16 @@
"Model": "mistral-7b-v0.1",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 26.89,
+ "int8": 18.54,
+ "fp16": 10.22,
"fp32": "",
- "bf16": "",
- "token_int4": 26.89,
- "token_int8": 18.54,
- "token_fp16": 10.22
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -16610,7 +15299,7 @@
"Model": "mobilenet-v2",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -16619,10 +15308,7 @@
"int8": 22703.47,
"fp16": "",
"fp32": 6937.71,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -16648,19 +15334,16 @@
"Model": "phi-3-mini-4k-instruct",
"featured_SKU": false,
"whats_new_model": true,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 39.41,
+ "int8": 29.28,
+ "fp16": 17.35,
"fp32": "",
- "bf16": "",
- "token_int4": 39.41,
- "token_int8": 29.28,
- "token_fp16": 17.35
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -16686,19 +15369,16 @@
"Model": "qwen2-7b",
"featured_SKU": false,
"whats_new_model": true,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 28.26,
+ "int8": 19.32,
+ "fp16": 10.27,
"fp32": "",
- "bf16": "",
- "token_int4": 28.26,
- "token_int8": 19.32,
- "token_fp16": 10.27
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -16724,7 +15404,7 @@
"Model": "resnet-50",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -16733,10 +15413,7 @@
"int8": 4874.95,
"fp16": "",
"fp32": 1144.73,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -16762,7 +15439,7 @@
"Model": "ssd-resnet34-1200",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -16771,10 +15448,7 @@
"int8": 84.6,
"fp16": "",
"fp32": 20.95,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -16800,7 +15474,7 @@
"Model": "ssd_mobilenet_v1_coco",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -16809,10 +15483,7 @@
"int8": 10174.18,
"fp16": "",
"fp32": 2524.59,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -16838,7 +15509,7 @@
"Model": "stable-diffusion-v1-5",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -16847,10 +15518,7 @@
"int8": "",
"fp16": "",
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -16875,8 +15543,8 @@
"Platform": "Intel® Xeon® Platinum 8380 CPU-only",
"Model": "yolo11",
"featured_SKU": false,
- "whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "whats_new_model": "false",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -16885,10 +15553,7 @@
"int8": "",
"fp16": "",
"fp32": 803.12,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -16914,7 +15579,7 @@
"Model": "yolo_v8n",
"featured_SKU": false,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -16923,10 +15588,7 @@
"int8": 1704.08,
"fp16": "",
"fp32": 697.23,
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -16952,7 +15614,7 @@
"Model": "bert-base-cased",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -16961,10 +15623,7 @@
"int8": 3023.92,
"fp16": "",
"fp32": 483.11,
- "bf16": 1976.63,
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": 1976.63
}
],
"Unit": "FPS",
@@ -16990,7 +15649,7 @@
"Model": "efficientdet-d0",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -16999,10 +15658,7 @@
"int8": 1445.78,
"fp16": "",
"fp32": 861.51,
- "bf16": 1021.75,
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": 1021.75
}
],
"Unit": "FPS",
@@ -17028,19 +15684,16 @@
"Model": "gemma-2-9b",
"featured_SKU": true,
"whats_new_model": true,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 22.71,
+ "int8": 16.83,
+ "fp16": 10.76,
"fp32": "",
- "bf16": "",
- "token_int4": 22.71,
- "token_int8": 16.83,
- "token_fp16": 10.76
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -17065,20 +15718,17 @@
"Platform": "Intel® Xeon® Platinum 8480+ CPU-only",
"Model": "glm-4-9b-chat",
"featured_SKU": true,
- "whats_new_model": true,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "whats_new_model": "false",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 23.7,
+ "int8": 16.93,
+ "fp16": 11.27,
"fp32": "",
- "bf16": "",
- "token_int4": 23.7,
- "token_int8": 16.93,
- "token_fp16": 11.27
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -17104,19 +15754,16 @@
"Model": "llama-2-7b-chat",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 26.11,
+ "int8": 20.1,
+ "fp16": 14.19,
"fp32": "",
- "bf16": "",
- "token_int4": 26.11,
- "token_int8": 20.1,
- "token_fp16": 14.19
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -17141,20 +15788,17 @@
"Platform": "Intel® Xeon® Platinum 8480+ CPU-only",
"Model": "llama-3-8b",
"featured_SKU": true,
- "whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "whats_new_model": "false",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 26.02,
+ "int8": 18.97,
+ "fp16": 13.23,
"fp32": "",
- "bf16": "",
- "token_int4": 26.02,
- "token_int8": 18.97,
- "token_fp16": 13.23
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -17180,19 +15824,16 @@
"Model": "llama-3.2-3b-instruct",
"featured_SKU": true,
"whats_new_model": true,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 45.68,
+ "int8": 36.96,
+ "fp16": 27.27,
"fp32": "",
- "bf16": "",
- "token_int4": 45.68,
- "token_int8": 36.96,
- "token_fp16": 27.27
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -17218,7 +15859,7 @@
"Model": "mask_rcnn_resnet50_atrous_coco",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -17227,10 +15868,7 @@
"int8": 62.13,
"fp16": "",
"fp32": 5.19,
- "bf16": 37.54,
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": 37.54
}
],
"Unit": "FPS",
@@ -17256,19 +15894,16 @@
"Model": "mistral-7b-v0.1",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 27.42,
+ "int8": 19.9,
+ "fp16": 13.72,
"fp32": "",
- "bf16": "",
- "token_int4": 27.42,
- "token_int8": 19.9,
- "token_fp16": 13.72
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -17294,7 +15929,7 @@
"Model": "mobilenet-v2",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -17303,10 +15938,7 @@
"int8": 38538.65,
"fp16": "",
"fp32": 10274.08,
- "bf16": 25608.67,
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": 25608.67
}
],
"Unit": "FPS",
@@ -17331,20 +15963,17 @@
"Platform": "Intel® Xeon® Platinum 8480+ CPU-only",
"Model": "phi-3-mini-4k-instruct",
"featured_SKU": true,
- "whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "whats_new_model": true,
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
"int4": "",
- "int8": "",
- "fp16": "",
+ "int8": 33.53,
+ "fp16": 23.1,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": 33.53,
- "token_fp16": 23.1
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -17370,19 +15999,16 @@
"Model": "qwen2-7b",
"featured_SKU": true,
"whats_new_model": true,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 30.03,
+ "int8": 22.14,
+ "fp16": 13.95,
"fp32": "",
- "bf16": "",
- "token_int4": 30.03,
- "token_int8": 22.14,
- "token_fp16": 13.95
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -17408,7 +16034,7 @@
"Model": "resnet-50",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -17417,10 +16043,7 @@
"int8": 19226.96,
"fp16": "",
"fp32": 1597.37,
- "bf16": 7480.12,
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": 7480.12
}
],
"Unit": "FPS",
@@ -17446,7 +16069,7 @@
"Model": "ssd-resnet34-1200",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -17455,10 +16078,7 @@
"int8": 434.12,
"fp16": "",
"fp32": 30.6,
- "bf16": 209.11,
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": 209.11
}
],
"Unit": "FPS",
@@ -17484,7 +16104,7 @@
"Model": "ssd_mobilenet_v1_coco",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -17493,10 +16113,7 @@
"int8": 24134.02,
"fp16": "",
"fp32": 3392.4,
- "bf16": 12168.49,
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": 12168.49
}
],
"Unit": "FPS",
@@ -17522,7 +16139,7 @@
"Model": "stable-diffusion-v1-5",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -17531,10 +16148,7 @@
"int8": "",
"fp16": "",
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -17559,8 +16173,8 @@
"Platform": "Intel® Xeon® Platinum 8480+ CPU-only",
"Model": "yolo11",
"featured_SKU": true,
- "whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "whats_new_model": "false",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -17569,10 +16183,7 @@
"int8": "",
"fp16": "",
"fp32": 1034.68,
- "bf16": 2068.81,
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": 2068.81
}
],
"Unit": "FPS",
@@ -17598,7 +16209,7 @@
"Model": "yolo_v8n",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -17607,10 +16218,7 @@
"int8": 2380.51,
"fp16": "",
"fp32": 950.6,
- "bf16": 2374.89,
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": 2374.89
}
],
"Unit": "FPS",
@@ -17636,7 +16244,7 @@
"Model": "bert-base-cased",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -17645,10 +16253,7 @@
"int8": 4671.04,
"fp16": "",
"fp32": 560.3,
- "bf16": 3211.93,
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": 3211.93
}
],
"Unit": "FPS",
@@ -17674,7 +16279,7 @@
"Model": "efficientdet-d0",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -17683,10 +16288,7 @@
"int8": 1725.13,
"fp16": "",
"fp32": 1123.04,
- "bf16": 1407.69,
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": 1407.69
}
],
"Unit": "FPS",
@@ -17712,19 +16314,16 @@
"Model": "gemma-2-9b",
"featured_SKU": true,
"whats_new_model": true,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 25.46,
+ "int8": 18.96,
+ "fp16": 12.14,
"fp32": "",
- "bf16": "",
- "token_int4": 25.46,
- "token_int8": 18.96,
- "token_fp16": 12.14
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -17749,20 +16348,17 @@
"Platform": "Intel® Xeon® Platinum 8580 CPU-only",
"Model": "glm-4-9b-chat",
"featured_SKU": true,
- "whats_new_model": true,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "whats_new_model": "false",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 27.1,
+ "int8": 19.33,
+ "fp16": 12.69,
"fp32": "",
- "bf16": "",
- "token_int4": 27.1,
- "token_int8": 19.33,
- "token_fp16": 12.69
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -17788,19 +16384,16 @@
"Model": "llama-2-7b-chat",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 31.71,
+ "int8": 23.05,
+ "fp16": 16.64,
"fp32": "",
- "bf16": "",
- "token_int4": 31.71,
- "token_int8": 23.05,
- "token_fp16": 16.64
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -17825,20 +16418,17 @@
"Platform": "Intel® Xeon® Platinum 8580 CPU-only",
"Model": "llama-3-8b",
"featured_SKU": true,
- "whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "whats_new_model": "false",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 30.06,
+ "int8": 21.73,
+ "fp16": 14.93,
"fp32": "",
- "bf16": "",
- "token_int4": 30.06,
- "token_int8": 21.73,
- "token_fp16": 14.93
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -17864,19 +16454,16 @@
"Model": "llama-3.2-3b-instruct",
"featured_SKU": true,
"whats_new_model": true,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 54.73,
+ "int8": 42.58,
+ "fp16": 31.51,
"fp32": "",
- "bf16": "",
- "token_int4": 54.73,
- "token_int8": 42.58,
- "token_fp16": 31.51
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -17902,7 +16489,7 @@
"Model": "mask_rcnn_resnet50_atrous_coco",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -17911,10 +16498,7 @@
"int8": 74.86,
"fp16": "",
"fp32": 6.39,
- "bf16": 48.32,
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": 48.32
}
],
"Unit": "FPS",
@@ -17940,19 +16524,16 @@
"Model": "mistral-7b-v0.1",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 33.27,
+ "int8": 22.24,
+ "fp16": 15.74,
"fp32": "",
- "bf16": "",
- "token_int4": 33.27,
- "token_int8": 22.24,
- "token_fp16": 15.74
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -17978,7 +16559,7 @@
"Model": "mobilenet-v2",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -17987,10 +16568,7 @@
"int8": 39894.55,
"fp16": "",
"fp32": 15839.75,
- "bf16": 29419.55,
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": 29419.55
}
],
"Unit": "FPS",
@@ -18015,20 +16593,17 @@
"Platform": "Intel® Xeon® Platinum 8580 CPU-only",
"Model": "phi-3-mini-4k-instruct",
"featured_SKU": true,
- "whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "whats_new_model": true,
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
"int4": "",
- "int8": "",
- "fp16": "",
+ "int8": 40.45,
+ "fp16": 26.95,
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": 40.45,
- "token_fp16": 26.95
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -18037,9 +16612,9 @@
"latency": {
"Precisions": [
{
- "int4": 21.43,
+ "int4": "",
"int8": 24.72,
- "fp16": "",
+ "fp16": 37.1,
"fp32": "",
"bf16": ""
}
@@ -18054,19 +16629,16 @@
"Model": "qwen2-7b",
"featured_SKU": true,
"whats_new_model": true,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
- "fp16": "",
+ "int4": 35.48,
+ "int8": 25.7,
+ "fp16": 16.1,
"fp32": "",
- "bf16": "",
- "token_int4": 35.48,
- "token_int8": 25.7,
- "token_fp16": 16.1
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -18092,7 +16664,7 @@
"Model": "resnet-50",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -18101,10 +16673,7 @@
"int8": 21612.82,
"fp16": "",
"fp32": 2002.36,
- "bf16": 13669.05,
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": 13669.05
}
],
"Unit": "FPS",
@@ -18130,7 +16699,7 @@
"Model": "ssd-resnet34-1200",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -18139,10 +16708,7 @@
"int8": 513.09,
"fp16": "",
"fp32": 35.2,
- "bf16": 275.94,
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": 275.94
}
],
"Unit": "FPS",
@@ -18168,7 +16734,7 @@
"Model": "ssd_mobilenet_v1_coco",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -18177,10 +16743,7 @@
"int8": 26748.89,
"fp16": "",
"fp32": 4718.18,
- "bf16": 16684.87,
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": 16684.87
}
],
"Unit": "FPS",
@@ -18206,7 +16769,7 @@
"Model": "stable-diffusion-v1-5",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -18215,10 +16778,7 @@
"int8": "",
"fp16": "",
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "FPS",
@@ -18243,8 +16803,8 @@
"Platform": "Intel® Xeon® Platinum 8580 CPU-only",
"Model": "yolo11",
"featured_SKU": true,
- "whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "whats_new_model": "false",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -18253,10 +16813,7 @@
"int8": "",
"fp16": "",
"fp32": 1455.5,
- "bf16": 2962.49,
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": 2962.49
}
],
"Unit": "FPS",
@@ -18282,7 +16839,7 @@
"Model": "yolo_v8n",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -18291,10 +16848,7 @@
"int8": 3043.23,
"fp16": "",
"fp32": 1258.2,
- "bf16": 3444.22,
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": 3444.22
}
],
"Unit": "FPS",
@@ -18320,7 +16874,7 @@
"Model": "bert-base-cased",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -18329,10 +16883,7 @@
"int8": 8897.30,
"fp16": "",
"fp32": 1217.03,
- "bf16": 6414.49,
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": 6414.49
}
],
"Unit": "FPS",
@@ -18358,7 +16909,7 @@
"Model": "efficientdet-d0",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -18367,10 +16918,7 @@
"int8": 3384.23,
"fp16": "",
"fp32": 2295.4,
- "bf16": 2872.84,
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": 2872.84
}
],
"Unit": "FPS",
@@ -18396,7 +16944,7 @@
"Model": "mask_rcnn_resnet50_atrous_coco",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -18405,10 +16953,7 @@
"int8": 149.52,
"fp16": "",
"fp32": 11.97,
- "bf16": 91.85,
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": 91.85
}
],
"Unit": "FPS",
@@ -18434,7 +16979,7 @@
"Model": "mobilenet-v2",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -18443,10 +16988,7 @@
"int8": 32737.09,
"fp16": "",
"fp32": 25621.92,
- "bf16": 26297.21,
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": 26297.21
}
],
"Unit": "FPS",
@@ -18472,7 +17014,7 @@
"Model": "resnet-50",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -18481,10 +17023,7 @@
"int8": 27670.82,
"fp16": "",
"fp32": 4254.94,
- "bf16": 22432.74,
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": 22432.74
}
],
"Unit": "FPS",
@@ -18510,7 +17049,7 @@
"Model": "ssd-resnet34-1200",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -18519,10 +17058,7 @@
"int8": 1009.62,
"fp16": "",
"fp32": 77.99,
- "bf16": 532.90,
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": 532.90
}
],
"Unit": "FPS",
@@ -18548,7 +17084,7 @@
"Model": "ssd_mobilenet_v1_coco",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -18557,10 +17093,7 @@
"int8": 29674.40,
"fp16": "",
"fp32": 9800.83,
- "bf16": 19479.18,
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": 19479.18
}
],
"Unit": "FPS",
@@ -18586,7 +17119,7 @@
"Model": "yolo_v8n",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -18595,10 +17128,7 @@
"int8": 5590.87,
"fp16": "",
"fp32": 2699.0,
- "bf16": 6003.66,
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": 6003.66
}
],
"Unit": "FPS",
@@ -18624,19 +17154,16 @@
"Model": "gemma-2-9b",
"featured_SKU": true,
"whats_new_model": true,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
+ "int4": 136.4,
"int8": "",
- "fp16": "",
+ "fp16": 53.6,
"fp32": "",
- "bf16": "",
- "token_int4": 136.4,
- "token_int8": "",
- "token_fp16": 53.6
+ "bf16": ""
}
],
"Unit": "Tokens/sec",
@@ -18662,19 +17189,16 @@
"Model": "glm-4-9b-chat",
"featured_SKU": true,
"whats_new_model": true,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
+ "int4": 116.5,
"int8": "",
- "fp16": "",
+ "fp16": 51.9,
"fp32": "",
- "bf16": "",
- "token_int4": 116.5,
- "token_int8": "",
- "token_fp16": 51.9
+ "bf16": ""
}
],
"Unit": "Tokens/sec",
@@ -18700,19 +17224,16 @@
"Model": "llama-2-7b-chat",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
+ "int4": 139.5,
"int8": "",
- "fp16": "",
+ "fp16": 132,
"fp32": "",
- "bf16": "",
- "token_int4": 139.5,
- "token_int8": "",
- "token_fp16": 132
+ "bf16": ""
}
],
"Unit": "Tokens/sec",
@@ -18738,19 +17259,16 @@
"Model": "llama-3.2-3b-instruct",
"featured_SKU": true,
"whats_new_model": true,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
- "int8": "",
+ "int4": 272.7,
+ "int8": 65,
"fp16": "",
"fp32": "",
- "bf16": "",
- "token_int4": 272.7,
- "token_int8": 65,
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "Tokens/sec",
@@ -18776,19 +17294,16 @@
"Model": "llama-3-8b",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
+ "int4": 148.2,
"int8": "",
- "fp16": "",
+ "fp16": 57.2,
"fp32": "",
- "bf16": "",
- "token_int4": 148.2,
- "token_int8": "",
- "token_fp16": 57.2
+ "bf16": ""
}
],
"Unit": "Tokens/sec",
@@ -18814,19 +17329,16 @@
"Model": "mistral-7b-v0.1",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
+ "int4": 126.4,
"int8": "",
- "fp16": "",
+ "fp16": 61.4,
"fp32": "",
- "bf16": "",
- "token_int4": 126.4,
- "token_int8": "",
- "token_fp16": 61.4
+ "bf16": ""
}
],
"Unit": "Tokens/sec",
@@ -18852,19 +17364,16 @@
"Model": "phi-3-mini-4k-instruct",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
+ "int4": 176.6,
"int8": "",
- "fp16": "",
+ "fp16": 111.9,
"fp32": "",
- "bf16": "",
- "token_int4": 176.6,
- "token_int8": "",
- "token_fp16": 111.9
+ "bf16": ""
}
],
"Unit": "Tokens/sec",
@@ -18890,19 +17399,16 @@
"Model": "qwen2-7b",
"featured_SKU": true,
"whats_new_model": true,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
{
- "int4": "",
+ "int4": 164.4,
"int8": "",
- "fp16": "",
+ "fp16": 62.2,
"fp32": "",
- "bf16": "",
- "token_int4": 164.4,
- "token_int8": "",
- "token_fp16": 62.2
+ "bf16": ""
}
],
"Unit": "Tokens/sec",
@@ -18928,7 +17434,7 @@
"Model": "stable-diffusion-v1-5",
"featured_SKU": true,
"whats_new_model": false,
- "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "PlatformType": "Intel® Xeon®, CPU-only",
"Parameters": {
"throughput": {
"Precisions": [
@@ -18937,10 +17443,7 @@
"int8": "",
"fp16": "",
"fp32": "",
- "bf16": "",
- "token_int4": "",
- "token_int8": "",
- "token_fp16": ""
+ "bf16": ""
}
],
"Unit": "n/a",
diff --git a/docs/sphinx_setup/_static/benchmarks_files/data/graph-data-ovms-genai.json b/docs/sphinx_setup/_static/benchmarks_files/data/graph-data-ovms-genai.json
index f96fb11e6b029d..0de8f188e7de34 100644
--- a/docs/sphinx_setup/_static/benchmarks_files/data/graph-data-ovms-genai.json
+++ b/docs/sphinx_setup/_static/benchmarks_files/data/graph-data-ovms-genai.json
@@ -1,45 +1,330 @@
[
+ {
+ "Platform": "Intel® Xeon® Platinum 8380",
+ "Model": "meta-llama/Llama-2-7b-chat-hf",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "Parameters": {
+ "Ovms": {
+ "Precisions": [
+ {
+ "Throughput": {
+ "0.2": 94.97,
+ "0.4": 187.12,
+ "0.6": 271.85,
+ "0.8": 290.81,
+ "1.0": 291.39,
+ "2.0": 291.45,
+ "inf": 291.59
+ },
+ "Latency": {
+ "0.2": 74.35,
+ "0.4": 122.25,
+ "0.6": 467.49,
+ "0.8": 749.39,
+ "1.0": 771.39,
+ "2.0": 773.31,
+ "inf": 783.63
+ }
+ }
+ ]
+ },
+ "Vllm": {
+ "Precisions": [
+ {
+ "Throughput": {
+ "0.2": 94.83,
+ "0.4": 187.83,
+ "0.6": 272.32,
+ "0.8": 284.07,
+ "1.0": 291.88,
+ "2.0": 291.91,
+ "inf": 288.62
+ },
+ "Latency": {
+ "0.2": 82.31,
+ "0.4": 134.38,
+ "0.6": 495.99,
+ "0.8": 794.41,
+ "1.0": 798.39,
+ "2.0": 800.33,
+ "inf": 809.56
+ }
+ }
+ ]
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Xeon® Platinum 8480+",
+ "Model": "meta-llama/Llama-2-7b-chat-hf",
+ "featured_SKU": true,
+ "whats_new_model": false,
+ "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "Parameters": {
+ "Ovms": {
+ "Precisions": [
+ {
+ "Throughput": {
+ "0.2": 95.15,
+ "0.4": 188.31,
+ "0.6": 279.3,
+ "0.8": 366.78,
+ "1.0": 454.27,
+ "2.0": 788.9,
+ "inf": 825.97
+ },
+ "Latency": {
+ "0.2": 60.88,
+ "0.4": 71.96,
+ "0.6": 83.45,
+ "0.8": 103.77,
+ "1.0": 128.12,
+ "2.0": 237.62,
+ "inf": 253.59
+ }
+ }
+ ]
+ },
+ "Vllm": {
+ "Precisions": [
+ {
+ "Throughput": {
+ "0.2": 95.06,
+ "0.4": 188.47,
+ "0.6": 280.54,
+ "0.8": 367.47,
+ "1.0": 450.81,
+ "2.0": 774.57,
+ "inf": 793.78
+ },
+ "Latency": {
+ "0.2": 63.84,
+ "0.4": 76.22,
+ "0.6": 87.21,
+ "0.8": 104.75,
+ "1.0": 136.77,
+ "2.0": 259.2,
+ "inf": 273.58
+ }
+ }
+ ]
+ }
+ }
+ },
{
"Platform": "Intel® Xeon® Platinum 8580",
- "Model": "mistralai/Mistral-7B-v0.1",
- "PlatformType": "None",
+ "Model": "meta-llama/Llama-2-7b-chat-hf",
+ "featured_SKU": true,
+ "whats_new_model": false,
+ "PlatformType": "Server Platforms (Intel® Xeon®)",
"Parameters": {
+ "Ovms": {
+ "Precisions": [
+ {
+ "Throughput": {
+ "0.2": 95.29,
+ "0.4": 188.33,
+ "0.6": 280.09,
+ "0.8": 367.29,
+ "1.0": 453.21,
+ "2.0": 780.05,
+ "inf": 751.34
+ },
+ "Latency": {
+ "0.2": 52.44,
+ "0.4": 70.06,
+ "0.6": 84.54,
+ "0.8": 108.91,
+ "1.0": 136.45,
+ "2.0": 253.55,
+ "inf": 281.85
+ }
+ }
+ ]
+ },
"Vllm": {
"Precisions": [
{
"Throughput": {
- "0.2": "350.06",
- "0.6": "486.89",
- "0.8": "575.92",
- "2.0": "778.07"
+ "0.2": 95.0,
+ "0.4": 188.26,
+ "0.6": 279.78,
+ "0.8": 366.69,
+ "1.0": 450.26,
+ "2.0": 770.74,
+ "inf": 794.39
+ },
+ "Latency": {
+ "0.2": 58.07,
+ "0.4": 77.65,
+ "0.6": 91.14,
+ "0.8": 113.61,
+ "1.0": 144.21,
+ "2.0": 269.13,
+ "inf": 273.27
}
- },
+ }
+ ]
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Xeon® Platinum 8380",
+ "Model": "meta-llama/Meta-Llama-3-8B-Instruct",
+ "featured_SKU": false,
+ "whats_new_model": true,
+ "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "Parameters": {
+ "Ovms": {
+ "Precisions": [
{
+ "Throughput": {
+ "0.2": 82.46,
+ "0.4": 162.73,
+ "0.6": 240.08,
+ "0.8": 273.75,
+ "1.0": 275.85,
+ "2.0": 276.3,
+ "inf": 275.15
+ },
"Latency": {
- "0.2": "60.93",
- "0.6": "91.63",
- "0.8": "113.61",
- "2.0": "240.25"
+ "0.2": 76.49,
+ "0.4": 122.1,
+ "0.6": 318.14,
+ "0.8": 785.8,
+ "1.0": 805.58,
+ "2.0": 809.37,
+ "inf": 816.2
}
}
]
},
+ "Vllm": {
+ "Precisions": [
+ {
+ "Throughput": {
+ "0.2": 82.32,
+ "0.4": 162.98,
+ "0.6": 239.28,
+ "2.0": 270.37
+ },
+ "Latency": {
+ "0.2": 87.92,
+ "0.4": 142.3,
+ "0.6": 343.36,
+ "2.0": 873.0
+ }
+ }
+ ]
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Xeon® Platinum 8480+",
+ "Model": "meta-llama/Meta-Llama-3-8B-Instruct",
+ "featured_SKU": true,
+ "whats_new_model": true,
+ "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "Parameters": {
+ "Ovms": {
+ "Precisions": [
+ {
+ "Throughput": {
+ "0.2": 82.61,
+ "0.4": 164.44,
+ "0.6": 244.92,
+ "0.8": 323.34,
+ "1.0": 400.78,
+ "2.0": 731.9,
+ "inf": 848.45
+ },
+ "Latency": {
+ "0.2": 60.77,
+ "0.4": 69.1,
+ "0.6": 74.36,
+ "0.8": 81.41,
+ "1.0": 100.17,
+ "2.0": 206.5,
+ "inf": 246.56
+ }
+ }
+ ]
+ },
+ "Vllm": {
+ "Precisions": [
+ {
+ "Throughput": {
+ "0.2": 82.54,
+ "0.4": 163.66,
+ "0.6": 243.88,
+ "0.8": 322.75,
+ "1.0": 400.46,
+ "2.0": 727.1
+ },
+ "Latency": {
+ "0.2": 65.37,
+ "0.4": 75.87,
+ "0.6": 81.14,
+ "0.8": 93.91,
+ "1.0": 107.13,
+ "2.0": 229.57
+ }
+ }
+ ]
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Xeon® Platinum 8580",
+ "Model": "meta-llama/Meta-Llama-3-8B-Instruct",
+ "featured_SKU": true,
+ "whats_new_model": true,
+ "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "Parameters": {
"Ovms": {
"Precisions": [
{
"Throughput": {
- "0.2": "90.98",
- "0.6": "266.24",
- "0.8": "351.63",
- "2.0": "195.16"
+ "0.2": 82.55,
+ "0.4": 164.52,
+ "0.6": 243.96,
+ "0.8": 323.07,
+ "1.0": 399.68,
+ "2.0": 727.18,
+ "inf": 856.72
+ },
+ "Latency": {
+ "0.2": 54.57,
+ "0.4": 69.17,
+ "0.6": 80.32,
+ "0.8": 92.94,
+ "1.0": 111.06,
+ "2.0": 215.46,
+ "inf": 245.72
}
- },
+ }
+ ]
+ },
+ "Vllm": {
+ "Precisions": [
{
+ "Throughput": {
+ "0.2": 82.64,
+ "0.6": 243.81,
+ "0.8": 321.8,
+ "1.0": 398.78,
+ "2.0": 722.48,
+ "inf": 792.34
+ },
"Latency": {
- "0.2": "54.9",
- "0.6": "78.78",
- "0.8": "95.78",
- "2.0": "352.23"
+ "0.2": 61.49,
+ "0.6": 90.54,
+ "0.8": 106.25,
+ "1.0": 123.6,
+ "2.0": 245.91,
+ "inf": 279.21
}
}
]
@@ -47,46 +332,168 @@
}
},
{
- "Platform": "Intel® Xeon® Platinum 8530",
+ "Platform": "Intel® Xeon® Platinum 8380",
"Model": "mistralai/Mistral-7B-v0.1",
- "PlatformType": "None",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Server Platforms (Intel® Xeon®)",
"Parameters": {
+ "Ovms": {
+ "Precisions": [
+ {
+ "Throughput": {
+ "0.2": 91.74,
+ "0.4": 180.4,
+ "0.6": 262.97,
+ "0.8": 287.36,
+ "1.0": 289.08,
+ "2.0": 289.06,
+ "inf": 290.69
+ },
+ "Latency": {
+ "0.2": 74.84,
+ "0.4": 115.4,
+ "0.6": 345.64,
+ "0.8": 757.42,
+ "1.0": 776.6,
+ "2.0": 778.29,
+ "inf": 784.42
+ }
+ }
+ ]
+ },
"Vllm": {
"Precisions": [
{
"Throughput": {
- "0.2": "350.06",
- "0.6": "486.89",
- "0.8": "575.92",
- "2.0": "778.07"
+ "0.2": 97.21,
+ "0.4": 192.46,
+ "0.6": 265.82,
+ "0.8": 273.24,
+ "1.0": 272.65,
+ "inf": 274.0
+ },
+ "Latency": {
+ "0.2": 166.77,
+ "0.4": 161.76,
+ "0.6": 666.89,
+ "0.8": 802.15,
+ "1.0": 810.26,
+ "inf": 807.71
}
- },
+ }
+ ]
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Xeon® Platinum 8480+",
+ "Model": "mistralai/Mistral-7B-v0.1",
+ "featured_SKU": true,
+ "whats_new_model": false,
+ "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "Parameters": {
+ "Ovms": {
+ "Precisions": [
{
+ "Throughput": {
+ "0.2": 90.95,
+ "0.4": 181.06,
+ "0.6": 267.29,
+ "0.8": 351.62,
+ "1.0": 431.45,
+ "2.0": 751.85,
+ "inf": 596.0
+ },
"Latency": {
- "0.2": "60.93",
- "0.6": "91.63",
- "0.8": "113.61",
- "2.0": "240.25"
+ "0.2": 59.95,
+ "0.4": 63.41,
+ "0.6": 73.42,
+ "0.8": 85.99,
+ "1.0": 98.67,
+ "2.0": 205.2,
+ "inf": 205.97
}
}
]
},
+ "Vllm": {
+ "Precisions": [
+ {
+ "Throughput": {
+ "0.2": 98.18,
+ "0.4": 194.35,
+ "0.6": 287.28,
+ "0.8": 376.31,
+ "1.0": 460.32,
+ "2.0": 771.81,
+ "inf": 789.38
+ },
+ "Latency": {
+ "0.2": 64.88,
+ "0.4": 73.3,
+ "0.6": 84.37,
+ "0.8": 100.8,
+ "1.0": 133.98,
+ "2.0": 240.99,
+ "inf": 251.55
+ }
+ }
+ ]
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Xeon® Platinum 8580",
+ "Model": "mistralai/Mistral-7B-v0.1",
+ "featured_SKU": true,
+ "whats_new_model": false,
+ "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "Parameters": {
"Ovms": {
"Precisions": [
{
"Throughput": {
- "0.2": "90.98",
- "0.6": "266.24",
- "0.8": "351.63",
- "2.0": "195.16"
+ "0.2": 91.2,
+ "0.4": 180.14,
+ "0.6": 267.75,
+ "0.8": 351.12,
+ "1.0": 428.31,
+ "2.0": 744.99,
+ "inf": 852.05
+ },
+ "Latency": {
+ "0.2": 54.31,
+ "0.4": 67.14,
+ "0.6": 77.59,
+ "0.8": 92.17,
+ "1.0": 112.75,
+ "2.0": 225.48,
+ "inf": 241.49
}
- },
+ }
+ ]
+ },
+ "Vllm": {
+ "Precisions": [
{
+ "Throughput": {
+ "0.2": 98.1,
+ "0.4": 194.47,
+ "0.6": 286.97,
+ "0.8": 375.84,
+ "1.0": 460.21,
+ "2.0": 764.54,
+ "inf": 787.97
+ },
"Latency": {
- "0.2": "54.9",
- "0.6": "78.78",
- "0.8": "95.78",
- "2.0": "352.23"
+ "0.2": 62.26,
+ "0.4": 78.08,
+ "0.6": 91.61,
+ "0.8": 116.71,
+ "1.0": 141.76,
+ "2.0": 250.38,
+ "inf": 254.25
}
}
]
diff --git a/docs/sphinx_setup/_static/benchmarks_files/data/graph-data-ovms.json b/docs/sphinx_setup/_static/benchmarks_files/data/graph-data-ovms.json
index 18a36073d582f5..f601a8120117d6 100644
--- a/docs/sphinx_setup/_static/benchmarks_files/data/graph-data-ovms.json
+++ b/docs/sphinx_setup/_static/benchmarks_files/data/graph-data-ovms.json
@@ -1,1047 +1,1283 @@
[
- {
- "Platform": "Intel® Xeon® Gold 6238M",
- "Model": "bert-base-cased",
- "PlatformType": "Server Platforms (Intel® Xeon®)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 159.534,
- "fp32_ovms": 157.334,
- "int8_ov": 432.339,
- "int8_ovms": 420.793
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Xeon® Gold 6238M",
- "Model": "bert-large-uncased-whole-word-masking-squad-0001",
- "PlatformType": "Server Platforms (Intel® Xeon®)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 13.125,
- "fp32_ovms": 13.254,
- "int8_ov": 38.151,
- "int8_ovms": 37.623
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Xeon® Gold 6238M",
- "Model": "efficientdet-d0",
- "PlatformType": "Server Platforms (Intel® Xeon®)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 247.445,
- "fp32_ovms": 253.09,
- "int8_ov": 413.083,
- "int8_ovms": 377.844
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Xeon® Gold 6238M",
- "Model": "mask_rcnn_resnet50_atrous_coco",
- "PlatformType": "Server Platforms (Intel® Xeon®)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 1.638,
- "fp32_ovms": 1.714,
- "int8_ov": 6.202,
- "int8_ovms": 6.126
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Xeon® Gold 6238M",
- "Model": "mobilenet-v2",
- "PlatformType": "Server Platforms (Intel® Xeon®)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 3333.399,
- "fp32_ovms": 2905.171,
- "int8_ov": 10422.241,
- "int8_ovms": 7461.99
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Xeon® Gold 6238M",
- "Model": "resnet-50",
- "PlatformType": "Server Platforms (Intel® Xeon®)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 575.208,
- "fp32_ovms": 569.925,
- "int8_ov": 2199.072,
- "int8_ovms": 2064.581
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Xeon® Gold 6238M",
- "Model": "ssd-resnet34-1200",
- "PlatformType": "Server Platforms (Intel® Xeon®)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 10.598,
- "fp32_ovms": 10.472,
- "int8_ov": 40.683,
- "int8_ovms": 38.737
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Xeon® Gold 6238M",
- "Model": "ssd_mobilenet_v1_coco",
- "PlatformType": "Server Platforms (Intel® Xeon®)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 1219.441,
- "fp32_ovms": 1201.096,
- "int8_ov": 4400.471,
- "int8_ovms": 4270.702
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Xeon® Gold 6238M",
- "Model": "unet-camvid-onnx-0001",
- "PlatformType": "Server Platforms (Intel® Xeon®)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 15.924,
- "fp32_ovms": 15.763,
- "int8_ov": 67.731,
- "int8_ovms": 64.658
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Xeon® Gold 6238M",
- "Model": "yolo_v5m",
- "PlatformType": "Server Platforms (Intel® Xeon®)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 74.189,
- "fp32_ovms": 68.788,
- "int8_ov": 247.757,
- "int8_ovms": 180.302
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Xeon® Gold 6238M",
- "Model": "yolo_v8n",
- "PlatformType": "Server Platforms (Intel® Xeon®)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 332.326,
- "fp32_ovms": 278.054,
- "int8_ov": 740.985,
- "int8_ovms": 609.062
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Xeon® Platinum 8260M",
- "Model": "bert-base-cased",
- "PlatformType": "Server Platforms (Intel® Xeon®)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 182.025,
- "fp32_ovms": 180.764,
- "int8_ov": 485.82,
- "int8_ovms": 472.842
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Xeon® Platinum 8260M",
- "Model": "bert-large-uncased-whole-word-masking-squad-0001",
- "PlatformType": "Server Platforms (Intel® Xeon®)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 14.625,
- "fp32_ovms": 15.132,
- "int8_ov": 42.906,
- "int8_ovms": 42.406
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Xeon® Platinum 8260M",
- "Model": "efficientdet-d0",
- "PlatformType": "Server Platforms (Intel® Xeon®)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 288.531,
- "fp32_ovms": 278.548,
- "int8_ov": 483.438,
- "int8_ovms": 443.032
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Xeon® Platinum 8260M",
- "Model": "mask_rcnn_resnet50_atrous_coco",
- "PlatformType": "Server Platforms (Intel® Xeon®)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 1.872,
- "fp32_ovms": 1.95,
- "int8_ov": 6.856,
- "int8_ovms": 6.763
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Xeon® Platinum 8260M",
- "Model": "mobilenet-v2",
- "PlatformType": "Server Platforms (Intel® Xeon®)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 3909.405,
- "fp32_ovms": 3327.621,
- "int8_ov": 12375.018,
- "int8_ovms": 7554.235
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Xeon® Platinum 8260M",
- "Model": "resnet-50",
- "PlatformType": "Server Platforms (Intel® Xeon®)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 634.732,
- "fp32_ovms": 634.102,
- "int8_ov": 2481.256,
- "int8_ovms": 2349.872
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Xeon® Platinum 8260M",
- "Model": "ssd-resnet34-1200",
- "PlatformType": "Server Platforms (Intel® Xeon®)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 12.166,
- "fp32_ovms": 12.027,
- "int8_ov": 47.295,
- "int8_ovms": 44.525
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Xeon® Platinum 8260M",
- "Model": "ssd_mobilenet_v1_coco",
- "PlatformType": "Server Platforms (Intel® Xeon®)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 1384.145,
- "fp32_ovms": 1356.126,
- "int8_ov": 5037.197,
- "int8_ovms": 4834.045
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Xeon® Platinum 8260M",
- "Model": "unet-camvid-onnx-0001",
- "PlatformType": "Server Platforms (Intel® Xeon®)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 18.26,
- "fp32_ovms": 18.052,
- "int8_ov": 77.933,
- "int8_ovms": 73.527
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Xeon® Platinum 8260M",
- "Model": "yolo_v5m",
- "PlatformType": "Server Platforms (Intel® Xeon®)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 85.149,
- "fp32_ovms": 78.205,
- "int8_ov": 281.889,
- "int8_ovms": 204.353
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Xeon® Platinum 8260M",
- "Model": "yolo_v8n",
- "PlatformType": "Server Platforms (Intel® Xeon®)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 376.079,
- "fp32_ovms": 312.181,
- "int8_ov": 801.556,
- "int8_ovms": 678.929
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Core™ i7-11700K",
- "Model": "bert-base-cased",
- "PlatformType": "Client Platforms (Intel® Core™)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 35.915,
- "fp32_ovms": 34.381,
- "int8_ov": 101.976,
- "int8_ovms": 99.024
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Core™ i7-11700K",
- "Model": "bert-large-uncased-whole-word-masking-squad-0001",
- "PlatformType": "Client Platforms (Intel® Core™)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 3.232,
- "fp32_ovms": 3.266,
- "int8_ov": 10.132,
- "int8_ovms": 10.133
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Core™ i7-11700K",
- "Model": "efficientdet-d0",
- "PlatformType": "Client Platforms (Intel® Core™)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 51.747,
- "fp32_ovms": 48.906,
- "int8_ov": 142.489,
- "int8_ovms": 124.167
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Core™ i7-11700K",
- "Model": "mask_rcnn_resnet50_atrous_coco",
- "PlatformType": "Client Platforms (Intel® Core™)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 0.352,
- "fp32_ovms": 0.364,
- "int8_ov": 1.322,
- "int8_ovms": 1.336
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Core™ i7-11700K",
- "Model": "mobilenet-v2",
- "PlatformType": "Client Platforms (Intel® Core™)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 795.18,
- "fp32_ovms": 664.842,
- "int8_ov": 2721.454,
- "int8_ovms": 2063.761
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Core™ i7-11700K",
- "Model": "resnet-50",
- "PlatformType": "Client Platforms (Intel® Core™)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 114.859,
- "fp32_ovms": 110.835,
- "int8_ov": 467.591,
- "int8_ovms": 445.408
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Core™ i7-11700K",
- "Model": "ssd-resnet34-1200",
- "PlatformType": "Client Platforms (Intel® Core™)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 2.053,
- "fp32_ovms": 2.074,
- "int8_ov": 8.023,
- "int8_ovms": 7.987
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Core™ i7-11700K",
- "Model": "ssd_mobilenet_v1_coco",
- "PlatformType": "Client Platforms (Intel® Core™)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 260.104,
- "fp32_ovms": 250.094,
- "int8_ov": 991.064,
- "int8_ovms": 930.128
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Core™ i7-11700K",
- "Model": "unet-camvid-onnx-0001",
- "PlatformType": "Client Platforms (Intel® Core™)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 3.273,
- "fp32_ovms": 3.3,
- "int8_ov": 12.884,
- "int8_ovms": 12.727
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Core™ i7-11700K",
- "Model": "yolo_v5m",
- "PlatformType": "Client Platforms (Intel® Core™)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 14.714,
- "fp32_ovms": 14.243,
- "int8_ov": 55.058,
- "int8_ovms": 47.548
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Core™ i7-11700K",
- "Model": "yolo_v8n",
- "PlatformType": "Client Platforms (Intel® Core™)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 71.446,
- "fp32_ovms": 64.775,
- "int8_ov": 200.864,
- "int8_ovms": 144.792
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Core™ i9-11900K",
- "Model": "bert-base-cased",
- "PlatformType": "Client Platforms (Intel® Core™)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 36.227,
- "fp32_ovms": 35.646,
- "int8_ov": 101.562,
- "int8_ovms": 100.382
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Core™ i9-11900K",
- "Model": "bert-large-uncased-whole-word-masking-squad-0001",
- "PlatformType": "Client Platforms (Intel® Core™)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 3.23,
- "fp32_ovms": 3.254,
- "int8_ov": 10.05,
- "int8_ovms": 10.092
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Core™ i9-11900K",
- "Model": "efficientdet-d0",
- "PlatformType": "Client Platforms (Intel® Core™)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 59.759,
- "fp32_ovms": 55.851,
- "int8_ov": 149.505,
- "int8_ovms": 131.453
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Core™ i9-11900K",
- "Model": "mask_rcnn_resnet50_atrous_coco",
- "PlatformType": "Client Platforms (Intel® Core™)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 0.368,
- "fp32_ovms": 0.394,
- "int8_ov": 1.308,
- "int8_ovms": 1.338
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Core™ i9-11900K",
- "Model": "mobilenet-v2",
- "PlatformType": "Client Platforms (Intel® Core™)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 865.806,
- "fp32_ovms": 734.822,
- "int8_ov": 2743.201,
- "int8_ovms": 2163.412
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Core™ i9-11900K",
- "Model": "resnet-50",
- "PlatformType": "Client Platforms (Intel® Core™)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 116.784,
- "fp32_ovms": 113.046,
- "int8_ov": 457.358,
- "int8_ovms": 440.924
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Core™ i9-11900K",
- "Model": "ssd-resnet34-1200",
- "PlatformType": "Client Platforms (Intel® Core™)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 2.006,
- "fp32_ovms": 2.031,
- "int8_ov": 7.817,
- "int8_ovms": 7.75
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Core™ i9-11900K",
- "Model": "ssd_mobilenet_v1_coco",
- "PlatformType": "Client Platforms (Intel® Core™)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 274.42,
- "fp32_ovms": 264.153,
- "int8_ov": 997.987,
- "int8_ovms": 915.681
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Core™ i9-11900K",
- "Model": "unet-camvid-onnx-0001",
- "PlatformType": "Client Platforms (Intel® Core™)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 3.246,
- "fp32_ovms": 3.272,
- "int8_ov": 12.668,
- "int8_ovms": 12.585
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Core™ i9-11900K",
- "Model": "yolo_v5m",
- "PlatformType": "Client Platforms (Intel® Core™)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 14.985,
- "fp32_ovms": 14.514,
- "int8_ov": 54.937,
- "int8_ovms": 47.767
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Core™ i9-11900K",
- "Model": "yolo_v8n",
- "PlatformType": "Client Platforms (Intel® Core™)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 74.1,
- "fp32_ovms": 67.472,
- "int8_ov": 203.493,
- "int8_ovms": 151.175
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Core™ i3-10100",
- "Model": "bert-base-cased",
- "PlatformType": "Client Platforms (Intel® Core™)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 17.054,
- "fp32_ovms": 17.124,
- "int8_ov": 26.043,
- "int8_ovms": 25.872
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Core™ i3-10100",
- "Model": "bert-large-uncased-whole-word-masking-squad-0001",
- "PlatformType": "Client Platforms (Intel® Core™)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 1.434,
- "fp32_ovms": 1.456,
- "int8_ov": 2.421,
- "int8_ovms": 2.450
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Core™ i3-10100",
- "Model": "efficientdet-d0",
- "PlatformType": "Client Platforms (Intel® Core™)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 31.321,
- "fp32_ovms": 30.316,
- "int8_ov": 50.629,
- "int8_ovms": 47.377
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Core™ i3-10100",
- "Model": "mask_rcnn_resnet50_atrous_coco",
- "PlatformType": "Client Platforms (Intel® Core™)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 0.151,
- "fp32_ovms": 0.182,
- "int8_ov": 0.361,
- "int8_ovms": 0.389
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Core™ i3-10100",
- "Model": "mobilenet-v2",
- "PlatformType": "Client Platforms (Intel® Core™)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 442.763,
- "fp32_ovms": 380.661,
- "int8_ov": 724.232,
- "int8_ovms": 617.393
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Core™ i3-10100",
- "Model": "resnet-50",
- "PlatformType": "Client Platforms (Intel® Core™)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 57.978,
- "fp32_ovms": 57.038,
- "int8_ov": 118.213,
- "int8_ovms": 113.691
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Core™ i3-10100",
- "Model": "ssd-resnet34-1200",
- "PlatformType": "Client Platforms (Intel® Core™)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 1.0,
- "fp32_ovms": 1.031,
- "int8_ov": 1.937,
- "int8_ovms": 1.954
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Core™ i3-10100",
- "Model": "ssd_mobilenet_v1_coco",
- "PlatformType": "Client Platforms (Intel® Core™)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 133.421,
- "fp32_ovms": 129.949,
- "int8_ov": 267.141,
- "int8_ovms": 256.821
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Core™ i3-10100",
- "Model": "unet-camvid-onnx-0001",
- "PlatformType": "Client Platforms (Intel® Core™)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 1.515,
- "fp32_ovms": 1.534,
- "int8_ov": 2.96,
- "int8_ovms": 2.973
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Core™ i3-10100",
- "Model": "yolo_v5m",
- "PlatformType": "Client Platforms (Intel® Core™)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 7.691,
- "fp32_ovms": 7.511,
- "int8_ov": 14.919,
- "int8_ovms": 13.832
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- },
- {
- "Platform": "Intel® Core™ i3-10100",
- "Model": "yolo_v8n",
- "PlatformType": "Client Platforms (Intel® Core™)",
- "Parameters": {
- "throughput": {
- "Precisions": [
- {
- "fp32_ov": 38.482,
- "fp32_ovms": 34.513,
- "int8_ov": 68.126,
- "int8_ovms": 55.698
- }
- ],
- "Unit": "FPS",
- "UnitDesc": "higher is better"
- }
- }
- }
+ {
+ "Platform": "Intel® Xeon® Gold 6238M",
+ "Model": "bert-base-cased",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 161.041,
+ "fp32_ovms": 157.547,
+ "int8_ov": 435.257,
+ "int8_ovms": 422.689
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Xeon® Gold 6238M",
+ "Model": "efficientdet-d0",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 259.576,
+ "fp32_ovms": 256.524,
+ "int8_ov": 412.419,
+ "int8_ovms": 376.69
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Xeon® Gold 6238M",
+ "Model": "manual_yolo11",
+ "featured_SKU": false,
+ "whats_new_model": true,
+ "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 385.381,
+ "fp32_ovms": 312.784,
+ "int8_ov": "",
+ "int8_ovms": ""
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Xeon® Gold 6238M",
+ "Model": "mask_rcnn_resnet50_atrous_coco",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 1.64,
+ "fp32_ovms": 1.718,
+ "int8_ov": 6.426,
+ "int8_ovms": 6.258
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Xeon® Gold 6238M",
+ "Model": "mobilenet-v2",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 3349.207,
+ "fp32_ovms": 2904.878,
+ "int8_ov": 10365.087,
+ "int8_ovms": 7521.115
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Xeon® Gold 6238M",
+ "Model": "resnet-50",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 580.494,
+ "fp32_ovms": 572.921,
+ "int8_ov": 2196.814,
+ "int8_ovms": 2072.444
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Xeon® Gold 6238M",
+ "Model": "ssd-resnet34-1200",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 10.627,
+ "fp32_ovms": 10.524,
+ "int8_ov": 40.619,
+ "int8_ovms": 38.733
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Xeon® Gold 6238M",
+ "Model": "ssd_mobilenet_v1_coco",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 1234.49,
+ "fp32_ovms": 1203.314,
+ "int8_ov": 4445.793,
+ "int8_ovms": 4261.084
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Xeon® Gold 6238M",
+ "Model": "yolo_v8n",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 337.397,
+ "fp32_ovms": 279.585,
+ "int8_ov": 758.758,
+ "int8_ovms": 641.433
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Xeon® Platinum 8260M",
+ "Model": "bert-base-cased",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 182.454,
+ "fp32_ovms": 181.015,
+ "int8_ov": 487.412,
+ "int8_ovms": 475.32
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Xeon® Platinum 8260M",
+ "Model": "efficientdet-d0",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 291.999,
+ "fp32_ovms": 289.402,
+ "int8_ov": 485.657,
+ "int8_ovms": 442.145
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Xeon® Platinum 8260M",
+ "Model": "manual_yolo11",
+ "featured_SKU": false,
+ "whats_new_model": true,
+ "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 437.295,
+ "fp32_ovms": 354.521,
+ "int8_ov": "",
+ "int8_ovms": ""
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Xeon® Platinum 8260M",
+ "Model": "mask_rcnn_resnet50_atrous_coco",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 1.889,
+ "fp32_ovms": 1.961,
+ "int8_ov": 7.085,
+ "int8_ovms": 6.985
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Xeon® Platinum 8260M",
+ "Model": "mobilenet-v2",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 3923.365,
+ "fp32_ovms": 3332.521,
+ "int8_ov": 12328.807,
+ "int8_ovms": 7562.762
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Xeon® Platinum 8260M",
+ "Model": "resnet-50",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 645.638,
+ "fp32_ovms": 639.958,
+ "int8_ov": 2493.033,
+ "int8_ovms": 2349.919
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Xeon® Platinum 8260M",
+ "Model": "ssd-resnet34-1200",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 12.196,
+ "fp32_ovms": 12.091,
+ "int8_ov": 47.197,
+ "int8_ovms": 44.379
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Xeon® Platinum 8260M",
+ "Model": "ssd_mobilenet_v1_coco",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 1385.809,
+ "fp32_ovms": 1374.891,
+ "int8_ov": 5079.624,
+ "int8_ovms": 4836.539
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Xeon® Platinum 8260M",
+ "Model": "yolo_v8n",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Server Platforms (Intel® Xeon®)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 383.81,
+ "fp32_ovms": 315.245,
+ "int8_ov": 858.66,
+ "int8_ovms": 704.713
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Core™ i7-11700K",
+ "Model": "bert-base-cased",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Client Platforms (Intel® Core™)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 34.685,
+ "fp32_ovms": 32.405,
+ "int8_ov": 100.893,
+ "int8_ovms": 94.564
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Core™ i7-11700K",
+ "Model": "efficientdet-d0",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Client Platforms (Intel® Core™)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 51.125,
+ "fp32_ovms": 46.351,
+ "int8_ov": 141.548,
+ "int8_ovms": 115.788
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Core™ i7-11700K",
+ "Model": "mask_rcnn_resnet50_atrous_coco",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Client Platforms (Intel® Core™)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 0.331,
+ "fp32_ovms": 0.336,
+ "int8_ov": 1.331,
+ "int8_ovms": 1.354
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Core™ i7-11700K",
+ "Model": "mobilenet-v2",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Client Platforms (Intel® Core™)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 774.104,
+ "fp32_ovms": 628.503,
+ "int8_ov": 2723.303,
+ "int8_ovms": 1832.886
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Core™ i7-11700K",
+ "Model": "resnet-50",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Client Platforms (Intel® Core™)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 113.363,
+ "fp32_ovms": 106.029,
+ "int8_ov": 466.473,
+ "int8_ovms": 433.532
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Core™ i7-11700K",
+ "Model": "ssd-resnet34-1200",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Client Platforms (Intel® Core™)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 2.047,
+ "fp32_ovms": 2.047,
+ "int8_ov": 8.016,
+ "int8_ovms": 7.886
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Core™ i7-11700K",
+ "Model": "ssd_mobilenet_v1_coco",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Client Platforms (Intel® Core™)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 259.504,
+ "fp32_ovms": 236.341,
+ "int8_ov": 995.124,
+ "int8_ovms": 869.518
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Core™ i7-11700K",
+ "Model": "yolo_v8n",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Client Platforms (Intel® Core™)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 71.24,
+ "fp32_ovms": 62.319,
+ "int8_ov": 199.772,
+ "int8_ovms": 133.145
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Core™ i9-11900K",
+ "Model": "bert-base-cased",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Client Platforms (Intel® Core™)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 36.251,
+ "fp32_ovms": 35.465,
+ "int8_ov": 101.305,
+ "int8_ovms": 99.151
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Core™ i9-11900K",
+ "Model": "efficientdet-d0",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Client Platforms (Intel® Core™)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 59.247,
+ "fp32_ovms": 55.459,
+ "int8_ov": 148.119,
+ "int8_ovms": 130.171
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Core™ i9-11900K",
+ "Model": "mask_rcnn_resnet50_atrous_coco",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Client Platforms (Intel® Core™)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 0.37,
+ "fp32_ovms": 0.388,
+ "int8_ov": 1.321,
+ "int8_ovms": 1.332
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Core™ i9-11900K",
+ "Model": "mobilenet-v2",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Client Platforms (Intel® Core™)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 855.526,
+ "fp32_ovms": 713.553,
+ "int8_ov": 2745.282,
+ "int8_ovms": 2129.129
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Core™ i9-11900K",
+ "Model": "resnet-50",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Client Platforms (Intel® Core™)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 115.109,
+ "fp32_ovms": 112.189,
+ "int8_ov": 455.027,
+ "int8_ovms": 437.03
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Core™ i9-11900K",
+ "Model": "ssd-resnet34-1200",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Client Platforms (Intel® Core™)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 2.004,
+ "fp32_ovms": 2.022,
+ "int8_ov": 7.796,
+ "int8_ovms": 7.729
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Core™ i9-11900K",
+ "Model": "ssd_mobilenet_v1_coco",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Client Platforms (Intel® Core™)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 274.523,
+ "fp32_ovms": 260.272,
+ "int8_ov": 966.639,
+ "int8_ovms": 893.165
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Core™ i9-11900K",
+ "Model": "yolo_v8n",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Client Platforms (Intel® Core™)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 74.006,
+ "fp32_ovms": 67.143,
+ "int8_ov": 204.296,
+ "int8_ovms": 151.136
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Core™ i3-10100",
+ "Model": "bert-base-cased",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Client Platforms (Intel® Core™)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 17.146,
+ "fp32_ovms": 17.085,
+ "int8_ov": 26.112,
+ "int8_ovms": 25.962
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Core™ i3-10100",
+ "Model": "efficientdet-d0",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Client Platforms (Intel® Core™)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 30.601,
+ "fp32_ovms": 29.76,
+ "int8_ov": 49.646,
+ "int8_ovms": 47.222
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Core™ i3-10100",
+ "Model": "manual_yolo11",
+ "featured_SKU": false,
+ "whats_new_model": true,
+ "PlatformType": "Client Platforms (Intel® Core™)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 43.751,
+ "fp32_ovms": 38.752,
+ "int8_ov": "",
+ "int8_ovms": ""
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Core™ i3-10100",
+ "Model": "mask_rcnn_resnet50_atrous_coco",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Client Platforms (Intel® Core™)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 0.148,
+ "fp32_ovms": 0.18,
+ "int8_ov": 0.36,
+ "int8_ovms": 0.39
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Core™ i3-10100",
+ "Model": "mobilenet-v2",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Client Platforms (Intel® Core™)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 440.453,
+ "fp32_ovms": 380.439,
+ "int8_ov": 714.915,
+ "int8_ovms": 611.391
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Core™ i3-10100",
+ "Model": "resnet-50",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Client Platforms (Intel® Core™)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 57.896,
+ "fp32_ovms": 56.88,
+ "int8_ov": 117.702,
+ "int8_ovms": 113.447
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Core™ i3-10100",
+ "Model": "ssd-resnet34-1200",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Client Platforms (Intel® Core™)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 0.996,
+ "fp32_ovms": 1.033,
+ "int8_ov": 1.935,
+ "int8_ovms": 1.946
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Core™ i3-10100",
+ "Model": "ssd_mobilenet_v1_coco",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Client Platforms (Intel® Core™)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 132.73,
+ "fp32_ovms": 128.89,
+ "int8_ov": 266.502,
+ "int8_ovms": 256.113
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Core™ i3-10100",
+ "Model": "yolo_v8n",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Client Platforms (Intel® Core™)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 38.386,
+ "fp32_ovms": 34.599,
+ "int8_ov": 68.072,
+ "int8_ovms": 55.668
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Core™ i7-11700K",
+ "Model": "bert-base-cased",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Client Platforms (Intel® Core™)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 34.685,
+ "fp32_ovms": 33.575,
+ "int8_ov": 100.893,
+ "int8_ovms": 96.251
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Core™ i7-11700K",
+ "Model": "efficientdet-d0",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Client Platforms (Intel® Core™)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 51.125,
+ "fp32_ovms": 47.06,
+ "int8_ov": 141.548,
+ "int8_ovms": 117.642
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Core™ i7-11700K",
+ "Model": "manual_yolo11",
+ "featured_SKU": false,
+ "whats_new_model": true,
+ "PlatformType": "Client Platforms (Intel® Core™)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 80.399,
+ "fp32_ovms": 68.631,
+ "int8_ov": "",
+ "int8_ovms": ""
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Core™ i7-11700K",
+ "Model": "mask_rcnn_resnet50_atrous_coco",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Client Platforms (Intel® Core™)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 0.331,
+ "fp32_ovms": 0.344,
+ "int8_ov": 1.331,
+ "int8_ovms": 1.417
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Core™ i7-11700K",
+ "Model": "mobilenet-v2",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Client Platforms (Intel® Core™)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 774.104,
+ "fp32_ovms": 628.386,
+ "int8_ov": 2723.303,
+ "int8_ovms": 1905.703
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Core™ i7-11700K",
+ "Model": "resnet-50",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Client Platforms (Intel® Core™)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 113.363,
+ "fp32_ovms": 106.07,
+ "int8_ov": 466.473,
+ "int8_ovms": 433.345
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Core™ i7-11700K",
+ "Model": "ssd-resnet34-1200",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Client Platforms (Intel® Core™)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 2.047,
+ "fp32_ovms": 2.055,
+ "int8_ov": 8.016,
+ "int8_ovms": 7.884
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Core™ i7-11700K",
+ "Model": "ssd_mobilenet_v1_coco",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Client Platforms (Intel® Core™)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 259.504,
+ "fp32_ovms": 238.91,
+ "int8_ov": 995.124,
+ "int8_ovms": 880.377
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Core™ i7-11700K",
+ "Model": "yolo_v8n",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Client Platforms (Intel® Core™)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 71.24,
+ "fp32_ovms": 62.386,
+ "int8_ov": 199.772,
+ "int8_ovms": 139.345
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Core™ i9-11900K",
+ "Model": "bert-base-cased",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Client Platforms (Intel® Core™)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 36.251,
+ "fp32_ovms": 35.522,
+ "int8_ov": 101.305,
+ "int8_ovms": 99.886
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Core™ i9-11900K",
+ "Model": "efficientdet-d0",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Client Platforms (Intel® Core™)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 59.247,
+ "fp32_ovms": 55.715,
+ "int8_ov": 148.119,
+ "int8_ovms": 131.749
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Core™ i9-11900K",
+ "Model": "manual_yolo11",
+ "featured_SKU": false,
+ "whats_new_model": true,
+ "PlatformType": "Client Platforms (Intel® Core™)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 85.883,
+ "fp32_ovms": 76.288,
+ "int8_ov": "",
+ "int8_ovms": ""
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Core™ i9-11900K",
+ "Model": "mask_rcnn_resnet50_atrous_coco",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Client Platforms (Intel® Core™)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 0.37,
+ "fp32_ovms": 0.396,
+ "int8_ov": 1.321,
+ "int8_ovms": 1.337
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Core™ i9-11900K",
+ "Model": "mobilenet-v2",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Client Platforms (Intel® Core™)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 855.526,
+ "fp32_ovms": 731.031,
+ "int8_ov": 2745.282,
+ "int8_ovms": 2154.044
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Core™ i9-11900K",
+ "Model": "resnet-50",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Client Platforms (Intel® Core™)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 115.109,
+ "fp32_ovms": 112.697,
+ "int8_ov": 455.027,
+ "int8_ovms": 439.19
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Core™ i9-11900K",
+ "Model": "ssd-resnet34-1200",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Client Platforms (Intel® Core™)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 2.004,
+ "fp32_ovms": 2.027,
+ "int8_ov": 7.796,
+ "int8_ovms": 7.748
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Core™ i9-11900K",
+ "Model": "ssd_mobilenet_v1_coco",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Client Platforms (Intel® Core™)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 274.523,
+ "fp32_ovms": 263.584,
+ "int8_ov": 966.639,
+ "int8_ovms": 916.111
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ },
+ {
+ "Platform": "Intel® Core™ i9-11900K",
+ "Model": "yolo_v8n",
+ "featured_SKU": false,
+ "whats_new_model": false,
+ "PlatformType": "Client Platforms (Intel® Core™)",
+ "Parameters": {
+ "throughput": {
+ "Precisions": [
+ {
+ "fp32_ov": 74.006,
+ "fp32_ovms": 67.401,
+ "int8_ov": 204.296,
+ "int8_ovms": 151.665
+ }
+ ],
+ "Unit": "FPS",
+ "UnitDesc": "higher is better"
+ }
+ }
+ }
]
\ No newline at end of file
diff --git a/docs/sphinx_setup/_static/benchmarks_files/graph-config.json b/docs/sphinx_setup/_static/benchmarks_files/graph-config.json
index e5fe953b72bca1..e090e5abe97474 100644
--- a/docs/sphinx_setup/_static/benchmarks_files/graph-config.json
+++ b/docs/sphinx_setup/_static/benchmarks_files/graph-config.json
@@ -123,11 +123,11 @@
"platformTypes": {
"name": "ietype",
"data": [
- "None",
"Intel® Core™, CPU-only",
"Intel® Core™, iGPU-only",
"Intel® Core™, NPU-only",
- "Intel® Core™, CPU+iGPU"
+ "Intel® Core™, CPU+iGPU",
+ "Server Platforms (Intel® Xeon®)"
]
},
"platforms": {
diff --git a/docs/sphinx_setup/_static/download/GenAI_Quick_Start_Guide.pdf b/docs/sphinx_setup/_static/download/GenAI_Quick_Start_Guide.pdf
new file mode 100644
index 00000000000000..5b6178d85c504b
Binary files /dev/null and b/docs/sphinx_setup/_static/download/GenAI_Quick_Start_Guide.pdf differ
diff --git a/docs/sphinx_setup/_static/js/graphs.js b/docs/sphinx_setup/_static/js/graphs.js
index f29042de3e51b7..697911bad9402c 100644
--- a/docs/sphinx_setup/_static/js/graphs.js
+++ b/docs/sphinx_setup/_static/js/graphs.js
@@ -58,10 +58,11 @@ class Filter {
return kpis;
}
// param: GraphData[], clientPlatforms[]
- static ByClientPlatforms(graphDataArr, platformsArr) {
- return graphDataArr.filter((data) => {
- return platformsArr.includes(data.Platform)
- });
+ static BySortPlatforms(graphDataArr, platformsArr) {
+ return graphDataArr
+ .filter((data) => platformsArr.includes(data.Platform))
+ .sort((a, b) => a.Platform.localeCompare(b.Platform));
+ //sort is necessary
}
}
@@ -100,13 +101,14 @@ class Graph {
.sort((a, b) => a.localeCompare(b));
}
static getIeTypes(graphDataArr) {
- return Array.from(new Set(graphDataArr.map((obj) => obj.PlatformType))).sort((a, b) => a.localeCompare(b));
+ return Array.from(new Set(graphDataArr.map((obj) => obj.PlatformType)))
+ .sort((a, b) => a.localeCompare(b));
}
// param: GraphData[]
static getPlatformNames(graphDataArr) {
return graphDataArr.map((data) => data.Platform)
- .sort((a, b) => a.localeCompare(b));
+ .sort((a, b) => a.localeCompare(b));
}
// param: GraphData[], engine: string, precisions: list
@@ -659,17 +661,16 @@ $(document).ready(function () {
var filteredNetworkModels = Filter.FilterByNetworkModel(graph, [networkModel]);
var filteredIeTypes = Filter.ByIeTypes(filteredNetworkModels, ieTypes);
- var filteredGraphData = Filter.ByClientPlatforms(filteredIeTypes, platforms);
+ var filteredGraphData = Filter.BySortPlatforms(filteredIeTypes, platforms);
$('.chart-placeholder').append(chartContainer);
- var labels = Graph.getPlatformNames(filteredGraphData);
if (filteredGraphData.length > 0) {
if (isLLM === true) {
var graphConfigs = setGraphConfigsByEngines(filteredGraphData, appConfig, kpis, precisions)
- createChartWithNewDataByEngines(labels, graphConfigs, chartContainer, display);
+ createChartWithNewDataByEngines(platforms, graphConfigs, chartContainer, display);
}
else {
var graphConfigs = setGraphConfigs(filteredGraphData, appConfig, kpis, precisions)
- createChartWithNewData(labels, graphConfigs, appConfig, chartContainer, display);
+ createChartWithNewData(platforms, graphConfigs, appConfig, chartContainer, display);
}
} else {
diff --git a/docs/sphinx_setup/_static/selector-tool/assets/selector-Bu10eOtw.js b/docs/sphinx_setup/_static/selector-tool/assets/selector-ww24l5P1.js
similarity index 84%
rename from docs/sphinx_setup/_static/selector-tool/assets/selector-Bu10eOtw.js
rename to docs/sphinx_setup/_static/selector-tool/assets/selector-ww24l5P1.js
index 1201e390e5c7c6..24bb42f7f391d6 100644
--- a/docs/sphinx_setup/_static/selector-tool/assets/selector-Bu10eOtw.js
+++ b/docs/sphinx_setup/_static/selector-tool/assets/selector-ww24l5P1.js
@@ -58,4 +58,4 @@ enabled=1
gpgcheck=1
repo_gpgcheck=1
gpgkey=https://yum.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB
-EOF`,getMoveRepoFileCommand:e=>`sudo mv /tmp/openvino-${e.metadata.yumYear}.repo ${oc}`,verifyRepoCommand:"yum repolist | grep -i openvino",getInstallCommand:e=>`sudo yum install openvino-${e.metadata.yumVersion}`};class jv extends De{constructor(t){super({level:j.DISTRIBUTION,key:A.ZYPPER,metadata:{title:"ZYPPER",subtitle:Z("distributions.CAPIOnly")}}),this._data=t}get data(){return{...this._data,commands:Iv}}}const Iv={addRepo:"sudo zypper addrepo https://download.opensuse.org/repositories/science/openSUSE_Tumbleweed/science.repo",refresh:"sudo zypper refresh",getInstallCommand:({metadata:e})=>`sudo zypper install openvino-devel-${e.zypperVersion} openvino-sample-${e.zypperVersion}`};class Uf extends Ie{constructor(t,n,r){super({level:j.PACKAGE,key:t,metadata:n,childrenSelector:Ff},r),this._setDefaultPackage()}_setDefaultPackage(){const t=Ne.OPENVINO_BASE;this.key===t&&this.default()}}class Rv extends Uf{constructor(t){super(Ne.OPENVINO_BASE,{title:Z("package.base.title"),subtitle:Z("package.base.subtitle")},t)}}class Tv extends Uf{constructor(t){super(Ne.OPENVINO_GENAI,{title:Z("package.genai.title"),subtitle:Z("package.genai.subtitle")},t)}}class jo extends Ie{constructor(t,n,r){super({level:j.VERSION,key:t,metadata:n},r)}}const Lv={title:Z("versions.titles.nightlyBuild"),pipVersion:"",githubVersion:"master",giteeVersion:"master",genaiGitVersion:"master",systemRequirementsLink:"https://docs.openvino.ai/nightly/about-openvino/release-notes-openvino/system-requirements.html",getStartedLink:"https://docs.openvino.ai/nightly/get-started.html",troubleshootingLink:"https://docs.openvino.ai/nightly/get-started/troubleshooting-install-config.html"};class zf extends jo{constructor(t){super(Ut.NIGHTLY,Lv,t)}}const Av={title:"2024.5",subtitle:Z("versions.titles.recommended"),pipVersion:"2024.5.0",githubVersion:"2024.5.0",giteeVersion:"2024.5.0",genaiGitVersion:"releases/2024/5",aptYear:2024,aptVersion:"2024.5.0",yumYear:2024,yumVersion:"2024.5.0",condaVersion:"2024.5.0",conanVersion:"2024.5.0",npmVersion:"2024.5.0",zypperVersion:"2024.5.0",systemRequirementsLink:"https://docs.openvino.ai/2024/about-openvino/system-requirements.html",getStartedLink:"https://docs.openvino.ai/2024/get-started.html",troubleshootingLink:"https://docs.openvino.ai/2024/get-started/troubleshooting-install-config.html"};class Vf extends jo{constructor(t){super(Ut.v_2024_5_0,Av,t)}}const Fv={title:`2023.3 ${Z("versions.titles.LTS")}`,pipVersion:"2023.3.0",githubVersion:"2023.3.0",giteeVersion:"2023.3.0",aptYear:2023,aptVersion:"2023.3.0",yumYear:2023,yumVersion:"2023.3.0",condaVersion:"2023.3.0",conanVersion:"2023.3.0",systemRequirementsLink:"https://docs.openvino.ai/2023.3/system_requirements.html",getStartedLink:"https://docs.openvino.ai/2023.3/get_started.html",troubleshootingLink:"https://docs.openvino.ai/2023.3/openvino_docs_get_started_guide_troubleshooting.html"};class Dv extends jo{constructor(t){super(Ut.v_2023_3_0,Fv,t)}}const Uv={title:`2022.3.2 ${Z("versions.titles.LTS")}`,subtitle:Z("versions.titles.hddlSupport"),pipVersion:"2022.3.2",githubVersion:"2022.3.2",giteeVersion:"2022.3.2",aptYear:2022,aptVersion:"2022.3.2",yumYear:2022,yumVersion:"2022.3.2",systemRequirementsLink:"https://docs.openvino.ai/systemrequirements",getStartedLink:"https://docs.openvino.ai/2022.3/get_started.html",troubleshootingLink:"https://docs.openvino.ai/2022.3/openvino_docs_get_started_guide_troubleshooting_steps.html"};class bf extends jo{constructor(t){super(Ut.v_2022_3_2,Uv,t)}}class ha extends Ie{constructor(t,n,r){super({level:j.OP_SYSTEM,key:t,metadata:n,childrenSelector:Ff},r),this._setDefaultOS()}_setDefaultOS(){const t=this._detectOS()||Je.WINDOWS;this.key===t&&this.default()}_detectOS(){const{userAgent:t}=navigator,n={windows:/(Windows|Win)/g,macOS:/(Macintosh|Mac)/g,linux:/(Linux|X11)/g};return n.windows.test(t)?Je.WINDOWS:n.macOS.test(t)?Je.MACOS:n.linux.test(t)?Je.LINUX:null}}class On extends ha{constructor(t){super(Je.WINDOWS,tv,t)}}class _n extends ha{constructor(t){super(Je.MACOS,nv,t)}}class Nn extends ha{constructor(t){super(Je.LINUX,rv,t)}}const zv=new Nn([new ee({linksSet:{installation:"https://docs.openvino.ai/nightly/get-started/install-openvino/install-openvino-pip.html"},frameworks:[]},{pythonAPI:!0}).includesNPUPlugin().default(),new fe({linksSet:{installation:"https://docs.openvino.ai/nightly/get-started/install-openvino/install-openvino-archive-linux.html"},downloadLink:"https://storage.openvinotoolkit.org/repositories/openvino/packages/nightly/latest"}),new ie,new re]),Vv=new _n([new ee({linksSet:{installation:"https://docs.openvino.ai/nightly/get-started/install-openvino/install-openvino-pip.html"},frameworks:[]},{pythonAPI:!0}).default(),new fe({linksSet:{installation:"https://docs.openvino.ai/nightly/get-started/install-openvino/install-openvino-archive-macos.html"},downloadLink:"https://storage.openvinotoolkit.org/repositories/openvino/packages/nightly/latest"}),new ie,new re]),bv=new On([new ee({linksSet:{installation:"https://docs.openvino.ai/nightly/get-started/install-openvino/install-openvino-pip.html"},frameworks:[]},{pythonAPI:!0}).includesNPUPlugin().default(),new fe({linksSet:{installation:"https://docs.openvino.ai/nightly/get-started/install-openvino/install-openvino-archive-windows.html"},downloadLink:"https://storage.openvinotoolkit.org/repositories/openvino/packages/nightly/latest"}),new ie,new re]),Mv=new zf([bv,Vv,zv]);class $v extends Ie{constructor(t){super({level:j.ENVIRONMENT,key:ri.RUNTIME,metadata:{title:Z("environment.runtime.title"),subtitle:Z("environment.runtime.subtitle")}},t)}}class Bv extends Ie{constructor(t){super({level:j.ENVIRONMENT,key:ri.DEV_TOOLS,metadata:{title:Z("environment.devTools.title"),subtitle:Z("environment.devTools.subtitle")}},t)}}const Kv=new Nn([new ee({linksSet:{installation:"https://docs.openvino.ai/2022.3/openvino_docs_install_guides_install_dev_tools.html"},frameworks:[]},{hasFrameworks:!0}).default(),new ie,new re,new zt({linksSet:{installation:"https://docs.openvino.ai/2022.3/openvino_docs_install_guides_installing_openvino_docker_linux.html"},downloadLink:"https://docs.openvino.ai/2022.3/openvino_docs_install_guides_installing_openvino_docker_linux.html"})]),Hv=new _n([new ee({linksSet:{installation:"https://docs.openvino.ai/2022.3/openvino_docs_install_guides_install_dev_tools.html"},frameworks:[]},{hasFrameworks:!0}).addFootnote(j.OP_SYSTEM).default(),new ie().addFootnote(j.OP_SYSTEM),new re().addFootnote(j.OP_SYSTEM)]),Wv=new On([new ee({linksSet:{installation:"https://docs.openvino.ai/2022.3/openvino_docs_install_guides_install_dev_tools.html"},frameworks:[]},{hasFrameworks:!0}).default(),new ie,new re]),Gv=new Bv([Wv,Hv,Kv]),Yv=new Nn([new ee({linksSet:{installation:"https://docs.openvino.ai/2022.3/openvino_docs_install_guides_installing_openvino_pip.html"},frameworks:[]},{pythonAPI:!0}).default(),new fe({linksSet:{installation:"https://docs.openvino.ai/2022.3/openvino_docs_install_guides_installing_openvino_from_archive_linux.html"},downloadLink:"https://storage.openvinotoolkit.org/repositories/openvino/packages/2022.3.2/linux"}),new ca({linksSet:{installation:"https://docs.openvino.ai/2022.3/openvino_docs_install_guides_installing_openvino_apt.html"},os:[te.UBUNTU_18,te.UBUNTU_20]}),new pa({linksSet:{installation:"https://docs.openvino.ai/2022.3/openvino_docs_install_guides_installing_openvino_yum.html"}}),new ie,new re,new zt({linksSet:{installation:"https://docs.openvino.ai/2022.3/openvino_docs_install_guides_installing_openvino_docker_linux.html"},downloadLink:"https://docs.openvino.ai/2022.3/openvino_docs_install_guides_installing_openvino_docker_linux.html"})]),Qv=new _n([new ee({linksSet:{installation:"https://docs.openvino.ai/2022.3/openvino_docs_install_guides_installing_openvino_pip.html"},frameworks:[]},{pythonAPI:!0}).addFootnote(j.OP_SYSTEM).default(),new fe({linksSet:{installation:"https://docs.openvino.ai/2022.3/openvino_docs_install_guides_installing_openvino_from_archive_macos.html"},downloadLink:"https://storage.openvinotoolkit.org/repositories/openvino/packages/2022.3.2/macos"}).addFootnote(j.OP_SYSTEM),new ie().addFootnote(j.OP_SYSTEM),new re().addFootnote(j.OP_SYSTEM)]),Xv=new On([new ee({linksSet:{installation:"https://docs.openvino.ai/2022.3/openvino_docs_install_guides_installing_openvino_pip.html"},frameworks:[]},{pythonAPI:!0}).default(),new fe({linksSet:{installation:"https://docs.openvino.ai/2022.3/openvino_docs_install_guides_installing_openvino_from_archive_windows.html"},downloadLink:"https://storage.openvinotoolkit.org/repositories/openvino/packages/2022.3.2/windows"}),new ie,new re,new zt({linksSet:{installation:"https://docs.openvino.ai/2022.3/openvino_docs_install_guides_installing_openvino_docker_windows.html"},downloadLink:"https://docs.openvino.ai/2022.3/openvino_docs_install_guides_installing_openvino_docker_windows.html"})]),Jv=new $v([Xv,Qv,Yv]),Zv=new bf([Gv.default(),Jv]),qv=new Nn([new ee({linksSet:{installation:"https://docs.openvino.ai/2023.3/openvino_docs_install_guides_installing_openvino_pip.html"},frameworks:[]},{pythonAPI:!0}).default(),new fe({linksSet:{installation:"https://docs.openvino.ai/2023.3/openvino_docs_install_guides_installing_openvino_from_archive_linux.html"},downloadLink:"https://storage.openvinotoolkit.org/repositories/openvino/packages/2023.3/linux"}).includesNPUPlugin(),new ca({linksSet:{installation:"https://docs.openvino.ai/2023.3/openvino_docs_install_guides_installing_openvino_apt.html"},os:[te.UBUNTU_18,te.UBUNTU_20,te.UBUNTU_22]}),new pa({linksSet:{installation:"https://docs.openvino.ai/2023.3/openvino_docs_install_guides_installing_openvino_yum.html"}}),new ie,new re,new zt({linksSet:{installation:"https://docs.openvino.ai/2023.3/openvino_docs_install_guides_installing_openvino_docker.html"},downloadLink:"https://docs.openvino.ai/2023.3/openvino_docs_install_guides_installing_openvino_docker.html"}),new ur({linksSet:{installation:"https://docs.openvino.ai/2023.3/openvino_docs_install_guides_installing_openvino_conda.html"}}),new ar({linksSet:{installation:"https://docs.openvino.ai/2023.3/openvino_docs_install_guides_installing_openvino_conan.html"}})]),ey=new _n([new ee({linksSet:{installation:"https://docs.openvino.ai/2023.3/openvino_docs_install_guides_installing_openvino_pip.html"},frameworks:[]},{pythonAPI:!0}).default(),new fe({linksSet:{installation:"https://docs.openvino.ai/2023.3/openvino_docs_install_guides_installing_openvino_from_archive_macos.html"},downloadLink:"https://storage.openvinotoolkit.org/repositories/openvino/packages/2023.3/macos"}),new ie,new re,new ur({linksSet:{installation:"https://docs.openvino.ai/2023.3/openvino_docs_install_guides_installing_openvino_conda.html"}}),new ar({linksSet:{installation:"https://docs.openvino.ai/2023.3/openvino_docs_install_guides_installing_openvino_conan.html"}})]),ty=new On([new ee({linksSet:{installation:"https://docs.openvino.ai/2023.3/openvino_docs_install_guides_installing_openvino_pip.html"},frameworks:[]},{pythonAPI:!0}).default(),new fe({linksSet:{installation:"https://docs.openvino.ai/2023.3/openvino_docs_install_guides_installing_openvino_from_archive_windows.html"},downloadLink:"https://storage.openvinotoolkit.org/repositories/openvino/packages/2023.3/windows"}).includesNPUPlugin(),new ie,new re,new zt({linksSet:{installation:"https://docs.openvino.ai/2023.3/openvino_docs_install_guides_installing_openvino_docker.html"},downloadLink:"https://docs.openvino.ai/2023.3/openvino_docs_install_guides_installing_openvino_docker.html"}),new ur({linksSet:{installation:"https://docs.openvino.ai/2023.3/openvino_docs_install_guides_installing_openvino_conda.html"}}),new ar({linksSet:{installation:"https://docs.openvino.ai/2023.3/openvino_docs_install_guides_installing_openvino_conan.html"}})]),ny=new Dv([ty,ey,qv]),ry=new Nn([new ee({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-pip.html"},frameworks:[]},{pythonAPI:!0}).includesNPUPlugin().default(),new fe({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-archive-linux.html"},downloadLink:"https://storage.openvinotoolkit.org/repositories/openvino/packages/2024.5/linux"}).includesNPUPlugin(),new ca({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-apt.html"},os:[te.UBUNTU_20,te.UBUNTU_22,te.UBUNTU_24]}),new pa({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-yum.html"}}),new ie,new re,new zt({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-docker-linux.html"},downloadLink:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-docker-linux.html"}),new ur({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-conda.html"}}),new Af({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-brew.html"}}),new fa({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-vcpkg.html"}}),new ar({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-conan.html"}}),new da({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-npm.html"}}),new jv({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-zypper.html"}}),new Pv({linksSet:{installation:"https://docs.openvino.ai/2024/openvino-workflow/deployment-locally/integrate-openvino-with-ubuntu-snap.html"},downloadLink:"https://docs.openvino.ai/2024/openvino-workflow/deployment-locally/integrate-openvino-with-ubuntu-snap.html"})]),iy=new _n([new ee({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-pip.html"},frameworks:[]},{pythonAPI:!0}).default(),new fe({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-archive-macos.html"},downloadLink:"https://storage.openvinotoolkit.org/repositories/openvino/packages/2024.5/macos"}),new ie,new re,new ur({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-conda.html"}}),new Af({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-brew.html"}}),new fa({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-vcpkg.html"}}),new ar({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-conan.html"}}),new da({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-npm.html"}})]),oy=new On([new ee({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-pip.html"},frameworks:[]},{pythonAPI:!0}).includesNPUPlugin().default(),new fe({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-archive-windows.html"},downloadLink:"https://storage.openvinotoolkit.org/repositories/openvino/packages/2024.5/windows"}).includesNPUPlugin(),new ie,new re,new zt({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-docker-linux.html"},downloadLink:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-docker-linux.html"}),new ur({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-conda.html"}}),new fa({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-vcpkg.html"}}),new ar({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-conan.html"}}),new da({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-npm.html"}})]),sy=new Vf([oy,iy,ry]),ly=new Rv([sy.default(),Mv,ny,Zv]),ay=new Nn([new ee({linksSet:{installation:"https://docs.openvino.ai/nightly/get-started/install-openvino/install-openvino-genai.html#pypi-installation"},frameworks:[]},{pythonAPI:!0}).includesNPUPlugin().default(),new fe({linksSet:{installation:"https://docs.openvino.ai/nightly/get-started/install-openvino/install-openvino-genai.html#archive-installation"},downloadLink:"https://storage.openvinotoolkit.org/repositories/openvino_genai/packages/nightly/latest"}),new ie,new re]),uy=new _n([new ee({linksSet:{installation:"https://docs.openvino.ai/nightly/get-started/install-openvino/install-openvino-genai.html#pypi-installation"},frameworks:[]},{pythonAPI:!0}).default(),new fe({linksSet:{installation:"https://docs.openvino.ai/nightly/get-started/install-openvino/install-openvino-genai.html#archive-installation"},downloadLink:"https://storage.openvinotoolkit.org/repositories/openvino_genai/packages/nightly/latest"}),new ie,new re]),cy=new On([new ee({linksSet:{installation:"https://docs.openvino.ai/nightly/get-started/install-openvino/install-openvino-genai.html#pypi-installation"},frameworks:[]},{pythonAPI:!0}).includesNPUPlugin().default(),new fe({linksSet:{installation:"https://docs.openvino.ai/nightly/get-started/install-openvino/install-openvino-genai.html#archive-installation"},downloadLink:"https://storage.openvinotoolkit.org/repositories/openvino_genai/packages/nightly/latest"}),new ie,new re]),dy=new zf([cy,uy,ay]),fy=new Nn([new ee({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-genai.html"},frameworks:[]},{pythonAPI:!0}).includesNPUPlugin().default(),new fe({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-genai.html"},downloadLink:"https://storage.openvinotoolkit.org/repositories/openvino_genai/packages/2024.5/linux"}).includesNPUPlugin(),new ie,new re,new zt({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-docker-linux.html"},downloadLink:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-docker-linux.html"})]),py=new _n([new ee({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-genai.html"},frameworks:[]},{pythonAPI:!0}).default(),new fe({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-genai.html"},downloadLink:"https://storage.openvinotoolkit.org/repositories/openvino_genai/packages/2024.5/macos"}),new ie,new re]),hy=new On([new ee({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-genai.html"},frameworks:[]},{pythonAPI:!0}).includesNPUPlugin().default(),new fe({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-genai.html"},downloadLink:"https://storage.openvinotoolkit.org/repositories/openvino_genai/packages/2024.5/windows"}).includesNPUPlugin(),new ie,new re,new zt({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-docker-linux.html"},downloadLink:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-docker-linux.html"})]),my=new Vf([hy,py,fy]),gy=new Tv([my.default(),dy]),vy=new Ie({level:j.ROOT,key:Lf.ROOT,metadata:{title:"ROOT"}},[ly.default(),gy]).default();function yy(e,t){var i,o;if(t.key===A.DOCKER||!t.footnoteLevel)return e;const n=(i=e[t.footnoteLevel])==null?void 0:i.selected,r=(o=e[t.footnoteLevel])==null?void 0:o.nodes;return!n||!r||((Array.isArray(n)?[...n,...r]:[n]).forEach(s=>s.hasFootnote=!0),r.forEach(s=>s.checked&&(s.hasFootnote=!0))),e}class wy{constructor(){Ve(this,"_root",vy)}getState(){try{return this._getState()}catch(t){return console.error(t),this._selectDefaults(this._root),this._getState()}}_getState(){const t=this._root.children,n=this._get_selected(t),r=n.children,i=this._get_selected(r),{environments:o,environment:s,systems:l,system:a}=this._processVersion(i),u=a.children,p=this._get_selected(u),d=this._processDistribution(p),h={[j.PACKAGE]:{nodes:t.map(v=>v.toOption()),selected:n.toOption()},[j.VERSION]:{nodes:r.map(v=>v.toOption()),selected:i.toOption()},[j.ENVIRONMENT]:s&&o?{nodes:o.map(v=>v.toOption()),selected:s.toOption()}:null,[j.OP_SYSTEM]:{nodes:l.map(v=>v.toOption()),selected:a.toOption()},[j.DISTRIBUTION]:{nodes:u.map(v=>v.toOption()),selected:p.toOption()},[j.FRAMEWORK]:d!=null&&d.length?{nodes:d.map(v=>v.toOption()),selected:d.filter(({checked:v})=>v).map(v=>v.toOption())}:null};return yy(h,p)}_get_selected(t){t.some(({checked:r})=>r)||this._selectDefaultsForLevel(t[0].level);const n=t.find(({checked:r})=>r);if(!n)throw new Error("Not valid tree");return n}_processVersion(t){if(t instanceof bf){const i=t.children,o=this._get_selected(i),s=o.children,l=this._get_selected(s);return{environments:i,environment:o,systems:s,system:l}}const n=t.children,r=this._get_selected(n);return{environments:null,environment:null,systems:n,system:r}}_processDistribution(t){return t instanceof ee?t.children:null}setState(t){this._setState(t)}_setState(t,n=this._root){if(!n.children.length)return;const r=n.children[0].level,i=ky(t[r]);n.children.forEach(o=>o.checked=i.includes(o.key)),n.children.forEach(o=>this._setState(t,o))}select(t,n){return this._select(t,n),this.getState()}_select(t,n,r=this._root){var i;if(((i=r.children[0])==null?void 0:i.level)!==t){r.children.forEach(o=>this._select(t,n,o));return}if(r.childrenSelector){r.childrenSelector(r.children,n);return}r.children.forEach(o=>o.checked=o.key===n)}_selectDefaultsForLevel(t,n=this._root){if(n.children.length){if(n.children[0].level!==t){n.children.forEach(r=>this._selectDefaultsForLevel(t,r));return}this._selectDefaults(n)}}_selectDefaults(t){t.children.forEach(n=>{n.checked=n.isDefault,this._selectDefaults(n)})}}const Tn=new wy;function ky(e){const t=[];return Array.isArray(e)?t.push(...e):e&&t.push(e),t}function Mf(e,{serializeVersion:t}={serializeVersion:!0}){var i,o;const n=[[j.PACKAGE,e.PACKAGE.selected.key],[j.VERSION,t?e.VERSION.selected.key:null],[j.ENVIRONMENT,(i=e.ENVIRONMENT)==null?void 0:i.selected.key],[j.OP_SYSTEM,e.OP_SYSTEM.selected.key],[j.DISTRIBUTION,e.DISTRIBUTION.selected.key],[j.FRAMEWORK,(o=e.FRAMEWORK)==null?void 0:o.selected.map(s=>s.key).join(",")]],r=new URLSearchParams;for(const[s,l]of n)l&&r.set(s,l);return r}function $f(e){function t(r,i){const o=e.get(r);if(!o)throw new Error(`Cannot extract value for: ${r}`);if(!i[o])throw new Error(`Bad node key for: ${r}`);return i[o]}function n(r,i){const o=e.get(r);return o?o.split(",").map(l=>{if(!l||!i[l])throw new Error(`Bad node key for: ${r}`);return i[l]}):null}try{return{[j.PACKAGE]:t(j.PACKAGE,Ne),[j.VERSION]:e.has(j.VERSION)?t(j.VERSION,Ut):null,[j.ENVIRONMENT]:e.has(j.ENVIRONMENT)?t(j.ENVIRONMENT,ri):null,[j.OP_SYSTEM]:t(j.OP_SYSTEM,Je),[j.DISTRIBUTION]:t(j.DISTRIBUTION,A),[j.FRAMEWORK]:n(j.FRAMEWORK,Me)}}catch(r){return console.log(`Cannot restore state from url due to error "${r}"`),null}}function Sy(){const e=window.parent;if(!e.location.search)return null;const t=new URLSearchParams(e.location.search);return $f(t)}function xy(e,t,n,{serializeVersion:r}={serializeVersion:!0}){D.useEffect(()=>{const i=window.parent,o=Mf(t,{serializeVersion:r}).toString(),s=new URL(i.location.toString());if(!s.search){s.search=o,i.history.replaceState(null,"",s);return}s.search.slice(1)!==o&&(s.search=o,i.history.pushState(null,"",s))}),parent.onpopstate=()=>{const i=window.parent,o=new URLSearchParams(i.location.search),s=$f(o);s&&(e.setState(s),n(e.getState()))}}const us=function(e){let t,n=!1;return function(...r){return n||(t=e(r),n=!0),t}};function Oy(e){var t,n;return typeof((n=(t=e.wap_tms)==null?void 0:t.custom)==null?void 0:n.trackComponentClick)!="function"?null:e.wap_tms.custom.trackComponentClick.bind(e.wap_tms.custom)}class _y{constructor(){Ve(this,"_window");Ve(this,"_consoleNotification",{notInitialized:us(()=>console.log("Adobe analytics is not initialized")),notFound:us(()=>console.log("Adobe analytics not found on a page")),devMode:us(()=>console.log("Analytics in dev mode"))});Ve(this,"_send",t=>{if(!this._window){this._consoleNotification.notInitialized();return}const n=Mf(Tn.getState()).toString(),r=Oy(this._window);if(!r){this._consoleNotification.notFound();return}try{r(t,n)}catch(i){console.error(i)}})}initialize(t){this._window=t}install(){this._send("install")}combinationView(){this._send("combination-view")}}const Ge=new _y;function Ny(){const e=Sy();e&&Tn.setState(e);const t=D.createContext((r,i)=>{Tn.select(r,i)});function n(){const[r,i]=D.useState(Tn.getState());return xy(Tn,r,i),[r,(o,s)=>i(Tn.select(o,s))]}return{SelectorContext:t,useSelector:n}}async function Py(e){e&&(navigator.clipboard?await navigator.clipboard.writeText(e):Ey(e))}function Ey(e){const t=Cy(e);document.body.append(t),t.select(),document.execCommand("copy"),t.remove()}function Cy(e){const t=document.createElement("textarea");t.style.fontSize="12pt",t.style.border="0",t.style.padding="0",t.style.margin="0",t.style.position="absolute",t.style.left="-9999px";const n=window.pageYOffset||document.documentElement.scrollTop;return t.style.top=`${n}px`,t.setAttribute("readonly",""),t.value=e,t}function jy(){return m.jsxs("svg",{version:"1.1",width:"24",height:"24",viewBox:"0 0 205 205",xmlns:"http://www.w3.org/2000/svg",className:"svg-icon",children:[m.jsx("path",{fill:"none",stroke:"currentColor",strokeWidth:"10",d:"M 50 145 a 15 15 0 0 1 -15 -15 v -90 a 15 15 0 0 1 15 -15 h 70 a 15 15 0 0 1 15 15 v 5"}),m.jsx("rect",{x:"65",y:"60",width:"100",height:"120",rx:"15",fill:"none",stroke:"currentColor",strokeWidth:"10"})]})}function Iy(){return m.jsx("svg",{version:"1.1",width:"24",height:"24",viewBox:"0 0 200 200",xmlns:"http://www.w3.org/2000/svg",className:"svg-icon",children:m.jsx("path",{strokeLinejoin:"round",strokeLinecap:"round",fill:"none",stroke:"currentColor",strokeWidth:"15",d:"M 40 100 L 90 150 L 170 40"})})}function Ry(){return m.jsxs("svg",{version:"1.1",width:"24",height:"24",viewBox:"0 0 200 200",xmlns:"http://www.w3.org/2000/svg",className:"svg-icon",children:[m.jsx("circle",{cx:"100",cy:"100",r:"90",fill:"none",strokeWidth:"15",stroke:"currentColor"}),m.jsx("path",{fill:"none",stroke:"currentColor",strokeWidth:"15",strokeLinecap:"round",d:"M 65 80 A 35 35 0 1 1 100 115"}),m.jsx("circle",{cx:"100",cy:"150",r:"3",fill:"none",stroke:"currentColor",strokeWidth:"15"})]})}const b=({comment:e,command:t,onCopy:n})=>{const[r,i]=D.useState(!1),o=async()=>{r||(await Py(t),i(!0),setTimeout(()=>i(!1),1500),n==null||n())};return m.jsxs("div",{className:"st-code-snippet","data-cy":"instructions-step",children:[e&&m.jsx(Bf,{children:e}),m.jsxs("div",{"data-cy":"command",children:[t&&m.jsx("code",{className:"st-code-snippet-content",children:t}),t&&m.jsx("button",{className:"copy-button",type:"button","aria-label":"Copy","data-cy":"copy",onClick:o,children:r?m.jsx(Iy,{}):m.jsx(jy,{})})]})]})},Bf=({children:e})=>m.jsxs("pre",{className:"st-code-snippet-comment",children:["# ",e]}),Ty=({comment:e,snippets:t})=>m.jsxs("div",{className:"st-code-snippet-multi-line","data-cy":"command",children:[e&&m.jsx(Bf,{children:e}),t.map(n=>m.jsx(b,{...n},n.command))]});function Ly(e){return e.host==="docs.openvino.ai"}const cs="production.docs.en",Kf=(cs==null?void 0:cs.includes("idz"))||!1,ds={link:"spark-hyperlink spark-hyperlink-primary spark-hyperlink-standard spark-focus-visible spark-focus-visible-self spark-focus-visible-snap spark-focus-visible-background",button:"spark-button spark-button-action spark-button-size-m spark-focus-visible spark-focus-visible-self spark-focus-visible-snap",buttonContent:"spark-button-content"},Oe=({href:e,children:t,type:n="link",testId:r="link",onClick:i})=>{const o=!Kf&&Ly(new URL(e))?"_parent":"_blank";return n==="link"?m.jsx("a",{href:e,className:ds.link,target:o,rel:"noreferrer noopener","data-cy":r,onClick:()=>i==null?void 0:i(),children:t}):m.jsx("span",{className:ds.button,children:m.jsx("span",{className:ds.buttonContent,children:m.jsx("a",{href:e,target:o,rel:"noreferrer noopener","data-cy":r,onClick:()=>i==null?void 0:i(),children:t})})})},Ay={heading:"spark-heading spark-font-200"},Ce=({title:e,accent:t=!1,dashed:n=!1,children:r,testId:i})=>m.jsxs("div",{className:`st-section ${t?"st-section-accent":""} ${n?"st-section-dashed":""}`,"data-cy":i,children:[m.jsx("span",{className:`st-section-title ${Ay.heading}`,children:e}),m.jsx("div",{className:"st-section-content",children:D.Children.map(r,o=>m.jsx(Fy,{children:o}))})]}),Fy=({children:e})=>m.jsx("div",{className:"st-section-content-row",children:e}),Dy=({version:e,distribution:t})=>{const{t:n}=$("translation",{keyPrefix:"distributions.apt.steps"}),{t:r}=$("translation",{keyPrefix:"selectorForm.titles"}),{commands:i}=t.data,o={comment:m.jsxs(z,{ns:"translation",i18nKey:"distributions.apt.steps.addRepository",children:[m.jsx("b",{children:"Step 3:"})," Add the repository via the following command"]}),snippets:i.getAddRepositoryCommands(e,t.data.os).map(({ubuntuVersionNumber:l,command:a})=>({comment:`Ubuntu ${l}`,command:a}))},s={downloadKey:{comment:m.jsxs(z,{t:n,i18nKey:"download",values:{filename:i.keyFilename},children:[m.jsx("b",{children:"Step 1:"})," Download the ",m.jsx(Oe,{href:i.keyHref,children:i.keyFilename}),". You can also use the following command"]}),command:i.downloadKeyCommand},addKey:{comment:m.jsxs(z,{t:n,i18nKey:"addKey",children:[m.jsx("b",{children:"Step 2:"})," Add this key to the system keyring"]}),command:i.addKeyCommand},addRepository:o,updatePackages:{comment:m.jsxs(z,{t:n,i18nKey:"updateList",children:[m.jsx("b",{children:"Step 4:"})," Update the list of packages via the update command"]}),command:i.updatePackagesCommand},verifyAptCache:{comment:m.jsxs(z,{t:n,i18nKey:"verify",children:[m.jsx("b",{children:"Step 5:"})," Verify that the APT repository is properly set up. Run the apt-cache command to see a list of all available OpenVINO packages and components"]}),command:i.verifyAptCacheCommand},install:{comment:m.jsxs(z,{t:n,i18nKey:"install",children:[m.jsx("b",{children:"Step 6:"})," Install OpenVINO Runtime"]}),command:i.getInstallCommand(e),onCopy:()=>Ge.install()}};return m.jsxs(Ce,{title:r("install"),accent:!0,testId:"instructions",children:[m.jsx(b,{...s.downloadKey}),m.jsx(b,{...s.addKey}),m.jsx(Ty,{...s.addRepository}),m.jsx(b,{...s.updatePackages}),m.jsx(b,{...s.verifyAptCache}),m.jsx(b,{...s.install})]})},Uy=({distribution:e})=>{const{t}=$("translation",{keyPrefix:"distributions.brew.steps"}),{t:n}=$("translation",{keyPrefix:"selectorForm.titles"}),{commands:r}=e.data,i={install:{comment:m.jsx(z,{t,i18nKey:"install",children:"Download and install the package"}),command:r.install,onCopy:()=>Ge.install()}};return m.jsx(Ce,{title:n("install"),accent:!0,testId:"instructions",children:m.jsx(b,{...i.install})})},zy=({version:e,distribution:t})=>{const{t:n}=$("translation",{keyPrefix:"distributions.conan.steps"}),{t:r}=$("translation",{keyPrefix:"selectorForm.titles"}),{commands:i}=t.data,{txtFilename:o,cmakeFilename:s}=i,l={createConanFile:{comment:m.jsxs(z,{t:n,i18nKey:"createConanFile",values:{txtFilename:o},children:[m.jsx("b",{children:"Step 1:"})," Create a ",m.jsx("b",{children:o})," file for your OpenVINO project and add “openvino” dependency in there"]}),command:i.conanTXTContent(e)},install:{comment:m.jsxs(z,{t:n,i18nKey:"install",values:{cmakeFilename:s},children:[m.jsx("b",{children:"Step 2:"})," Run the command below to create ",m.jsx("b",{children:s})," file, which will be used to compile your project with OpenVINO"]}),command:i.install,onCopy:()=>Ge.install()},compile:{comment:m.jsxs(z,{t:n,i18nKey:"compile",children:[m.jsx("b",{children:"Step 3:"})," Configure and compile your project with OpenVINO"]}),command:i.compile}};return m.jsxs(Ce,{title:r("install"),accent:!0,testId:"instructions",children:[m.jsx(b,{...l.createConanFile}),m.jsx(b,{...l.install}),m.jsx(b,{...l.compile})]})},Vy=({version:e,distribution:t})=>{const{t:n}=$("translation",{keyPrefix:"distributions.conda.steps"}),{t:r}=$("translation",{keyPrefix:"selectorForm.titles"}),{commands:i}=t.data,o={createEnv:{comment:m.jsxs(z,{t:n,i18nKey:"createEnv",children:[m.jsx("b",{children:"Step 1:"})," Create the Anaconda environment (Python 3.10 used as an example)"]}),command:i.createEnv},activateEnv:{comment:m.jsxs(z,{t:n,i18nKey:"activateEnv",children:[m.jsx("b",{children:"Step 2:"})," Activate the Anaconda environment"]}),command:i.activateEnv},upgradePip:{comment:m.jsxs(z,{t:n,i18nKey:"update",children:[m.jsx("b",{children:"Step 3:"})," Update the Anaconda to latest version"]}),command:i.update},install:{comment:m.jsxs(z,{t:n,i18nKey:"install",children:[m.jsx("b",{children:"Step 4:"})," Download and install the package"]}),command:i.getInstall(e),onCopy:()=>Ge.install()}};return m.jsxs(Ce,{title:r("install"),accent:!0,testId:"instructions",children:[m.jsx(b,{...o.createEnv}),m.jsx(b,{...o.activateEnv}),m.jsx(b,{...o.upgradePip}),m.jsx(b,{...o.install})]})},fs=({ovPackage:e,distribution:t})=>{const{t:n}=$("translation",{keyPrefix:"distributions.download"}),{t:r}=$("translation",{keyPrefix:"selectorForm.titles"}),i={[A.ARCHIVE]:e.key===Ne.OPENVINO_BASE?n("downloadArchives"):n("downloadArchivesGenAI"),[A.DOCKER]:n("gotoDocker"),[A.SNAP]:n("gotoInstallInstruction")}[t.key],o=m.jsxs(m.Fragment,{children:[n("useFollowingLink"),m.jsx("br",{}),m.jsx("b",{children:m.jsx(Oe,{href:t.data.downloadLink,testId:"download-button",onClick:()=>Ge.install(),children:i})})]});return m.jsx(Ce,{title:r("install"),accent:!0,testId:"instructions",children:m.jsx(b,{comment:o})})},by=({ovPackage:e,version:t,distribution:n})=>{const{t:r}=$("translation",{keyPrefix:"distributions.githubGitee"}),{t:i}=$("translation",{keyPrefix:"selectorForm.titles"}),o={clone:{comment:m.jsxs(z,{t:r,i18nKey:"steps.useGitClone",children:[m.jsx("b",{children:"Step 1:"})," Use Git to clone the OpenVINO toolkit repository"]}),command:n.data.commands.getCloneCommand(e,t),onCopy:()=>Ge.install()},build:{comment:m.jsxs(z,{t:r,i18nKey:"steps.buildInstructions",children:[m.jsx("b",{children:"Step 2:"})," Follow the ",m.jsx(Oe,{href:n.data.links.getBuildInstructionsLink(e,t),testId:"build-instructions-link",children:"instructions to build from source"})]})}};return m.jsxs(Ce,{title:i("install"),accent:!0,testId:"instructions",children:[m.jsx(b,{...o.clone}),m.jsx(b,{...o.build})]})},My=({distribution:e,version:t})=>{const{t:n}=$("translation",{keyPrefix:"distributions.npm.steps"}),{t:r}=$("translation",{keyPrefix:"selectorForm.titles"}),{commands:i}=e.data,o={install:{comment:m.jsx(z,{t:n,i18nKey:"install",children:"Download and install the package"}),command:i.getInstall(t),onCopy:()=>Ge.install()}};return m.jsx(Ce,{title:r("install"),accent:!0,testId:"instructions",children:m.jsx(b,{...o.install})})},$y=({ovPackage:e,environment:t,os:n,version:r,distribution:i})=>{const{t:o}=$("translation",{keyPrefix:"distributions.pip.steps"}),{t:s}=$("translation",{keyPrefix:"selectorForm.titles"}),{commands:l}=i.data,a=l.getCreateVenvCommand(n,r),u=l.getActivateVenvCommand(n,r),p=l.getInstallCommand({ovPackage:e,environment:t,os:n,version:r,distribution:i}),d={createEnv:{comment:m.jsxs(z,{t:o,i18nKey:"createVenv",children:[m.jsx("b",{children:"Step 1:"})," Create virtual environment"]}),command:a},activateEnv:{comment:m.jsxs(z,{t:o,i18nKey:"activateVenv",children:[m.jsx("b",{children:"Step 2:"})," Activate virtual environment"]}),command:u},upgradePip:{comment:m.jsxs(z,{t:o,i18nKey:"upgradePip",children:[m.jsx("b",{children:"Step 3:"})," Upgrade pip to latest version"]}),command:l.upgradeCommand},install:{comment:m.jsxs(z,{t:o,i18nKey:"install",children:[m.jsx("b",{children:"Step 4:"})," Download and install the package"]}),command:p,onCopy:()=>Ge.install()}};return m.jsxs(Ce,{title:s("install"),accent:!0,testId:"instructions",children:[m.jsx(b,{...d.createEnv}),m.jsx(b,{...d.activateEnv}),m.jsx(b,{...d.upgradePip}),m.jsx(b,{...d.install})]})},By=({distribution:e})=>{const{t}=$("translation",{keyPrefix:"distributions.vcpkg.steps"}),{t:n}=$("translation",{keyPrefix:"selectorForm.titles"}),{commands:r}=e.data,i={install:{comment:m.jsx(z,{t,i18nKey:"install",children:"Download and install the package"}),command:r.install,onCopy:()=>Ge.install()}};return m.jsx(Ce,{title:n("install"),accent:!0,testId:"instructions",children:m.jsx(b,{...i.install})})},Ky=({version:e,distribution:t})=>{const{t:n}=$("translation",{keyPrefix:"distributions.yum.steps"}),{t:r}=$("translation",{keyPrefix:"selectorForm.titles"}),{yumYear:i}=e.metadata,{commands:o}=t.data,s={createRepo:{comment:m.jsxs(z,{t:n,i18nKey:"createRepoFile",children:[m.jsx("b",{children:"Step 1:"})," Create the YUM repo file in the /tmp directory as a normal user"]}),command:o.getCreateRepoCommand(e)},moveRepoFile:{comment:m.jsxs(z,{t:n,i18nKey:"moveFile",values:{year:i,directory:o.directory},children:[m.jsx("b",{children:"Step 2:"})," Move the new openvino-",{year:i},".repo file to the YUM configuration directory ",m.jsx("b",{children:o.directory})]}),command:o.getMoveRepoFileCommand(e)},verifyRepo:{comment:m.jsxs(z,{t:n,i18nKey:"verify",children:[m.jsx("b",{children:"Step 3:"})," Verify that the new repo is properly setup by running the following command"]}),command:o.verifyRepoCommand},install:{comment:m.jsxs(z,{t:n,i18nKey:"install",children:[m.jsx("b",{children:"Step 4:"})," Install OpenVINO Runtime"]}),command:o.getInstallCommand(e),onCopy:()=>Ge.install()}};return m.jsxs(Ce,{title:r("install"),accent:!0,testId:"instructions",children:[m.jsx(b,{...s.createRepo}),m.jsx(b,{...s.moveRepoFile}),m.jsx(b,{...s.verifyRepo}),m.jsx(b,{...s.install})]})},Hy=({version:e,distribution:t})=>{const{t:n}=$("translation",{keyPrefix:"distributions.zypper.steps"}),{t:r}=$("translation",{keyPrefix:"selectorForm.titles"}),{commands:i}=t.data,o={addRepo:{comment:m.jsxs(z,{t:n,i18nKey:"addRepo",children:[m.jsx("b",{children:"Step 1:"})," Create a ZYPPER repository file with the command below"]}),command:i.addRepo},refresh:{comment:m.jsxs(z,{t:n,i18nKey:"refresh",children:[m.jsx("b",{children:"Step 2:"})," Refresh repositories"]}),command:i.refresh},install:{comment:m.jsxs(z,{t:n,i18nKey:"install",children:[m.jsx("b",{children:"Step 3:"})," Install OpenVINO"]}),command:i.getInstallCommand(e),onCopy:()=>Ge.install()}};return m.jsxs(Ce,{title:r("install"),accent:!0,testId:"instructions",children:[m.jsx(b,{...o.addRepo}),m.jsx(b,{...o.refresh}),m.jsx(b,{...o.install})]})},Wy=({state:e})=>{var r;const t={ovPackage:e.PACKAGE.selected,environment:(r=e.ENVIRONMENT)==null?void 0:r.selected,os:e.OP_SYSTEM.selected,version:e.VERSION.selected,distribution:e.DISTRIBUTION.selected};if(t.distribution.key===A.PIP)return m.jsx($y,{...t,distribution:t.distribution});if(t.distribution.key===A.ARCHIVE)return m.jsx(fs,{...t,distribution:t.distribution});if(t.distribution.key===A.DOCKER)return m.jsx(fs,{...t,distribution:t.distribution});if(t.distribution.key===A.GITHUB||t.distribution.key===A.GITEE)return m.jsx(by,{...t,distribution:t.distribution});if(t.distribution.key===A.APT)return m.jsx(Dy,{...t,distribution:t.distribution});if(t.distribution.key===A.YUM)return m.jsx(Ky,{...t,distribution:t.distribution});if(t.distribution.key===A.CONDA)return m.jsx(Vy,{...t,distribution:t.distribution});if(t.distribution.key===A.BREW)return m.jsx(Uy,{...t,distribution:t.distribution});if(t.distribution.key===A.VCPKG)return m.jsx(By,{...t,distribution:t.distribution});if(t.distribution.key===A.CONAN)return m.jsx(zy,{...t,distribution:t.distribution});if(t.distribution.key===A.NPM)return m.jsx(My,{...t,distribution:t.distribution});if(t.distribution.key===A.ZYPPER)return m.jsx(Hy,{...t,distribution:t.distribution});if(t.distribution.key===A.SNAP)return m.jsx(fs,{...t,distribution:t.distribution});const n=t.distribution;throw new Error(`${n}`)};function Gy(){const{t:e}=$("common",{keyPrefix:"relatedTools"}),{t}=$("translation");return m.jsx(Ce,{title:t("selectorForm.titles.relatedTools"),testId:"relatedTools",accent:!0,dashed:!0,children:m.jsxs("div",{className:"st-related-tools-links",children:[m.jsx(Oe,{href:"https://github.com/openvinotoolkit/openvino_notebooks",testId:"notebooks-link",children:e("OpenVINONotebooks")}),m.jsx(Oe,{href:"https://huggingface.co/docs/optimum/main/intel/openvino/inference",testId:"hf_optimum-link",children:"Hugging Face + Optimum Intel"}),m.jsx("div",{children:m.jsxs(z,{t:e,i18nKey:"tokenizers",children:[m.jsx(Oe,{href:"https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide/ov-tokenizers.html",testId:"openvino_tokenizers-link",children:"OpenVINO Tokenizers"}),"to streamline tokenizer conversion"]})}),m.jsx("div",{children:m.jsxs(z,{t:e,i18nKey:"nncf",children:[m.jsx(Oe,{href:"https://docs.openvino.ai/2024/openvino-workflow/model-optimization-guide/compressing-models-during-training.html",testId:"nncf-link",children:"NNCF"}),"for implementing compression algorithms on models"]})}),m.jsx("div",{children:m.jsxs(z,{t:e,i18nKey:"ovms",children:[m.jsx(Oe,{href:"https://docs.openvino.ai/2024/ovms_what_is_openvino_model_server.html",testId:"ovms-link",children:"OVMS"}),"for serving models optimized for deployment"]})})]})})}function Yy({state:e}){const t=e.PACKAGE.selected,n=e.DISTRIBUTION.selected,r=e.VERSION.selected,{t:i}=$("translation",{keyPrefix:"selectorForm.titles"}),{t:o}=$("common",{keyPrefix:"resources"});let s=m.jsx(m.Fragment,{});if(A.GITHUB===n.key||A.GITEE===n.key){const l=n.key===A.GITHUB?t.key===Ne.OPENVINO_BASE?o("githubRepository"):o("githubGenAIRepository"):t.key===Ne.OPENVINO_BASE?o("giteeRepository"):o("giteeGenAIRepository");s=m.jsxs(m.Fragment,{children:[m.jsx(Oe,{href:n.data.links.getBuildInstructionsLink(t,r),testId:"install-instructions-link",children:o("installationInstructions")}),m.jsx(Oe,{href:n.data.links.getRepositoryLink(t,r),testId:"repository-link",children:l})]})}else s=m.jsx(Oe,{href:n.data.linksSet.installation,testId:"install-instructions-link",children:o("installationInstructions")});return m.jsx(Ce,{title:i("resources"),testId:"resources",accent:!0,children:m.jsxs("div",{className:"st-resources-links",children:[m.jsxs("div",{children:[s,m.jsx(Oe,{href:"https://github.com/openvinotoolkit/openvino/releases",testId:"previous-releases-link",children:o("prevReleases")}),m.jsx(Oe,{href:r.metadata.systemRequirementsLink,testId:"system-requirements-link",children:o("systemRequirements")})]}),m.jsxs("div",{children:[m.jsx(Oe,{href:r.metadata.getStartedLink,testId:"get-started-link",children:o("getStarted")}),m.jsx(Oe,{href:r.metadata.troubleshootingLink,testId:"troubleshooting-link",children:o("troubleshooting")})]})]})})}const Oi={tooltipToggle:"spark-tooltip-toggle",tooltipPopover:"spark-tooltip spark-tooltip-size-m spark-shadow spark-tooltip-bottom",tooltipLabel:"spark-tooltip-label",tooltipArrow:"spark-tooltip-tip"},Qy=({content:e})=>{const[t,n]=D.useState(!1);return m.jsx("div",{className:"help-tooltip",children:m.jsxs("div",{className:Oi.tooltipToggle,onMouseEnter:()=>n(!0),onMouseLeave:()=>n(!1),children:[m.jsx("div",{"aria-hidden":"true",role:"img",className:"help-tooltip-icon",children:m.jsx(Ry,{})}),t&&m.jsxs("div",{className:`help-tooltip-popover ${Oi.tooltipPopover}`,role:"tooltip",children:[m.jsx("span",{className:`help-tooltip-popover-content ${Oi.tooltipLabel}`,children:e}),m.jsx("span",{className:Oi.tooltipArrow})]})]})})},ps={toggleSwitchField:"spark-fieldlabel spark-fieldlabel-size-m spark-toggle-switch spark-toggle-switch-action spark-toggle-switch-size-l",toggleSwitchInput:"spark-focus-visible spark-focus-visible-suppress spark-focus-visible-adjacent",toggleSwitchSelector:"spark-toggle-switch-selector spark-focus-visible spark-focus-visible-snap"},Xy=({label:e,checked:t=!1,onClick:n,testId:r})=>m.jsxs("label",{className:ps.toggleSwitchField,"data-cy":r,children:[m.jsx("input",{type:"checkbox",className:ps.toggleSwitchInput,role:"switch",checked:t,onChange:()=>n==null?void 0:n()}),m.jsx("span",{className:ps.toggleSwitchSelector}),m.jsx("div",{children:e})]}),cn={toggleButton:"spark-button spark-button-size-l spark-focus-visible spark-focus-visible-self spark-focus-visible-snap",toggleButtonGroup:"spark-button-group spark-button-group-orientation-horizontal spark-button-group-align-start spark-button-group-spacing-l",actionButton:"spark-button-action",secondaryButton:"spark-button-secondary",disabledButton:"spark-button-disabled",buttonContent:"spark-button-content",fontXs:"spark-font-25"},Hf=({onClick:e,checked:t=!1,disabled:n=!1,title:r,subtitle:i,value:o})=>m.jsx("button",{className:`${cn.toggleButton} ${t?cn.actionButton:cn.secondaryButton} ${n&&cn.disabledButton}`,type:"button",role:"radio","aria-checked":t,onClick:()=>e==null?void 0:e(),"data-cy":o,"aria-label":r,children:m.jsxs("span",{className:cn.buttonContent,children:[m.jsx("span",{className:"title",children:r}),i&&m.jsx("span",{className:`${cn.fontXs} subtitle`,children:i})]})}),Wf=({children:e,className:t})=>m.jsx("div",{className:`option-button-group ${t||""} ${cn.toggleButtonGroup}`,children:e});function Jy({title:e,options:t,level:n}){const r=D.useContext(ma),i=t.some(({checked:u})=>u),[o,s]=D.useState(i),l=t.map(({level:u,key:p,checked:d,metadata:h})=>m.jsx(Hf,{value:`${u}_${p}`,checked:d,title:h.title,onClick:()=>r(u,p)},p)),{t:a}=$("translation",{keyPrefix:"frameworks"});return m.jsxs(Ce,{title:e,testId:n,children:[m.jsxs(m.Fragment,{children:[m.jsx(Xy,{label:a("install"),checked:o,onClick:()=>s(!o),testId:"frameworks-toggle-switch"}),m.jsx(Qy,{content:a("tooltip")})]}),m.jsx(m.Fragment,{children:o&&m.jsx(Wf,{children:l})})]})}function wr({title:e,options:t,level:n}){const r=D.useContext(ma),i=t.map(({level:o,key:s,checked:l,metadata:a})=>m.jsx(Hf,{value:`${o}_${s}`,checked:l,title:a.title,subtitle:a.subtitle,onClick:()=>r(o,s)},s));return m.jsx(Ce,{title:e,testId:n,children:m.jsx(Wf,{children:i})})}function Zy({state:e}){var a,u;const t=e.PACKAGE.nodes,n=e.VERSION.nodes,r=(a=e.ENVIRONMENT)==null?void 0:a.nodes.map(p=>({...p,metadata:{...p.metadata,subtitle:void 0}})),i=e.OP_SYSTEM.nodes,o=e.DISTRIBUTION.nodes,s=(u=e.FRAMEWORK)==null?void 0:u.nodes;D.useEffect(()=>Ge.combinationView(),[e]);const{t:l}=$("translation",{keyPrefix:"selectorForm.titles"});return m.jsxs(m.Fragment,{children:[m.jsx(wr,{title:l("package"),options:t,level:j.PACKAGE}),m.jsx(wr,{title:l("version"),options:n,level:j.VERSION}),r&&m.jsx(wr,{title:l("envinronment"),options:r,level:j.ENVIRONMENT}),m.jsx(wr,{title:l("os"),options:i,level:j.OP_SYSTEM}),m.jsx(wr,{title:l("distribution"),options:o,level:j.DISTRIBUTION}),s&&m.jsx(Jy,{title:l("frameworks"),options:s,level:j.FRAMEWORK})]})}const{SelectorContext:ma,useSelector:qy}=Ny();Ge.initialize(window.parent);function e0(){const[e,t]=qy();return m.jsx("div",{className:`st-responsive-container ${Kf?"idz-page":""}`,children:m.jsxs(ma.Provider,{value:t,children:[m.jsx(Zy,{state:e}),m.jsx(Wy,{state:e}),m.jsx(Yy,{state:e}),m.jsx(Gy,{})]})})}vs.createRoot(document.getElementById("root")).render(m.jsx(cp.StrictMode,{children:m.jsx(e0,{})}));
+EOF`,getMoveRepoFileCommand:e=>`sudo mv /tmp/openvino-${e.metadata.yumYear}.repo ${oc}`,verifyRepoCommand:"yum repolist | grep -i openvino",getInstallCommand:e=>`sudo yum install openvino-${e.metadata.yumVersion}`};class jv extends De{constructor(t){super({level:j.DISTRIBUTION,key:A.ZYPPER,metadata:{title:"ZYPPER",subtitle:Z("distributions.CAPIOnly")}}),this._data=t}get data(){return{...this._data,commands:Iv}}}const Iv={addRepo:"sudo zypper addrepo https://download.opensuse.org/repositories/science/openSUSE_Tumbleweed/science.repo",refresh:"sudo zypper refresh",getInstallCommand:({metadata:e})=>`sudo zypper install openvino-devel-${e.zypperVersion} openvino-sample-${e.zypperVersion}`};class Uf extends Ie{constructor(t,n,r){super({level:j.PACKAGE,key:t,metadata:n,childrenSelector:Ff},r),this._setDefaultPackage()}_setDefaultPackage(){const t=Ne.OPENVINO_BASE;this.key===t&&this.default()}}class Rv extends Uf{constructor(t){super(Ne.OPENVINO_BASE,{title:Z("package.base.title"),subtitle:Z("package.base.subtitle")},t)}}class Tv extends Uf{constructor(t){super(Ne.OPENVINO_GENAI,{title:Z("package.genai.title"),subtitle:Z("package.genai.subtitle")},t)}}class jo extends Ie{constructor(t,n,r){super({level:j.VERSION,key:t,metadata:n},r)}}const Lv={title:Z("versions.titles.nightlyBuild"),pipVersion:"",githubVersion:"master",giteeVersion:"master",genaiGitVersion:"master",systemRequirementsLink:"https://docs.openvino.ai/nightly/about-openvino/release-notes-openvino/system-requirements.html",getStartedLink:"https://docs.openvino.ai/nightly/get-started.html",troubleshootingLink:"https://docs.openvino.ai/nightly/get-started/troubleshooting-install-config.html"};class zf extends jo{constructor(t){super(Ut.NIGHTLY,Lv,t)}}const Av={title:"2024.5",subtitle:Z("versions.titles.recommended"),pipVersion:"2024.5.0",githubVersion:"2024.5.0",giteeVersion:"2024.5.0",genaiGitVersion:"releases/2024/5",aptYear:2024,aptVersion:"2024.5.0",yumYear:2024,yumVersion:"2024.5.0",condaVersion:"2024.5.0",conanVersion:"2024.5.0",npmVersion:"2024.5.0-0",zypperVersion:"2024.5.0",systemRequirementsLink:"https://docs.openvino.ai/2024/about-openvino/system-requirements.html",getStartedLink:"https://docs.openvino.ai/2024/get-started.html",troubleshootingLink:"https://docs.openvino.ai/2024/get-started/troubleshooting-install-config.html"};class Vf extends jo{constructor(t){super(Ut.v_2024_5_0,Av,t)}}const Fv={title:`2023.3 ${Z("versions.titles.LTS")}`,pipVersion:"2023.3.0",githubVersion:"2023.3.0",giteeVersion:"2023.3.0",aptYear:2023,aptVersion:"2023.3.0",yumYear:2023,yumVersion:"2023.3.0",condaVersion:"2023.3.0",conanVersion:"2023.3.0",systemRequirementsLink:"https://docs.openvino.ai/2023.3/system_requirements.html",getStartedLink:"https://docs.openvino.ai/2023.3/get_started.html",troubleshootingLink:"https://docs.openvino.ai/2023.3/openvino_docs_get_started_guide_troubleshooting.html"};class Dv extends jo{constructor(t){super(Ut.v_2023_3_0,Fv,t)}}const Uv={title:`2022.3.2 ${Z("versions.titles.LTS")}`,subtitle:Z("versions.titles.hddlSupport"),pipVersion:"2022.3.2",githubVersion:"2022.3.2",giteeVersion:"2022.3.2",aptYear:2022,aptVersion:"2022.3.2",yumYear:2022,yumVersion:"2022.3.2",systemRequirementsLink:"https://docs.openvino.ai/systemrequirements",getStartedLink:"https://docs.openvino.ai/2022.3/get_started.html",troubleshootingLink:"https://docs.openvino.ai/2022.3/openvino_docs_get_started_guide_troubleshooting_steps.html"};class bf extends jo{constructor(t){super(Ut.v_2022_3_2,Uv,t)}}class ha extends Ie{constructor(t,n,r){super({level:j.OP_SYSTEM,key:t,metadata:n,childrenSelector:Ff},r),this._setDefaultOS()}_setDefaultOS(){const t=this._detectOS()||Je.WINDOWS;this.key===t&&this.default()}_detectOS(){const{userAgent:t}=navigator,n={windows:/(Windows|Win)/g,macOS:/(Macintosh|Mac)/g,linux:/(Linux|X11)/g};return n.windows.test(t)?Je.WINDOWS:n.macOS.test(t)?Je.MACOS:n.linux.test(t)?Je.LINUX:null}}class On extends ha{constructor(t){super(Je.WINDOWS,tv,t)}}class _n extends ha{constructor(t){super(Je.MACOS,nv,t)}}class Nn extends ha{constructor(t){super(Je.LINUX,rv,t)}}const zv=new Nn([new ee({linksSet:{installation:"https://docs.openvino.ai/nightly/get-started/install-openvino/install-openvino-pip.html"},frameworks:[]},{pythonAPI:!0}).includesNPUPlugin().default(),new fe({linksSet:{installation:"https://docs.openvino.ai/nightly/get-started/install-openvino/install-openvino-archive-linux.html"},downloadLink:"https://storage.openvinotoolkit.org/repositories/openvino/packages/nightly/latest"}),new ie,new re]),Vv=new _n([new ee({linksSet:{installation:"https://docs.openvino.ai/nightly/get-started/install-openvino/install-openvino-pip.html"},frameworks:[]},{pythonAPI:!0}).default(),new fe({linksSet:{installation:"https://docs.openvino.ai/nightly/get-started/install-openvino/install-openvino-archive-macos.html"},downloadLink:"https://storage.openvinotoolkit.org/repositories/openvino/packages/nightly/latest"}),new ie,new re]),bv=new On([new ee({linksSet:{installation:"https://docs.openvino.ai/nightly/get-started/install-openvino/install-openvino-pip.html"},frameworks:[]},{pythonAPI:!0}).includesNPUPlugin().default(),new fe({linksSet:{installation:"https://docs.openvino.ai/nightly/get-started/install-openvino/install-openvino-archive-windows.html"},downloadLink:"https://storage.openvinotoolkit.org/repositories/openvino/packages/nightly/latest"}),new ie,new re]),Mv=new zf([bv,Vv,zv]);class $v extends Ie{constructor(t){super({level:j.ENVIRONMENT,key:ri.RUNTIME,metadata:{title:Z("environment.runtime.title"),subtitle:Z("environment.runtime.subtitle")}},t)}}class Bv extends Ie{constructor(t){super({level:j.ENVIRONMENT,key:ri.DEV_TOOLS,metadata:{title:Z("environment.devTools.title"),subtitle:Z("environment.devTools.subtitle")}},t)}}const Kv=new Nn([new ee({linksSet:{installation:"https://docs.openvino.ai/2022.3/openvino_docs_install_guides_install_dev_tools.html"},frameworks:[]},{hasFrameworks:!0}).default(),new ie,new re,new zt({linksSet:{installation:"https://docs.openvino.ai/2022.3/openvino_docs_install_guides_installing_openvino_docker_linux.html"},downloadLink:"https://docs.openvino.ai/2022.3/openvino_docs_install_guides_installing_openvino_docker_linux.html"})]),Hv=new _n([new ee({linksSet:{installation:"https://docs.openvino.ai/2022.3/openvino_docs_install_guides_install_dev_tools.html"},frameworks:[]},{hasFrameworks:!0}).addFootnote(j.OP_SYSTEM).default(),new ie().addFootnote(j.OP_SYSTEM),new re().addFootnote(j.OP_SYSTEM)]),Wv=new On([new ee({linksSet:{installation:"https://docs.openvino.ai/2022.3/openvino_docs_install_guides_install_dev_tools.html"},frameworks:[]},{hasFrameworks:!0}).default(),new ie,new re]),Gv=new Bv([Wv,Hv,Kv]),Yv=new Nn([new ee({linksSet:{installation:"https://docs.openvino.ai/2022.3/openvino_docs_install_guides_installing_openvino_pip.html"},frameworks:[]},{pythonAPI:!0}).default(),new fe({linksSet:{installation:"https://docs.openvino.ai/2022.3/openvino_docs_install_guides_installing_openvino_from_archive_linux.html"},downloadLink:"https://storage.openvinotoolkit.org/repositories/openvino/packages/2022.3.2/linux"}),new ca({linksSet:{installation:"https://docs.openvino.ai/2022.3/openvino_docs_install_guides_installing_openvino_apt.html"},os:[te.UBUNTU_18,te.UBUNTU_20]}),new pa({linksSet:{installation:"https://docs.openvino.ai/2022.3/openvino_docs_install_guides_installing_openvino_yum.html"}}),new ie,new re,new zt({linksSet:{installation:"https://docs.openvino.ai/2022.3/openvino_docs_install_guides_installing_openvino_docker_linux.html"},downloadLink:"https://docs.openvino.ai/2022.3/openvino_docs_install_guides_installing_openvino_docker_linux.html"})]),Qv=new _n([new ee({linksSet:{installation:"https://docs.openvino.ai/2022.3/openvino_docs_install_guides_installing_openvino_pip.html"},frameworks:[]},{pythonAPI:!0}).addFootnote(j.OP_SYSTEM).default(),new fe({linksSet:{installation:"https://docs.openvino.ai/2022.3/openvino_docs_install_guides_installing_openvino_from_archive_macos.html"},downloadLink:"https://storage.openvinotoolkit.org/repositories/openvino/packages/2022.3.2/macos"}).addFootnote(j.OP_SYSTEM),new ie().addFootnote(j.OP_SYSTEM),new re().addFootnote(j.OP_SYSTEM)]),Xv=new On([new ee({linksSet:{installation:"https://docs.openvino.ai/2022.3/openvino_docs_install_guides_installing_openvino_pip.html"},frameworks:[]},{pythonAPI:!0}).default(),new fe({linksSet:{installation:"https://docs.openvino.ai/2022.3/openvino_docs_install_guides_installing_openvino_from_archive_windows.html"},downloadLink:"https://storage.openvinotoolkit.org/repositories/openvino/packages/2022.3.2/windows"}),new ie,new re,new zt({linksSet:{installation:"https://docs.openvino.ai/2022.3/openvino_docs_install_guides_installing_openvino_docker_windows.html"},downloadLink:"https://docs.openvino.ai/2022.3/openvino_docs_install_guides_installing_openvino_docker_windows.html"})]),Jv=new $v([Xv,Qv,Yv]),Zv=new bf([Gv.default(),Jv]),qv=new Nn([new ee({linksSet:{installation:"https://docs.openvino.ai/2023.3/openvino_docs_install_guides_installing_openvino_pip.html"},frameworks:[]},{pythonAPI:!0}).default(),new fe({linksSet:{installation:"https://docs.openvino.ai/2023.3/openvino_docs_install_guides_installing_openvino_from_archive_linux.html"},downloadLink:"https://storage.openvinotoolkit.org/repositories/openvino/packages/2023.3/linux"}).includesNPUPlugin(),new ca({linksSet:{installation:"https://docs.openvino.ai/2023.3/openvino_docs_install_guides_installing_openvino_apt.html"},os:[te.UBUNTU_18,te.UBUNTU_20,te.UBUNTU_22]}),new pa({linksSet:{installation:"https://docs.openvino.ai/2023.3/openvino_docs_install_guides_installing_openvino_yum.html"}}),new ie,new re,new zt({linksSet:{installation:"https://docs.openvino.ai/2023.3/openvino_docs_install_guides_installing_openvino_docker.html"},downloadLink:"https://docs.openvino.ai/2023.3/openvino_docs_install_guides_installing_openvino_docker.html"}),new ur({linksSet:{installation:"https://docs.openvino.ai/2023.3/openvino_docs_install_guides_installing_openvino_conda.html"}}),new ar({linksSet:{installation:"https://docs.openvino.ai/2023.3/openvino_docs_install_guides_installing_openvino_conan.html"}})]),ey=new _n([new ee({linksSet:{installation:"https://docs.openvino.ai/2023.3/openvino_docs_install_guides_installing_openvino_pip.html"},frameworks:[]},{pythonAPI:!0}).default(),new fe({linksSet:{installation:"https://docs.openvino.ai/2023.3/openvino_docs_install_guides_installing_openvino_from_archive_macos.html"},downloadLink:"https://storage.openvinotoolkit.org/repositories/openvino/packages/2023.3/macos"}),new ie,new re,new ur({linksSet:{installation:"https://docs.openvino.ai/2023.3/openvino_docs_install_guides_installing_openvino_conda.html"}}),new ar({linksSet:{installation:"https://docs.openvino.ai/2023.3/openvino_docs_install_guides_installing_openvino_conan.html"}})]),ty=new On([new ee({linksSet:{installation:"https://docs.openvino.ai/2023.3/openvino_docs_install_guides_installing_openvino_pip.html"},frameworks:[]},{pythonAPI:!0}).default(),new fe({linksSet:{installation:"https://docs.openvino.ai/2023.3/openvino_docs_install_guides_installing_openvino_from_archive_windows.html"},downloadLink:"https://storage.openvinotoolkit.org/repositories/openvino/packages/2023.3/windows"}).includesNPUPlugin(),new ie,new re,new zt({linksSet:{installation:"https://docs.openvino.ai/2023.3/openvino_docs_install_guides_installing_openvino_docker.html"},downloadLink:"https://docs.openvino.ai/2023.3/openvino_docs_install_guides_installing_openvino_docker.html"}),new ur({linksSet:{installation:"https://docs.openvino.ai/2023.3/openvino_docs_install_guides_installing_openvino_conda.html"}}),new ar({linksSet:{installation:"https://docs.openvino.ai/2023.3/openvino_docs_install_guides_installing_openvino_conan.html"}})]),ny=new Dv([ty,ey,qv]),ry=new Nn([new ee({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-pip.html"},frameworks:[]},{pythonAPI:!0}).includesNPUPlugin().default(),new fe({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-archive-linux.html"},downloadLink:"https://storage.openvinotoolkit.org/repositories/openvino/packages/2024.5/linux"}).includesNPUPlugin(),new ca({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-apt.html"},os:[te.UBUNTU_20,te.UBUNTU_22,te.UBUNTU_24]}),new pa({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-yum.html"}}),new ie,new re,new zt({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-docker-linux.html"},downloadLink:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-docker-linux.html"}),new ur({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-conda.html"}}),new Af({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-brew.html"}}),new fa({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-vcpkg.html"}}),new ar({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-conan.html"}}),new da({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-npm.html"}}),new jv({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-zypper.html"}}),new Pv({linksSet:{installation:"https://docs.openvino.ai/2024/openvino-workflow/deployment-locally/integrate-openvino-with-ubuntu-snap.html"},downloadLink:"https://docs.openvino.ai/2024/openvino-workflow/deployment-locally/integrate-openvino-with-ubuntu-snap.html"})]),iy=new _n([new ee({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-pip.html"},frameworks:[]},{pythonAPI:!0}).default(),new fe({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-archive-macos.html"},downloadLink:"https://storage.openvinotoolkit.org/repositories/openvino/packages/2024.5/macos"}),new ie,new re,new ur({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-conda.html"}}),new Af({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-brew.html"}}),new fa({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-vcpkg.html"}}),new ar({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-conan.html"}}),new da({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-npm.html"}})]),oy=new On([new ee({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-pip.html"},frameworks:[]},{pythonAPI:!0}).includesNPUPlugin().default(),new fe({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-archive-windows.html"},downloadLink:"https://storage.openvinotoolkit.org/repositories/openvino/packages/2024.5/windows"}).includesNPUPlugin(),new ie,new re,new zt({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-docker-linux.html"},downloadLink:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-docker-linux.html"}),new ur({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-conda.html"}}),new fa({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-vcpkg.html"}}),new ar({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-conan.html"}}),new da({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-npm.html"}})]),sy=new Vf([oy,iy,ry]),ly=new Rv([sy.default(),Mv,ny,Zv]),ay=new Nn([new ee({linksSet:{installation:"https://docs.openvino.ai/nightly/get-started/install-openvino/install-openvino-genai.html#pypi-installation"},frameworks:[]},{pythonAPI:!0}).includesNPUPlugin().default(),new fe({linksSet:{installation:"https://docs.openvino.ai/nightly/get-started/install-openvino/install-openvino-genai.html#archive-installation"},downloadLink:"https://storage.openvinotoolkit.org/repositories/openvino_genai/packages/nightly/latest"}),new ie,new re]),uy=new _n([new ee({linksSet:{installation:"https://docs.openvino.ai/nightly/get-started/install-openvino/install-openvino-genai.html#pypi-installation"},frameworks:[]},{pythonAPI:!0}).default(),new fe({linksSet:{installation:"https://docs.openvino.ai/nightly/get-started/install-openvino/install-openvino-genai.html#archive-installation"},downloadLink:"https://storage.openvinotoolkit.org/repositories/openvino_genai/packages/nightly/latest"}),new ie,new re]),cy=new On([new ee({linksSet:{installation:"https://docs.openvino.ai/nightly/get-started/install-openvino/install-openvino-genai.html#pypi-installation"},frameworks:[]},{pythonAPI:!0}).includesNPUPlugin().default(),new fe({linksSet:{installation:"https://docs.openvino.ai/nightly/get-started/install-openvino/install-openvino-genai.html#archive-installation"},downloadLink:"https://storage.openvinotoolkit.org/repositories/openvino_genai/packages/nightly/latest"}),new ie,new re]),dy=new zf([cy,uy,ay]),fy=new Nn([new ee({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-genai.html"},frameworks:[]},{pythonAPI:!0}).includesNPUPlugin().default(),new fe({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-genai.html"},downloadLink:"https://storage.openvinotoolkit.org/repositories/openvino_genai/packages/2024.5/linux"}).includesNPUPlugin(),new ie,new re,new zt({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-docker-linux.html"},downloadLink:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-docker-linux.html"})]),py=new _n([new ee({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-genai.html"},frameworks:[]},{pythonAPI:!0}).default(),new fe({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-genai.html"},downloadLink:"https://storage.openvinotoolkit.org/repositories/openvino_genai/packages/2024.5/macos"}),new ie,new re]),hy=new On([new ee({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-genai.html"},frameworks:[]},{pythonAPI:!0}).includesNPUPlugin().default(),new fe({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-genai.html"},downloadLink:"https://storage.openvinotoolkit.org/repositories/openvino_genai/packages/2024.5/windows"}).includesNPUPlugin(),new ie,new re,new zt({linksSet:{installation:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-docker-linux.html"},downloadLink:"https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-docker-linux.html"})]),my=new Vf([hy,py,fy]),gy=new Tv([my.default(),dy]),vy=new Ie({level:j.ROOT,key:Lf.ROOT,metadata:{title:"ROOT"}},[ly.default(),gy]).default();function yy(e,t){var i,o;if(t.key===A.DOCKER||!t.footnoteLevel)return e;const n=(i=e[t.footnoteLevel])==null?void 0:i.selected,r=(o=e[t.footnoteLevel])==null?void 0:o.nodes;return!n||!r||((Array.isArray(n)?[...n,...r]:[n]).forEach(s=>s.hasFootnote=!0),r.forEach(s=>s.checked&&(s.hasFootnote=!0))),e}class wy{constructor(){Ve(this,"_root",vy)}getState(){try{return this._getState()}catch(t){return console.error(t),this._selectDefaults(this._root),this._getState()}}_getState(){const t=this._root.children,n=this._get_selected(t),r=n.children,i=this._get_selected(r),{environments:o,environment:s,systems:l,system:a}=this._processVersion(i),u=a.children,p=this._get_selected(u),d=this._processDistribution(p),h={[j.PACKAGE]:{nodes:t.map(v=>v.toOption()),selected:n.toOption()},[j.VERSION]:{nodes:r.map(v=>v.toOption()),selected:i.toOption()},[j.ENVIRONMENT]:s&&o?{nodes:o.map(v=>v.toOption()),selected:s.toOption()}:null,[j.OP_SYSTEM]:{nodes:l.map(v=>v.toOption()),selected:a.toOption()},[j.DISTRIBUTION]:{nodes:u.map(v=>v.toOption()),selected:p.toOption()},[j.FRAMEWORK]:d!=null&&d.length?{nodes:d.map(v=>v.toOption()),selected:d.filter(({checked:v})=>v).map(v=>v.toOption())}:null};return yy(h,p)}_get_selected(t){t.some(({checked:r})=>r)||this._selectDefaultsForLevel(t[0].level);const n=t.find(({checked:r})=>r);if(!n)throw new Error("Not valid tree");return n}_processVersion(t){if(t instanceof bf){const i=t.children,o=this._get_selected(i),s=o.children,l=this._get_selected(s);return{environments:i,environment:o,systems:s,system:l}}const n=t.children,r=this._get_selected(n);return{environments:null,environment:null,systems:n,system:r}}_processDistribution(t){return t instanceof ee?t.children:null}setState(t){this._setState(t)}_setState(t,n=this._root){if(!n.children.length)return;const r=n.children[0].level,i=ky(t[r]);n.children.forEach(o=>o.checked=i.includes(o.key)),n.children.forEach(o=>this._setState(t,o))}select(t,n){return this._select(t,n),this.getState()}_select(t,n,r=this._root){var i;if(((i=r.children[0])==null?void 0:i.level)!==t){r.children.forEach(o=>this._select(t,n,o));return}if(r.childrenSelector){r.childrenSelector(r.children,n);return}r.children.forEach(o=>o.checked=o.key===n)}_selectDefaultsForLevel(t,n=this._root){if(n.children.length){if(n.children[0].level!==t){n.children.forEach(r=>this._selectDefaultsForLevel(t,r));return}this._selectDefaults(n)}}_selectDefaults(t){t.children.forEach(n=>{n.checked=n.isDefault,this._selectDefaults(n)})}}const Tn=new wy;function ky(e){const t=[];return Array.isArray(e)?t.push(...e):e&&t.push(e),t}function Mf(e,{serializeVersion:t}={serializeVersion:!0}){var i,o;const n=[[j.PACKAGE,e.PACKAGE.selected.key],[j.VERSION,t?e.VERSION.selected.key:null],[j.ENVIRONMENT,(i=e.ENVIRONMENT)==null?void 0:i.selected.key],[j.OP_SYSTEM,e.OP_SYSTEM.selected.key],[j.DISTRIBUTION,e.DISTRIBUTION.selected.key],[j.FRAMEWORK,(o=e.FRAMEWORK)==null?void 0:o.selected.map(s=>s.key).join(",")]],r=new URLSearchParams;for(const[s,l]of n)l&&r.set(s,l);return r}function $f(e){function t(r,i){const o=e.get(r);if(!o)throw new Error(`Cannot extract value for: ${r}`);if(!i[o])throw new Error(`Bad node key for: ${r}`);return i[o]}function n(r,i){const o=e.get(r);return o?o.split(",").map(l=>{if(!l||!i[l])throw new Error(`Bad node key for: ${r}`);return i[l]}):null}try{return{[j.PACKAGE]:t(j.PACKAGE,Ne),[j.VERSION]:e.has(j.VERSION)?t(j.VERSION,Ut):null,[j.ENVIRONMENT]:e.has(j.ENVIRONMENT)?t(j.ENVIRONMENT,ri):null,[j.OP_SYSTEM]:t(j.OP_SYSTEM,Je),[j.DISTRIBUTION]:t(j.DISTRIBUTION,A),[j.FRAMEWORK]:n(j.FRAMEWORK,Me)}}catch(r){return console.log(`Cannot restore state from url due to error "${r}"`),null}}function Sy(){const e=window.parent;if(!e.location.search)return null;const t=new URLSearchParams(e.location.search);return $f(t)}function xy(e,t,n,{serializeVersion:r}={serializeVersion:!0}){D.useEffect(()=>{const i=window.parent,o=Mf(t,{serializeVersion:r}).toString(),s=new URL(i.location.toString());if(!s.search){s.search=o,i.history.replaceState(null,"",s);return}s.search.slice(1)!==o&&(s.search=o,i.history.pushState(null,"",s))}),parent.onpopstate=()=>{const i=window.parent,o=new URLSearchParams(i.location.search),s=$f(o);s&&(e.setState(s),n(e.getState()))}}const us=function(e){let t,n=!1;return function(...r){return n||(t=e(r),n=!0),t}};function Oy(e){var t,n;return typeof((n=(t=e.wap_tms)==null?void 0:t.custom)==null?void 0:n.trackComponentClick)!="function"?null:e.wap_tms.custom.trackComponentClick.bind(e.wap_tms.custom)}class _y{constructor(){Ve(this,"_window");Ve(this,"_consoleNotification",{notInitialized:us(()=>console.log("Adobe analytics is not initialized")),notFound:us(()=>console.log("Adobe analytics not found on a page")),devMode:us(()=>console.log("Analytics in dev mode"))});Ve(this,"_send",t=>{if(!this._window){this._consoleNotification.notInitialized();return}const n=Mf(Tn.getState()).toString(),r=Oy(this._window);if(!r){this._consoleNotification.notFound();return}try{r(t,n)}catch(i){console.error(i)}})}initialize(t){this._window=t}install(){this._send("install")}combinationView(){this._send("combination-view")}}const Ge=new _y;function Ny(){const e=Sy();e&&Tn.setState(e);const t=D.createContext((r,i)=>{Tn.select(r,i)});function n(){const[r,i]=D.useState(Tn.getState());return xy(Tn,r,i),[r,(o,s)=>i(Tn.select(o,s))]}return{SelectorContext:t,useSelector:n}}async function Py(e){e&&(navigator.clipboard?await navigator.clipboard.writeText(e):Ey(e))}function Ey(e){const t=Cy(e);document.body.append(t),t.select(),document.execCommand("copy"),t.remove()}function Cy(e){const t=document.createElement("textarea");t.style.fontSize="12pt",t.style.border="0",t.style.padding="0",t.style.margin="0",t.style.position="absolute",t.style.left="-9999px";const n=window.pageYOffset||document.documentElement.scrollTop;return t.style.top=`${n}px`,t.setAttribute("readonly",""),t.value=e,t}function jy(){return m.jsxs("svg",{version:"1.1",width:"24",height:"24",viewBox:"0 0 205 205",xmlns:"http://www.w3.org/2000/svg",className:"svg-icon",children:[m.jsx("path",{fill:"none",stroke:"currentColor",strokeWidth:"10",d:"M 50 145 a 15 15 0 0 1 -15 -15 v -90 a 15 15 0 0 1 15 -15 h 70 a 15 15 0 0 1 15 15 v 5"}),m.jsx("rect",{x:"65",y:"60",width:"100",height:"120",rx:"15",fill:"none",stroke:"currentColor",strokeWidth:"10"})]})}function Iy(){return m.jsx("svg",{version:"1.1",width:"24",height:"24",viewBox:"0 0 200 200",xmlns:"http://www.w3.org/2000/svg",className:"svg-icon",children:m.jsx("path",{strokeLinejoin:"round",strokeLinecap:"round",fill:"none",stroke:"currentColor",strokeWidth:"15",d:"M 40 100 L 90 150 L 170 40"})})}function Ry(){return m.jsxs("svg",{version:"1.1",width:"24",height:"24",viewBox:"0 0 200 200",xmlns:"http://www.w3.org/2000/svg",className:"svg-icon",children:[m.jsx("circle",{cx:"100",cy:"100",r:"90",fill:"none",strokeWidth:"15",stroke:"currentColor"}),m.jsx("path",{fill:"none",stroke:"currentColor",strokeWidth:"15",strokeLinecap:"round",d:"M 65 80 A 35 35 0 1 1 100 115"}),m.jsx("circle",{cx:"100",cy:"150",r:"3",fill:"none",stroke:"currentColor",strokeWidth:"15"})]})}const b=({comment:e,command:t,onCopy:n})=>{const[r,i]=D.useState(!1),o=async()=>{r||(await Py(t),i(!0),setTimeout(()=>i(!1),1500),n==null||n())};return m.jsxs("div",{className:"st-code-snippet","data-cy":"instructions-step",children:[e&&m.jsx(Bf,{children:e}),m.jsxs("div",{"data-cy":"command",children:[t&&m.jsx("code",{className:"st-code-snippet-content",children:t}),t&&m.jsx("button",{className:"copy-button",type:"button","aria-label":"Copy","data-cy":"copy",onClick:o,children:r?m.jsx(Iy,{}):m.jsx(jy,{})})]})]})},Bf=({children:e})=>m.jsxs("pre",{className:"st-code-snippet-comment",children:["# ",e]}),Ty=({comment:e,snippets:t})=>m.jsxs("div",{className:"st-code-snippet-multi-line","data-cy":"command",children:[e&&m.jsx(Bf,{children:e}),t.map(n=>m.jsx(b,{...n},n.command))]});function Ly(e){return e.host==="docs.openvino.ai"}const cs="production.docs.en",Kf=(cs==null?void 0:cs.includes("idz"))||!1,ds={link:"spark-hyperlink spark-hyperlink-primary spark-hyperlink-standard spark-focus-visible spark-focus-visible-self spark-focus-visible-snap spark-focus-visible-background",button:"spark-button spark-button-action spark-button-size-m spark-focus-visible spark-focus-visible-self spark-focus-visible-snap",buttonContent:"spark-button-content"},Oe=({href:e,children:t,type:n="link",testId:r="link",onClick:i})=>{const o=!Kf&&Ly(new URL(e))?"_parent":"_blank";return n==="link"?m.jsx("a",{href:e,className:ds.link,target:o,rel:"noreferrer noopener","data-cy":r,onClick:()=>i==null?void 0:i(),children:t}):m.jsx("span",{className:ds.button,children:m.jsx("span",{className:ds.buttonContent,children:m.jsx("a",{href:e,target:o,rel:"noreferrer noopener","data-cy":r,onClick:()=>i==null?void 0:i(),children:t})})})},Ay={heading:"spark-heading spark-font-200"},Ce=({title:e,accent:t=!1,dashed:n=!1,children:r,testId:i})=>m.jsxs("div",{className:`st-section ${t?"st-section-accent":""} ${n?"st-section-dashed":""}`,"data-cy":i,children:[m.jsx("span",{className:`st-section-title ${Ay.heading}`,children:e}),m.jsx("div",{className:"st-section-content",children:D.Children.map(r,o=>m.jsx(Fy,{children:o}))})]}),Fy=({children:e})=>m.jsx("div",{className:"st-section-content-row",children:e}),Dy=({version:e,distribution:t})=>{const{t:n}=$("translation",{keyPrefix:"distributions.apt.steps"}),{t:r}=$("translation",{keyPrefix:"selectorForm.titles"}),{commands:i}=t.data,o={comment:m.jsxs(z,{ns:"translation",i18nKey:"distributions.apt.steps.addRepository",children:[m.jsx("b",{children:"Step 3:"})," Add the repository via the following command"]}),snippets:i.getAddRepositoryCommands(e,t.data.os).map(({ubuntuVersionNumber:l,command:a})=>({comment:`Ubuntu ${l}`,command:a}))},s={downloadKey:{comment:m.jsxs(z,{t:n,i18nKey:"download",values:{filename:i.keyFilename},children:[m.jsx("b",{children:"Step 1:"})," Download the ",m.jsx(Oe,{href:i.keyHref,children:i.keyFilename}),". You can also use the following command"]}),command:i.downloadKeyCommand},addKey:{comment:m.jsxs(z,{t:n,i18nKey:"addKey",children:[m.jsx("b",{children:"Step 2:"})," Add this key to the system keyring"]}),command:i.addKeyCommand},addRepository:o,updatePackages:{comment:m.jsxs(z,{t:n,i18nKey:"updateList",children:[m.jsx("b",{children:"Step 4:"})," Update the list of packages via the update command"]}),command:i.updatePackagesCommand},verifyAptCache:{comment:m.jsxs(z,{t:n,i18nKey:"verify",children:[m.jsx("b",{children:"Step 5:"})," Verify that the APT repository is properly set up. Run the apt-cache command to see a list of all available OpenVINO packages and components"]}),command:i.verifyAptCacheCommand},install:{comment:m.jsxs(z,{t:n,i18nKey:"install",children:[m.jsx("b",{children:"Step 6:"})," Install OpenVINO Runtime"]}),command:i.getInstallCommand(e),onCopy:()=>Ge.install()}};return m.jsxs(Ce,{title:r("install"),accent:!0,testId:"instructions",children:[m.jsx(b,{...s.downloadKey}),m.jsx(b,{...s.addKey}),m.jsx(Ty,{...s.addRepository}),m.jsx(b,{...s.updatePackages}),m.jsx(b,{...s.verifyAptCache}),m.jsx(b,{...s.install})]})},Uy=({distribution:e})=>{const{t}=$("translation",{keyPrefix:"distributions.brew.steps"}),{t:n}=$("translation",{keyPrefix:"selectorForm.titles"}),{commands:r}=e.data,i={install:{comment:m.jsx(z,{t,i18nKey:"install",children:"Download and install the package"}),command:r.install,onCopy:()=>Ge.install()}};return m.jsx(Ce,{title:n("install"),accent:!0,testId:"instructions",children:m.jsx(b,{...i.install})})},zy=({version:e,distribution:t})=>{const{t:n}=$("translation",{keyPrefix:"distributions.conan.steps"}),{t:r}=$("translation",{keyPrefix:"selectorForm.titles"}),{commands:i}=t.data,{txtFilename:o,cmakeFilename:s}=i,l={createConanFile:{comment:m.jsxs(z,{t:n,i18nKey:"createConanFile",values:{txtFilename:o},children:[m.jsx("b",{children:"Step 1:"})," Create a ",m.jsx("b",{children:o})," file for your OpenVINO project and add “openvino” dependency in there"]}),command:i.conanTXTContent(e)},install:{comment:m.jsxs(z,{t:n,i18nKey:"install",values:{cmakeFilename:s},children:[m.jsx("b",{children:"Step 2:"})," Run the command below to create ",m.jsx("b",{children:s})," file, which will be used to compile your project with OpenVINO"]}),command:i.install,onCopy:()=>Ge.install()},compile:{comment:m.jsxs(z,{t:n,i18nKey:"compile",children:[m.jsx("b",{children:"Step 3:"})," Configure and compile your project with OpenVINO"]}),command:i.compile}};return m.jsxs(Ce,{title:r("install"),accent:!0,testId:"instructions",children:[m.jsx(b,{...l.createConanFile}),m.jsx(b,{...l.install}),m.jsx(b,{...l.compile})]})},Vy=({version:e,distribution:t})=>{const{t:n}=$("translation",{keyPrefix:"distributions.conda.steps"}),{t:r}=$("translation",{keyPrefix:"selectorForm.titles"}),{commands:i}=t.data,o={createEnv:{comment:m.jsxs(z,{t:n,i18nKey:"createEnv",children:[m.jsx("b",{children:"Step 1:"})," Create the Anaconda environment (Python 3.10 used as an example)"]}),command:i.createEnv},activateEnv:{comment:m.jsxs(z,{t:n,i18nKey:"activateEnv",children:[m.jsx("b",{children:"Step 2:"})," Activate the Anaconda environment"]}),command:i.activateEnv},upgradePip:{comment:m.jsxs(z,{t:n,i18nKey:"update",children:[m.jsx("b",{children:"Step 3:"})," Update the Anaconda to latest version"]}),command:i.update},install:{comment:m.jsxs(z,{t:n,i18nKey:"install",children:[m.jsx("b",{children:"Step 4:"})," Download and install the package"]}),command:i.getInstall(e),onCopy:()=>Ge.install()}};return m.jsxs(Ce,{title:r("install"),accent:!0,testId:"instructions",children:[m.jsx(b,{...o.createEnv}),m.jsx(b,{...o.activateEnv}),m.jsx(b,{...o.upgradePip}),m.jsx(b,{...o.install})]})},fs=({ovPackage:e,distribution:t})=>{const{t:n}=$("translation",{keyPrefix:"distributions.download"}),{t:r}=$("translation",{keyPrefix:"selectorForm.titles"}),i={[A.ARCHIVE]:e.key===Ne.OPENVINO_BASE?n("downloadArchives"):n("downloadArchivesGenAI"),[A.DOCKER]:n("gotoDocker"),[A.SNAP]:n("gotoInstallInstruction")}[t.key],o=m.jsxs(m.Fragment,{children:[n("useFollowingLink"),m.jsx("br",{}),m.jsx("b",{children:m.jsx(Oe,{href:t.data.downloadLink,testId:"download-button",onClick:()=>Ge.install(),children:i})})]});return m.jsx(Ce,{title:r("install"),accent:!0,testId:"instructions",children:m.jsx(b,{comment:o})})},by=({ovPackage:e,version:t,distribution:n})=>{const{t:r}=$("translation",{keyPrefix:"distributions.githubGitee"}),{t:i}=$("translation",{keyPrefix:"selectorForm.titles"}),o={clone:{comment:m.jsxs(z,{t:r,i18nKey:"steps.useGitClone",children:[m.jsx("b",{children:"Step 1:"})," Use Git to clone the OpenVINO toolkit repository"]}),command:n.data.commands.getCloneCommand(e,t),onCopy:()=>Ge.install()},build:{comment:m.jsxs(z,{t:r,i18nKey:"steps.buildInstructions",children:[m.jsx("b",{children:"Step 2:"})," Follow the ",m.jsx(Oe,{href:n.data.links.getBuildInstructionsLink(e,t),testId:"build-instructions-link",children:"instructions to build from source"})]})}};return m.jsxs(Ce,{title:i("install"),accent:!0,testId:"instructions",children:[m.jsx(b,{...o.clone}),m.jsx(b,{...o.build})]})},My=({distribution:e,version:t})=>{const{t:n}=$("translation",{keyPrefix:"distributions.npm.steps"}),{t:r}=$("translation",{keyPrefix:"selectorForm.titles"}),{commands:i}=e.data,o={install:{comment:m.jsx(z,{t:n,i18nKey:"install",children:"Download and install the package"}),command:i.getInstall(t),onCopy:()=>Ge.install()}};return m.jsx(Ce,{title:r("install"),accent:!0,testId:"instructions",children:m.jsx(b,{...o.install})})},$y=({ovPackage:e,environment:t,os:n,version:r,distribution:i})=>{const{t:o}=$("translation",{keyPrefix:"distributions.pip.steps"}),{t:s}=$("translation",{keyPrefix:"selectorForm.titles"}),{commands:l}=i.data,a=l.getCreateVenvCommand(n,r),u=l.getActivateVenvCommand(n,r),p=l.getInstallCommand({ovPackage:e,environment:t,os:n,version:r,distribution:i}),d={createEnv:{comment:m.jsxs(z,{t:o,i18nKey:"createVenv",children:[m.jsx("b",{children:"Step 1:"})," Create virtual environment"]}),command:a},activateEnv:{comment:m.jsxs(z,{t:o,i18nKey:"activateVenv",children:[m.jsx("b",{children:"Step 2:"})," Activate virtual environment"]}),command:u},upgradePip:{comment:m.jsxs(z,{t:o,i18nKey:"upgradePip",children:[m.jsx("b",{children:"Step 3:"})," Upgrade pip to latest version"]}),command:l.upgradeCommand},install:{comment:m.jsxs(z,{t:o,i18nKey:"install",children:[m.jsx("b",{children:"Step 4:"})," Download and install the package"]}),command:p,onCopy:()=>Ge.install()}};return m.jsxs(Ce,{title:s("install"),accent:!0,testId:"instructions",children:[m.jsx(b,{...d.createEnv}),m.jsx(b,{...d.activateEnv}),m.jsx(b,{...d.upgradePip}),m.jsx(b,{...d.install})]})},By=({distribution:e})=>{const{t}=$("translation",{keyPrefix:"distributions.vcpkg.steps"}),{t:n}=$("translation",{keyPrefix:"selectorForm.titles"}),{commands:r}=e.data,i={install:{comment:m.jsx(z,{t,i18nKey:"install",children:"Download and install the package"}),command:r.install,onCopy:()=>Ge.install()}};return m.jsx(Ce,{title:n("install"),accent:!0,testId:"instructions",children:m.jsx(b,{...i.install})})},Ky=({version:e,distribution:t})=>{const{t:n}=$("translation",{keyPrefix:"distributions.yum.steps"}),{t:r}=$("translation",{keyPrefix:"selectorForm.titles"}),{yumYear:i}=e.metadata,{commands:o}=t.data,s={createRepo:{comment:m.jsxs(z,{t:n,i18nKey:"createRepoFile",children:[m.jsx("b",{children:"Step 1:"})," Create the YUM repo file in the /tmp directory as a normal user"]}),command:o.getCreateRepoCommand(e)},moveRepoFile:{comment:m.jsxs(z,{t:n,i18nKey:"moveFile",values:{year:i,directory:o.directory},children:[m.jsx("b",{children:"Step 2:"})," Move the new openvino-",{year:i},".repo file to the YUM configuration directory ",m.jsx("b",{children:o.directory})]}),command:o.getMoveRepoFileCommand(e)},verifyRepo:{comment:m.jsxs(z,{t:n,i18nKey:"verify",children:[m.jsx("b",{children:"Step 3:"})," Verify that the new repo is properly setup by running the following command"]}),command:o.verifyRepoCommand},install:{comment:m.jsxs(z,{t:n,i18nKey:"install",children:[m.jsx("b",{children:"Step 4:"})," Install OpenVINO Runtime"]}),command:o.getInstallCommand(e),onCopy:()=>Ge.install()}};return m.jsxs(Ce,{title:r("install"),accent:!0,testId:"instructions",children:[m.jsx(b,{...s.createRepo}),m.jsx(b,{...s.moveRepoFile}),m.jsx(b,{...s.verifyRepo}),m.jsx(b,{...s.install})]})},Hy=({version:e,distribution:t})=>{const{t:n}=$("translation",{keyPrefix:"distributions.zypper.steps"}),{t:r}=$("translation",{keyPrefix:"selectorForm.titles"}),{commands:i}=t.data,o={addRepo:{comment:m.jsxs(z,{t:n,i18nKey:"addRepo",children:[m.jsx("b",{children:"Step 1:"})," Create a ZYPPER repository file with the command below"]}),command:i.addRepo},refresh:{comment:m.jsxs(z,{t:n,i18nKey:"refresh",children:[m.jsx("b",{children:"Step 2:"})," Refresh repositories"]}),command:i.refresh},install:{comment:m.jsxs(z,{t:n,i18nKey:"install",children:[m.jsx("b",{children:"Step 3:"})," Install OpenVINO"]}),command:i.getInstallCommand(e),onCopy:()=>Ge.install()}};return m.jsxs(Ce,{title:r("install"),accent:!0,testId:"instructions",children:[m.jsx(b,{...o.addRepo}),m.jsx(b,{...o.refresh}),m.jsx(b,{...o.install})]})},Wy=({state:e})=>{var r;const t={ovPackage:e.PACKAGE.selected,environment:(r=e.ENVIRONMENT)==null?void 0:r.selected,os:e.OP_SYSTEM.selected,version:e.VERSION.selected,distribution:e.DISTRIBUTION.selected};if(t.distribution.key===A.PIP)return m.jsx($y,{...t,distribution:t.distribution});if(t.distribution.key===A.ARCHIVE)return m.jsx(fs,{...t,distribution:t.distribution});if(t.distribution.key===A.DOCKER)return m.jsx(fs,{...t,distribution:t.distribution});if(t.distribution.key===A.GITHUB||t.distribution.key===A.GITEE)return m.jsx(by,{...t,distribution:t.distribution});if(t.distribution.key===A.APT)return m.jsx(Dy,{...t,distribution:t.distribution});if(t.distribution.key===A.YUM)return m.jsx(Ky,{...t,distribution:t.distribution});if(t.distribution.key===A.CONDA)return m.jsx(Vy,{...t,distribution:t.distribution});if(t.distribution.key===A.BREW)return m.jsx(Uy,{...t,distribution:t.distribution});if(t.distribution.key===A.VCPKG)return m.jsx(By,{...t,distribution:t.distribution});if(t.distribution.key===A.CONAN)return m.jsx(zy,{...t,distribution:t.distribution});if(t.distribution.key===A.NPM)return m.jsx(My,{...t,distribution:t.distribution});if(t.distribution.key===A.ZYPPER)return m.jsx(Hy,{...t,distribution:t.distribution});if(t.distribution.key===A.SNAP)return m.jsx(fs,{...t,distribution:t.distribution});const n=t.distribution;throw new Error(`${n}`)};function Gy(){const{t:e}=$("common",{keyPrefix:"relatedTools"}),{t}=$("translation");return m.jsx(Ce,{title:t("selectorForm.titles.relatedTools"),testId:"relatedTools",accent:!0,dashed:!0,children:m.jsxs("div",{className:"st-related-tools-links",children:[m.jsx(Oe,{href:"https://github.com/openvinotoolkit/openvino_notebooks",testId:"notebooks-link",children:e("OpenVINONotebooks")}),m.jsx(Oe,{href:"https://huggingface.co/docs/optimum/main/intel/openvino/inference",testId:"hf_optimum-link",children:"Hugging Face + Optimum Intel"}),m.jsx("div",{children:m.jsxs(z,{t:e,i18nKey:"tokenizers",children:[m.jsx(Oe,{href:"https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide/ov-tokenizers.html",testId:"openvino_tokenizers-link",children:"OpenVINO Tokenizers"}),"to streamline tokenizer conversion"]})}),m.jsx("div",{children:m.jsxs(z,{t:e,i18nKey:"nncf",children:[m.jsx(Oe,{href:"https://docs.openvino.ai/2024/openvino-workflow/model-optimization-guide/compressing-models-during-training.html",testId:"nncf-link",children:"NNCF"}),"for implementing compression algorithms on models"]})}),m.jsx("div",{children:m.jsxs(z,{t:e,i18nKey:"ovms",children:[m.jsx(Oe,{href:"https://docs.openvino.ai/2024/ovms_what_is_openvino_model_server.html",testId:"ovms-link",children:"OVMS"}),"for serving models optimized for deployment"]})})]})})}function Yy({state:e}){const t=e.PACKAGE.selected,n=e.DISTRIBUTION.selected,r=e.VERSION.selected,{t:i}=$("translation",{keyPrefix:"selectorForm.titles"}),{t:o}=$("common",{keyPrefix:"resources"});let s=m.jsx(m.Fragment,{});if(A.GITHUB===n.key||A.GITEE===n.key){const l=n.key===A.GITHUB?t.key===Ne.OPENVINO_BASE?o("githubRepository"):o("githubGenAIRepository"):t.key===Ne.OPENVINO_BASE?o("giteeRepository"):o("giteeGenAIRepository");s=m.jsxs(m.Fragment,{children:[m.jsx(Oe,{href:n.data.links.getBuildInstructionsLink(t,r),testId:"install-instructions-link",children:o("installationInstructions")}),m.jsx(Oe,{href:n.data.links.getRepositoryLink(t,r),testId:"repository-link",children:l})]})}else s=m.jsx(Oe,{href:n.data.linksSet.installation,testId:"install-instructions-link",children:o("installationInstructions")});return m.jsx(Ce,{title:i("resources"),testId:"resources",accent:!0,children:m.jsxs("div",{className:"st-resources-links",children:[m.jsxs("div",{children:[s,m.jsx(Oe,{href:"https://github.com/openvinotoolkit/openvino/releases",testId:"previous-releases-link",children:o("prevReleases")}),m.jsx(Oe,{href:r.metadata.systemRequirementsLink,testId:"system-requirements-link",children:o("systemRequirements")})]}),m.jsxs("div",{children:[m.jsx(Oe,{href:r.metadata.getStartedLink,testId:"get-started-link",children:o("getStarted")}),m.jsx(Oe,{href:r.metadata.troubleshootingLink,testId:"troubleshooting-link",children:o("troubleshooting")})]})]})})}const Oi={tooltipToggle:"spark-tooltip-toggle",tooltipPopover:"spark-tooltip spark-tooltip-size-m spark-shadow spark-tooltip-bottom",tooltipLabel:"spark-tooltip-label",tooltipArrow:"spark-tooltip-tip"},Qy=({content:e})=>{const[t,n]=D.useState(!1);return m.jsx("div",{className:"help-tooltip",children:m.jsxs("div",{className:Oi.tooltipToggle,onMouseEnter:()=>n(!0),onMouseLeave:()=>n(!1),children:[m.jsx("div",{"aria-hidden":"true",role:"img",className:"help-tooltip-icon",children:m.jsx(Ry,{})}),t&&m.jsxs("div",{className:`help-tooltip-popover ${Oi.tooltipPopover}`,role:"tooltip",children:[m.jsx("span",{className:`help-tooltip-popover-content ${Oi.tooltipLabel}`,children:e}),m.jsx("span",{className:Oi.tooltipArrow})]})]})})},ps={toggleSwitchField:"spark-fieldlabel spark-fieldlabel-size-m spark-toggle-switch spark-toggle-switch-action spark-toggle-switch-size-l",toggleSwitchInput:"spark-focus-visible spark-focus-visible-suppress spark-focus-visible-adjacent",toggleSwitchSelector:"spark-toggle-switch-selector spark-focus-visible spark-focus-visible-snap"},Xy=({label:e,checked:t=!1,onClick:n,testId:r})=>m.jsxs("label",{className:ps.toggleSwitchField,"data-cy":r,children:[m.jsx("input",{type:"checkbox",className:ps.toggleSwitchInput,role:"switch",checked:t,onChange:()=>n==null?void 0:n()}),m.jsx("span",{className:ps.toggleSwitchSelector}),m.jsx("div",{children:e})]}),cn={toggleButton:"spark-button spark-button-size-l spark-focus-visible spark-focus-visible-self spark-focus-visible-snap",toggleButtonGroup:"spark-button-group spark-button-group-orientation-horizontal spark-button-group-align-start spark-button-group-spacing-l",actionButton:"spark-button-action",secondaryButton:"spark-button-secondary",disabledButton:"spark-button-disabled",buttonContent:"spark-button-content",fontXs:"spark-font-25"},Hf=({onClick:e,checked:t=!1,disabled:n=!1,title:r,subtitle:i,value:o})=>m.jsx("button",{className:`${cn.toggleButton} ${t?cn.actionButton:cn.secondaryButton} ${n&&cn.disabledButton}`,type:"button",role:"radio","aria-checked":t,onClick:()=>e==null?void 0:e(),"data-cy":o,"aria-label":r,children:m.jsxs("span",{className:cn.buttonContent,children:[m.jsx("span",{className:"title",children:r}),i&&m.jsx("span",{className:`${cn.fontXs} subtitle`,children:i})]})}),Wf=({children:e,className:t})=>m.jsx("div",{className:`option-button-group ${t||""} ${cn.toggleButtonGroup}`,children:e});function Jy({title:e,options:t,level:n}){const r=D.useContext(ma),i=t.some(({checked:u})=>u),[o,s]=D.useState(i),l=t.map(({level:u,key:p,checked:d,metadata:h})=>m.jsx(Hf,{value:`${u}_${p}`,checked:d,title:h.title,onClick:()=>r(u,p)},p)),{t:a}=$("translation",{keyPrefix:"frameworks"});return m.jsxs(Ce,{title:e,testId:n,children:[m.jsxs(m.Fragment,{children:[m.jsx(Xy,{label:a("install"),checked:o,onClick:()=>s(!o),testId:"frameworks-toggle-switch"}),m.jsx(Qy,{content:a("tooltip")})]}),m.jsx(m.Fragment,{children:o&&m.jsx(Wf,{children:l})})]})}function wr({title:e,options:t,level:n}){const r=D.useContext(ma),i=t.map(({level:o,key:s,checked:l,metadata:a})=>m.jsx(Hf,{value:`${o}_${s}`,checked:l,title:a.title,subtitle:a.subtitle,onClick:()=>r(o,s)},s));return m.jsx(Ce,{title:e,testId:n,children:m.jsx(Wf,{children:i})})}function Zy({state:e}){var a,u;const t=e.PACKAGE.nodes,n=e.VERSION.nodes,r=(a=e.ENVIRONMENT)==null?void 0:a.nodes.map(p=>({...p,metadata:{...p.metadata,subtitle:void 0}})),i=e.OP_SYSTEM.nodes,o=e.DISTRIBUTION.nodes,s=(u=e.FRAMEWORK)==null?void 0:u.nodes;D.useEffect(()=>Ge.combinationView(),[e]);const{t:l}=$("translation",{keyPrefix:"selectorForm.titles"});return m.jsxs(m.Fragment,{children:[m.jsx(wr,{title:l("package"),options:t,level:j.PACKAGE}),m.jsx(wr,{title:l("version"),options:n,level:j.VERSION}),r&&m.jsx(wr,{title:l("envinronment"),options:r,level:j.ENVIRONMENT}),m.jsx(wr,{title:l("os"),options:i,level:j.OP_SYSTEM}),m.jsx(wr,{title:l("distribution"),options:o,level:j.DISTRIBUTION}),s&&m.jsx(Jy,{title:l("frameworks"),options:s,level:j.FRAMEWORK})]})}const{SelectorContext:ma,useSelector:qy}=Ny();Ge.initialize(window.parent);function e0(){const[e,t]=qy();return m.jsx("div",{className:`st-responsive-container ${Kf?"idz-page":""}`,children:m.jsxs(ma.Provider,{value:t,children:[m.jsx(Zy,{state:e}),m.jsx(Wy,{state:e}),m.jsx(Yy,{state:e}),m.jsx(Gy,{})]})})}vs.createRoot(document.getElementById("root")).render(m.jsx(cp.StrictMode,{children:m.jsx(e0,{})}));
diff --git a/docs/sphinx_setup/_static/selector-tool/selector-451bede.html b/docs/sphinx_setup/_static/selector-tool/selector-2a63478.html
similarity index 78%
rename from docs/sphinx_setup/_static/selector-tool/selector-451bede.html
rename to docs/sphinx_setup/_static/selector-tool/selector-2a63478.html
index c64aef27138b60..6bff085dfdb3be 100644
--- a/docs/sphinx_setup/_static/selector-tool/selector-451bede.html
+++ b/docs/sphinx_setup/_static/selector-tool/selector-2a63478.html
@@ -1,7 +1,7 @@
-
+
Download Intel® Distribution of OpenVINO™ Toolkit
@@ -9,7 +9,7 @@
name="description"
content="Download a version of the Intel® Distribution of OpenVINO™ toolkit for Linux, Windows, or macOS."
/>
-
+
diff --git a/docs/sphinx_setup/index.rst b/docs/sphinx_setup/index.rst
index 2e6f960468015f..4da0aa8f29535c 100644
--- a/docs/sphinx_setup/index.rst
+++ b/docs/sphinx_setup/index.rst
@@ -11,8 +11,8 @@ generative AI, video, audio, and language with models from popular frameworks li
TensorFlow, ONNX, and more. Convert and optimize models, and deploy across a mix of Intel®
hardware and environments, on-premises and on-device, in the browser or in the cloud.
-Check out the `OpenVINO Cheat Sheet. `__
-
+Check out the `OpenVINO Cheat Sheet [PDF] `__
+Check out the `GenAI Quick-start Guide [PDF] `__
.. container::
diff --git a/samples/js/node/fetch-samples-assets.js b/samples/js/node/fetch-samples-assets.js
index 33dd509a922f85..c75d913d74c93e 100644
--- a/samples/js/node/fetch-samples-assets.js
+++ b/samples/js/node/fetch-samples-assets.js
@@ -28,6 +28,7 @@ const models = [
// question answering
'/repositories/open_model_zoo/2022.3/models_bin/1/bert-small-uncased-whole-word-masking-squad-0001/FP16/bert-small-uncased-whole-word-masking-squad-0001.xml',
+ '/repositories/open_model_zoo/2022.3/models_bin/1/bert-small-uncased-whole-word-masking-squad-0001/FP16/bert-small-uncased-whole-word-masking-squad-0001.bin',
];
const modelsDir = __dirname + '/../assets/models';
diff --git a/samples/js/node/package-lock.json b/samples/js/node/package-lock.json
index 96a013fb0435c7..020cec71ea3103 100644
--- a/samples/js/node/package-lock.json
+++ b/samples/js/node/package-lock.json
@@ -15,7 +15,7 @@
"args": "^5.0.3",
"eslint": "^8.39.0",
"https-proxy-agent": "^7.0.2",
- "openvino-node": "^2024.4.0"
+ "openvino-node": "^2024.5.0-0"
},
"engines": {
"node": ">=21.0.0"
@@ -194,108 +194,6 @@
"@napi-rs/canvas-win32-x64-msvc": "0.1.59"
}
},
- "node_modules/@napi-rs/canvas-android-arm64": {
- "version": "0.1.59",
- "resolved": "https://registry.npmjs.org/@napi-rs/canvas-android-arm64/-/canvas-android-arm64-0.1.59.tgz",
- "integrity": "sha512-p4rRL9KIDz57Z+gKLpemX36DB7fVVHmY4DtesMGrnjx4gSBUM2M7LNzbzf4o3oPZGDiHMY0vnvNHR4dKfszNeg==",
- "cpu": [
- "arm64"
- ],
- "dev": true,
- "license": "MIT",
- "optional": true,
- "os": [
- "android"
- ],
- "engines": {
- "node": ">= 10"
- }
- },
- "node_modules/@napi-rs/canvas-darwin-arm64": {
- "version": "0.1.59",
- "resolved": "https://registry.npmjs.org/@napi-rs/canvas-darwin-arm64/-/canvas-darwin-arm64-0.1.59.tgz",
- "integrity": "sha512-+8s06WxcM9ilv9PVOl57hvasbwKWMfrrNAYknqMPCn4jpc4XDcLbrM5LTZGhhptlv9jQ9DmHfZ978/xInsMYXw==",
- "cpu": [
- "arm64"
- ],
- "dev": true,
- "license": "MIT",
- "optional": true,
- "os": [
- "darwin"
- ],
- "engines": {
- "node": ">= 10"
- }
- },
- "node_modules/@napi-rs/canvas-darwin-x64": {
- "version": "0.1.59",
- "resolved": "https://registry.npmjs.org/@napi-rs/canvas-darwin-x64/-/canvas-darwin-x64-0.1.59.tgz",
- "integrity": "sha512-6kziJHjXdxduYK2L2uuwjEIYoPJednKq+C81MCm3fPobXE4HBKs0JGXwq3GkWNe340U340vmagwXiFi6muEy+g==",
- "cpu": [
- "x64"
- ],
- "dev": true,
- "license": "MIT",
- "optional": true,
- "os": [
- "darwin"
- ],
- "engines": {
- "node": ">= 10"
- }
- },
- "node_modules/@napi-rs/canvas-linux-arm-gnueabihf": {
- "version": "0.1.59",
- "resolved": "https://registry.npmjs.org/@napi-rs/canvas-linux-arm-gnueabihf/-/canvas-linux-arm-gnueabihf-0.1.59.tgz",
- "integrity": "sha512-eCkyS7jojNmaUPaVFdNjAyS0R3isrJtUfRf1vRP6K50GRuHso3vwQRbZBPKM71qHdjPDylfaQc5H6/M7epyD+w==",
- "cpu": [
- "arm"
- ],
- "dev": true,
- "license": "MIT",
- "optional": true,
- "os": [
- "linux"
- ],
- "engines": {
- "node": ">= 10"
- }
- },
- "node_modules/@napi-rs/canvas-linux-arm64-gnu": {
- "version": "0.1.59",
- "resolved": "https://registry.npmjs.org/@napi-rs/canvas-linux-arm64-gnu/-/canvas-linux-arm64-gnu-0.1.59.tgz",
- "integrity": "sha512-1u4++lbsolP1MAPViuDoZmgmDLKlV0iJnlHN2dfwgbu3t53P0l3jIT1oCIAiWil0OlrWtDF24JbY7LUUGH5aHg==",
- "cpu": [
- "arm64"
- ],
- "dev": true,
- "license": "MIT",
- "optional": true,
- "os": [
- "linux"
- ],
- "engines": {
- "node": ">= 10"
- }
- },
- "node_modules/@napi-rs/canvas-linux-arm64-musl": {
- "version": "0.1.59",
- "resolved": "https://registry.npmjs.org/@napi-rs/canvas-linux-arm64-musl/-/canvas-linux-arm64-musl-0.1.59.tgz",
- "integrity": "sha512-eqevZ2kWPxeAnvhxl7U5tf6AiMnhlO4w2Hci79WQkfeirqQG6RRM4Jnxbh9iO3jkAnnOXmM4r+S3UrOcfIx1Rg==",
- "cpu": [
- "arm64"
- ],
- "dev": true,
- "license": "MIT",
- "optional": true,
- "os": [
- "linux"
- ],
- "engines": {
- "node": ">= 10"
- }
- },
"node_modules/@napi-rs/canvas-linux-x64-gnu": {
"version": "0.1.59",
"resolved": "https://registry.npmjs.org/@napi-rs/canvas-linux-x64-gnu/-/canvas-linux-x64-gnu-0.1.59.tgz",
@@ -330,23 +228,6 @@
"node": ">= 10"
}
},
- "node_modules/@napi-rs/canvas-win32-x64-msvc": {
- "version": "0.1.59",
- "resolved": "https://registry.npmjs.org/@napi-rs/canvas-win32-x64-msvc/-/canvas-win32-x64-msvc-0.1.59.tgz",
- "integrity": "sha512-bYMiZJsKPkU7HEoYI5E0alOSV1EkaigY4VEgGHPK9W/qGMmNFsxdbURQqa5h3zbhZTK5QRSdYYqowcTEYVIlug==",
- "cpu": [
- "x64"
- ],
- "dev": true,
- "license": "MIT",
- "optional": true,
- "os": [
- "win32"
- ],
- "engines": {
- "node": ">= 10"
- }
- },
"node_modules/@nodelib/fs.scandir": {
"version": "2.1.5",
"resolved": "https://registry.npmjs.org/@nodelib/fs.scandir/-/fs.scandir-2.1.5.tgz",
@@ -1053,10 +934,11 @@
"dev": true
},
"node_modules/cross-spawn": {
- "version": "7.0.3",
- "resolved": "https://registry.npmjs.org/cross-spawn/-/cross-spawn-7.0.3.tgz",
- "integrity": "sha512-iRDPJKUPVEND7dHPO8rkbOnPpyDygcDFtWjpeWNCgy8WP2rXcxXL8TskReQl6OrB2G7+UJrags1q15Fudc7G6w==",
+ "version": "7.0.6",
+ "resolved": "https://registry.npmjs.org/cross-spawn/-/cross-spawn-7.0.6.tgz",
+ "integrity": "sha512-uV2QOWP2nWzsy2aMp8aRibhi9dlzF5Hgh5SHaB9OiTGEyDTiJJyx0uy51QXdyWbtAHNua4XJzUKca3OzKUd3vA==",
"dev": true,
+ "license": "MIT",
"dependencies": {
"path-key": "^3.1.0",
"shebang-command": "^2.0.0",
@@ -2038,11 +1920,12 @@
}
},
"node_modules/openvino-node": {
- "version": "2024.4.0",
- "resolved": "https://registry.npmjs.org/openvino-node/-/openvino-node-2024.4.0.tgz",
- "integrity": "sha512-yEix2i3gXeO77XcA6x6TJm9c8HDrZHnW6tSiYcbanMYVpeDZ0E5jNikxoiMmN7dVR4E6t+VWr05eexOROqrpkw==",
+ "version": "2024.5.0-0",
+ "resolved": "https://registry.npmjs.org/openvino-node/-/openvino-node-2024.5.0-0.tgz",
+ "integrity": "sha512-SgvHH3OdOXyMu5iZx0oBFWn7yIu3uB54IIfmXFKlyhHbSjO+3ph+DauUdlUkp2DGETR7bzq7+cPyyroeOF7qqQ==",
"dev": true,
"hasInstallScript": true,
+ "license": "Apache-2.0",
"os": [
"win32",
"darwin",
diff --git a/samples/js/node/package.json b/samples/js/node/package.json
index d392a72143de03..b3e12a265f0c77 100644
--- a/samples/js/node/package.json
+++ b/samples/js/node/package.json
@@ -8,7 +8,7 @@
"args": "^5.0.3",
"eslint": "^8.39.0",
"https-proxy-agent": "^7.0.2",
- "openvino-node": "^2024.4.0",
+ "openvino-node": "^2024.5.0-0",
"@napi-rs/canvas": "^0.1.59"
},
"scripts": {
diff --git a/src/bindings/js/node/.npmignore b/src/bindings/js/node/.npmignore
index e4fe3743e7de30..0d52e466ac2d8f 100644
--- a/src/bindings/js/node/.npmignore
+++ b/src/bindings/js/node/.npmignore
@@ -1,6 +1,7 @@
bin
include
-lib
+/lib
+!/scripts/lib
src
tests
thirdparty
diff --git a/src/bindings/js/node/package-lock.json b/src/bindings/js/node/package-lock.json
index 41a813579ad83c..27f426968e5b54 100644
--- a/src/bindings/js/node/package-lock.json
+++ b/src/bindings/js/node/package-lock.json
@@ -1,12 +1,12 @@
{
"name": "openvino-node",
- "version": "2024.4.0",
+ "version": "2024.5.0-0",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "openvino-node",
- "version": "2024.4.0",
+ "version": "2024.5.0-0",
"hasInstallScript": true,
"license": "Apache-2.0",
"os": [
@@ -32,44 +32,41 @@
"node": ">=21.0.0"
}
},
- "node_modules/@aashutoshrathi/word-wrap": {
- "version": "1.2.6",
- "resolved": "https://registry.npmjs.org/@aashutoshrathi/word-wrap/-/word-wrap-1.2.6.tgz",
- "integrity": "sha512-1Yjs2SvM8TflER/OD3cOjhWWOZb58A2t7wpE2S9XfBYTiIl+XFhQG2bjy4Pu1I+EAlCNUzRDYDdFwFYUKvXcIA==",
- "dev": true,
- "engines": {
- "node": ">=0.10.0"
- }
- },
"node_modules/@eslint-community/eslint-utils": {
- "version": "4.4.0",
- "resolved": "https://registry.npmjs.org/@eslint-community/eslint-utils/-/eslint-utils-4.4.0.tgz",
- "integrity": "sha512-1/sA4dwrzBAyeUoQ6oxahHKmrZvsnLCg4RfxW3ZFGGmQkSNQPFNLV9CUEFQP1x9EYXHTo5p6xdhZM1Ne9p/AfA==",
+ "version": "4.4.1",
+ "resolved": "https://registry.npmjs.org/@eslint-community/eslint-utils/-/eslint-utils-4.4.1.tgz",
+ "integrity": "sha512-s3O3waFUrMV8P/XaF/+ZTp1X9XBZW1a4B97ZnjQF2KYWaFD2A8KyFBsrsfSjEmjn3RGWAIuvlneuZm3CUK3jbA==",
"dev": true,
+ "license": "MIT",
"dependencies": {
- "eslint-visitor-keys": "^3.3.0"
+ "eslint-visitor-keys": "^3.4.3"
},
"engines": {
"node": "^12.22.0 || ^14.17.0 || >=16.0.0"
},
+ "funding": {
+ "url": "https://opencollective.com/eslint"
+ },
"peerDependencies": {
"eslint": "^6.0.0 || ^7.0.0 || >=8.0.0"
}
},
"node_modules/@eslint-community/regexpp": {
- "version": "4.8.1",
- "resolved": "https://registry.npmjs.org/@eslint-community/regexpp/-/regexpp-4.8.1.tgz",
- "integrity": "sha512-PWiOzLIUAjN/w5K17PoF4n6sKBw0gqLHPhywmYHP4t1VFQQVYeb1yWsJwnMVEMl3tUHME7X/SJPZLmtG7XBDxQ==",
+ "version": "4.12.1",
+ "resolved": "https://registry.npmjs.org/@eslint-community/regexpp/-/regexpp-4.12.1.tgz",
+ "integrity": "sha512-CCZCDJuduB9OUkFkY2IgppNZMi2lBQgD2qzwXkEia16cge2pijY/aXi96CJMquDMn3nJdlPV1A5KrJEXwfLNzQ==",
"dev": true,
+ "license": "MIT",
"engines": {
"node": "^12.0.0 || ^14.0.0 || >=16.0.0"
}
},
"node_modules/@eslint/eslintrc": {
- "version": "2.1.2",
- "resolved": "https://registry.npmjs.org/@eslint/eslintrc/-/eslintrc-2.1.2.tgz",
- "integrity": "sha512-+wvgpDsrB1YqAMdEUCcnTlpfVBH7Vqn6A/NT3D8WVXFIaKMlErPIZT3oCIAVCOtarRpMtelZLqJeU3t7WY6X6g==",
+ "version": "2.1.4",
+ "resolved": "https://registry.npmjs.org/@eslint/eslintrc/-/eslintrc-2.1.4.tgz",
+ "integrity": "sha512-269Z39MS6wVJtsoUl10L60WdkhJVdPG24Q4eZTH3nnF6lpvSShEK3wQjDX9JRWAUPvPh7COouPpU9IrqaZFvtQ==",
"dev": true,
+ "license": "MIT",
"dependencies": {
"ajv": "^6.12.4",
"debug": "^4.3.2",
@@ -88,34 +85,86 @@
"url": "https://opencollective.com/eslint"
}
},
+ "node_modules/@eslint/eslintrc/node_modules/brace-expansion": {
+ "version": "1.1.11",
+ "resolved": "https://registry.npmjs.org/brace-expansion/-/brace-expansion-1.1.11.tgz",
+ "integrity": "sha512-iCuPHDFgrHX7H2vEI/5xpz07zSHB00TpugqhmYtVmMO6518mCuRMoOYFldEBl0g187ufozdaHgWKcYFb61qGiA==",
+ "dev": true,
+ "license": "MIT",
+ "dependencies": {
+ "balanced-match": "^1.0.0",
+ "concat-map": "0.0.1"
+ }
+ },
+ "node_modules/@eslint/eslintrc/node_modules/minimatch": {
+ "version": "3.1.2",
+ "resolved": "https://registry.npmjs.org/minimatch/-/minimatch-3.1.2.tgz",
+ "integrity": "sha512-J7p63hRiAjw1NDEww1W7i37+ByIrOWO5XQQAzZ3VOcL0PNybwpfmV/N05zFAzwQ9USyEcX6t3UO+K5aqBQOIHw==",
+ "dev": true,
+ "license": "ISC",
+ "dependencies": {
+ "brace-expansion": "^1.1.7"
+ },
+ "engines": {
+ "node": "*"
+ }
+ },
"node_modules/@eslint/js": {
- "version": "8.49.0",
- "resolved": "https://registry.npmjs.org/@eslint/js/-/js-8.49.0.tgz",
- "integrity": "sha512-1S8uAY/MTJqVx0SC4epBq+N2yhuwtNwLbJYNZyhL2pO1ZVKn5HFXav5T41Ryzy9K9V7ZId2JB2oy/W4aCd9/2w==",
+ "version": "8.57.1",
+ "resolved": "https://registry.npmjs.org/@eslint/js/-/js-8.57.1.tgz",
+ "integrity": "sha512-d9zaMRSTIKDLhctzH12MtXvJKSSUhaHcjV+2Z+GK+EEY7XKpP5yR4x+N3TAcHTcu963nIr+TMcCb4DBCYX1z6Q==",
"dev": true,
+ "license": "MIT",
"engines": {
"node": "^12.22.0 || ^14.17.0 || >=16.0.0"
}
},
"node_modules/@humanwhocodes/config-array": {
- "version": "0.11.11",
- "resolved": "https://registry.npmjs.org/@humanwhocodes/config-array/-/config-array-0.11.11.tgz",
- "integrity": "sha512-N2brEuAadi0CcdeMXUkhbZB84eskAc8MEX1By6qEchoVywSgXPIjou4rYsl0V3Hj0ZnuGycGCjdNgockbzeWNA==",
+ "version": "0.13.0",
+ "resolved": "https://registry.npmjs.org/@humanwhocodes/config-array/-/config-array-0.13.0.tgz",
+ "integrity": "sha512-DZLEEqFWQFiyK6h5YIeynKx7JlvCYWL0cImfSRXZ9l4Sg2efkFGTuFf6vzXjK1cq6IYkU+Eg/JizXw+TD2vRNw==",
+ "deprecated": "Use @eslint/config-array instead",
"dev": true,
+ "license": "Apache-2.0",
"dependencies": {
- "@humanwhocodes/object-schema": "^1.2.1",
- "debug": "^4.1.1",
+ "@humanwhocodes/object-schema": "^2.0.3",
+ "debug": "^4.3.1",
"minimatch": "^3.0.5"
},
"engines": {
"node": ">=10.10.0"
}
},
+ "node_modules/@humanwhocodes/config-array/node_modules/brace-expansion": {
+ "version": "1.1.11",
+ "resolved": "https://registry.npmjs.org/brace-expansion/-/brace-expansion-1.1.11.tgz",
+ "integrity": "sha512-iCuPHDFgrHX7H2vEI/5xpz07zSHB00TpugqhmYtVmMO6518mCuRMoOYFldEBl0g187ufozdaHgWKcYFb61qGiA==",
+ "dev": true,
+ "license": "MIT",
+ "dependencies": {
+ "balanced-match": "^1.0.0",
+ "concat-map": "0.0.1"
+ }
+ },
+ "node_modules/@humanwhocodes/config-array/node_modules/minimatch": {
+ "version": "3.1.2",
+ "resolved": "https://registry.npmjs.org/minimatch/-/minimatch-3.1.2.tgz",
+ "integrity": "sha512-J7p63hRiAjw1NDEww1W7i37+ByIrOWO5XQQAzZ3VOcL0PNybwpfmV/N05zFAzwQ9USyEcX6t3UO+K5aqBQOIHw==",
+ "dev": true,
+ "license": "ISC",
+ "dependencies": {
+ "brace-expansion": "^1.1.7"
+ },
+ "engines": {
+ "node": "*"
+ }
+ },
"node_modules/@humanwhocodes/module-importer": {
"version": "1.0.1",
"resolved": "https://registry.npmjs.org/@humanwhocodes/module-importer/-/module-importer-1.0.1.tgz",
"integrity": "sha512-bxveV4V8v5Yb4ncFTT3rPSgZBOpCkjfK0y4oVVVJwIuDVBRMDXrPyXRL988i5ap9m9bnyEEjWfm5WkBmtffLfA==",
"dev": true,
+ "license": "Apache-2.0",
"engines": {
"node": ">=12.22"
},
@@ -125,16 +174,19 @@
}
},
"node_modules/@humanwhocodes/object-schema": {
- "version": "1.2.1",
- "resolved": "https://registry.npmjs.org/@humanwhocodes/object-schema/-/object-schema-1.2.1.tgz",
- "integrity": "sha512-ZnQMnLV4e7hDlUvw8H+U8ASL02SS2Gn6+9Ac3wGGLIe7+je2AeAOxPY+izIPJDfFDb7eDjev0Us8MO1iFRN8hA==",
- "dev": true
+ "version": "2.0.3",
+ "resolved": "https://registry.npmjs.org/@humanwhocodes/object-schema/-/object-schema-2.0.3.tgz",
+ "integrity": "sha512-93zYdMES/c1D69yZiKDBj0V24vqNzB/koF26KPaagAfd3P/4gUlh3Dys5ogAK+Exi9QyzlD8x/08Zt7wIKcDcA==",
+ "deprecated": "Use @eslint/object-schema instead",
+ "dev": true,
+ "license": "BSD-3-Clause"
},
"node_modules/@nodelib/fs.scandir": {
"version": "2.1.5",
"resolved": "https://registry.npmjs.org/@nodelib/fs.scandir/-/fs.scandir-2.1.5.tgz",
"integrity": "sha512-vq24Bq3ym5HEQm2NKCr3yXDwjc7vTsEThRDnkp2DK9p1uqLR+DHurm/NOTo0KG7HYHU7eppKZj3MyqYuMBf62g==",
"dev": true,
+ "license": "MIT",
"dependencies": {
"@nodelib/fs.stat": "2.0.5",
"run-parallel": "^1.1.9"
@@ -148,6 +200,7 @@
"resolved": "https://registry.npmjs.org/@nodelib/fs.stat/-/fs.stat-2.0.5.tgz",
"integrity": "sha512-RkhPPp2zrqDAQA/2jNhnztcPAlv64XdhIp7a7454A5ovI7Bukxgt7MX7udwAu3zg1DcpPU0rz3VV1SeaqvY4+A==",
"dev": true,
+ "license": "MIT",
"engines": {
"node": ">= 8"
}
@@ -157,6 +210,7 @@
"resolved": "https://registry.npmjs.org/@nodelib/fs.walk/-/fs.walk-1.2.8.tgz",
"integrity": "sha512-oGB+UxlgWcgQkgwo8GcEGwemoTFt3FIO9ababBmaGwXIoBKZ+GTy0pP185beGg7Llih/NSHSV2XAs1lnznocSg==",
"dev": true,
+ "license": "MIT",
"dependencies": {
"@nodelib/fs.scandir": "2.1.5",
"fastq": "^1.6.0"
@@ -166,34 +220,41 @@
}
},
"node_modules/@types/json-schema": {
- "version": "7.0.12",
- "resolved": "https://registry.npmjs.org/@types/json-schema/-/json-schema-7.0.12.tgz",
- "integrity": "sha512-Hr5Jfhc9eYOQNPYO5WLDq/n4jqijdHNlDXjuAQkkt+mWdQR+XJToOHrsD4cPaMXpn6KO7y2+wM8AZEs8VpBLVA==",
- "dev": true
+ "version": "7.0.15",
+ "resolved": "https://registry.npmjs.org/@types/json-schema/-/json-schema-7.0.15.tgz",
+ "integrity": "sha512-5+fP8P8MFNC+AyZCDxrB2pkZFPGzqQWUzpSeuuVLvm8VMcorNYavBqoFcxK8bQz4Qsbn4oUEEem4wDLfcysGHA==",
+ "dev": true,
+ "license": "MIT"
},
"node_modules/@types/node": {
- "version": "20.5.7",
- "resolved": "https://registry.npmjs.org/@types/node/-/node-20.5.7.tgz",
- "integrity": "sha512-dP7f3LdZIysZnmvP3ANJYTSwg+wLLl8p7RqniVlV7j+oXSXAbt9h0WIBFmJy5inWZoX9wZN6eXx+YXd9Rh3RBA==",
- "dev": true
+ "version": "20.17.6",
+ "resolved": "https://registry.npmjs.org/@types/node/-/node-20.17.6.tgz",
+ "integrity": "sha512-VEI7OdvK2wP7XHnsuXbAJnEpEkF6NjSN45QJlL4VGqZSXsnicpesdTWsg9RISeSdYd3yeRj/y3k5KGjUXYnFwQ==",
+ "dev": true,
+ "license": "MIT",
+ "dependencies": {
+ "undici-types": "~6.19.2"
+ }
},
"node_modules/@types/semver": {
- "version": "7.5.2",
- "resolved": "https://registry.npmjs.org/@types/semver/-/semver-7.5.2.tgz",
- "integrity": "sha512-7aqorHYgdNO4DM36stTiGO3DvKoex9TQRwsJU6vMaFGyqpBA1MNZkz+PG3gaNUPpTAOYhT1WR7M1JyA3fbS9Cw==",
- "dev": true
+ "version": "7.5.8",
+ "resolved": "https://registry.npmjs.org/@types/semver/-/semver-7.5.8.tgz",
+ "integrity": "sha512-I8EUhyrgfLrcTkzV3TSsGyl1tSuPrEDzr0yd5m90UgNxQkyDXULk3b6MlQqTCpZpNtWe1K0hzclnZkTcLBe2UQ==",
+ "dev": true,
+ "license": "MIT"
},
"node_modules/@typescript-eslint/eslint-plugin": {
- "version": "6.7.0",
- "resolved": "https://registry.npmjs.org/@typescript-eslint/eslint-plugin/-/eslint-plugin-6.7.0.tgz",
- "integrity": "sha512-gUqtknHm0TDs1LhY12K2NA3Rmlmp88jK9Tx8vGZMfHeNMLE3GH2e9TRub+y+SOjuYgtOmok+wt1AyDPZqxbNag==",
+ "version": "6.21.0",
+ "resolved": "https://registry.npmjs.org/@typescript-eslint/eslint-plugin/-/eslint-plugin-6.21.0.tgz",
+ "integrity": "sha512-oy9+hTPCUFpngkEZUSzbf9MxI65wbKFoQYsgPdILTfbUldp5ovUuphZVe4i30emU9M/kP+T64Di0mxl7dSw3MA==",
"dev": true,
+ "license": "MIT",
"dependencies": {
"@eslint-community/regexpp": "^4.5.1",
- "@typescript-eslint/scope-manager": "6.7.0",
- "@typescript-eslint/type-utils": "6.7.0",
- "@typescript-eslint/utils": "6.7.0",
- "@typescript-eslint/visitor-keys": "6.7.0",
+ "@typescript-eslint/scope-manager": "6.21.0",
+ "@typescript-eslint/type-utils": "6.21.0",
+ "@typescript-eslint/utils": "6.21.0",
+ "@typescript-eslint/visitor-keys": "6.21.0",
"debug": "^4.3.4",
"graphemer": "^1.4.0",
"ignore": "^5.2.4",
@@ -219,15 +280,16 @@
}
},
"node_modules/@typescript-eslint/parser": {
- "version": "6.7.0",
- "resolved": "https://registry.npmjs.org/@typescript-eslint/parser/-/parser-6.7.0.tgz",
- "integrity": "sha512-jZKYwqNpNm5kzPVP5z1JXAuxjtl2uG+5NpaMocFPTNC2EdYIgbXIPImObOkhbONxtFTTdoZstLZefbaK+wXZng==",
+ "version": "6.21.0",
+ "resolved": "https://registry.npmjs.org/@typescript-eslint/parser/-/parser-6.21.0.tgz",
+ "integrity": "sha512-tbsV1jPne5CkFQCgPBcDOt30ItF7aJoZL997JSF7MhGQqOeT3svWRYxiqlfA5RUdlHN6Fi+EI9bxqbdyAUZjYQ==",
"dev": true,
+ "license": "BSD-2-Clause",
"dependencies": {
- "@typescript-eslint/scope-manager": "6.7.0",
- "@typescript-eslint/types": "6.7.0",
- "@typescript-eslint/typescript-estree": "6.7.0",
- "@typescript-eslint/visitor-keys": "6.7.0",
+ "@typescript-eslint/scope-manager": "6.21.0",
+ "@typescript-eslint/types": "6.21.0",
+ "@typescript-eslint/typescript-estree": "6.21.0",
+ "@typescript-eslint/visitor-keys": "6.21.0",
"debug": "^4.3.4"
},
"engines": {
@@ -247,13 +309,14 @@
}
},
"node_modules/@typescript-eslint/scope-manager": {
- "version": "6.7.0",
- "resolved": "https://registry.npmjs.org/@typescript-eslint/scope-manager/-/scope-manager-6.7.0.tgz",
- "integrity": "sha512-lAT1Uau20lQyjoLUQ5FUMSX/dS07qux9rYd5FGzKz/Kf8W8ccuvMyldb8hadHdK/qOI7aikvQWqulnEq2nCEYA==",
+ "version": "6.21.0",
+ "resolved": "https://registry.npmjs.org/@typescript-eslint/scope-manager/-/scope-manager-6.21.0.tgz",
+ "integrity": "sha512-OwLUIWZJry80O99zvqXVEioyniJMa+d2GrqpUTqi5/v5D5rOrppJVBPa0yKCblcigC0/aYAzxxqQ1B+DS2RYsg==",
"dev": true,
+ "license": "MIT",
"dependencies": {
- "@typescript-eslint/types": "6.7.0",
- "@typescript-eslint/visitor-keys": "6.7.0"
+ "@typescript-eslint/types": "6.21.0",
+ "@typescript-eslint/visitor-keys": "6.21.0"
},
"engines": {
"node": "^16.0.0 || >=18.0.0"
@@ -264,13 +327,14 @@
}
},
"node_modules/@typescript-eslint/type-utils": {
- "version": "6.7.0",
- "resolved": "https://registry.npmjs.org/@typescript-eslint/type-utils/-/type-utils-6.7.0.tgz",
- "integrity": "sha512-f/QabJgDAlpSz3qduCyQT0Fw7hHpmhOzY/Rv6zO3yO+HVIdPfIWhrQoAyG+uZVtWAIS85zAyzgAFfyEr+MgBpg==",
+ "version": "6.21.0",
+ "resolved": "https://registry.npmjs.org/@typescript-eslint/type-utils/-/type-utils-6.21.0.tgz",
+ "integrity": "sha512-rZQI7wHfao8qMX3Rd3xqeYSMCL3SoiSQLBATSiVKARdFGCYSRvmViieZjqc58jKgs8Y8i9YvVVhRbHSTA4VBag==",
"dev": true,
+ "license": "MIT",
"dependencies": {
- "@typescript-eslint/typescript-estree": "6.7.0",
- "@typescript-eslint/utils": "6.7.0",
+ "@typescript-eslint/typescript-estree": "6.21.0",
+ "@typescript-eslint/utils": "6.21.0",
"debug": "^4.3.4",
"ts-api-utils": "^1.0.1"
},
@@ -291,10 +355,11 @@
}
},
"node_modules/@typescript-eslint/types": {
- "version": "6.7.0",
- "resolved": "https://registry.npmjs.org/@typescript-eslint/types/-/types-6.7.0.tgz",
- "integrity": "sha512-ihPfvOp7pOcN/ysoj0RpBPOx3HQTJTrIN8UZK+WFd3/iDeFHHqeyYxa4hQk4rMhsz9H9mXpR61IzwlBVGXtl9Q==",
+ "version": "6.21.0",
+ "resolved": "https://registry.npmjs.org/@typescript-eslint/types/-/types-6.21.0.tgz",
+ "integrity": "sha512-1kFmZ1rOm5epu9NZEZm1kckCDGj5UJEf7P1kliH4LKu/RkwpsfqqGmY2OOcUs18lSlQBKLDYBOGxRVtrMN5lpg==",
"dev": true,
+ "license": "MIT",
"engines": {
"node": "^16.0.0 || >=18.0.0"
},
@@ -304,16 +369,18 @@
}
},
"node_modules/@typescript-eslint/typescript-estree": {
- "version": "6.7.0",
- "resolved": "https://registry.npmjs.org/@typescript-eslint/typescript-estree/-/typescript-estree-6.7.0.tgz",
- "integrity": "sha512-dPvkXj3n6e9yd/0LfojNU8VMUGHWiLuBZvbM6V6QYD+2qxqInE7J+J/ieY2iGwR9ivf/R/haWGkIj04WVUeiSQ==",
+ "version": "6.21.0",
+ "resolved": "https://registry.npmjs.org/@typescript-eslint/typescript-estree/-/typescript-estree-6.21.0.tgz",
+ "integrity": "sha512-6npJTkZcO+y2/kr+z0hc4HwNfrrP4kNYh57ek7yCNlrBjWQ1Y0OS7jiZTkgumrvkX5HkEKXFZkkdFNkaW2wmUQ==",
"dev": true,
+ "license": "BSD-2-Clause",
"dependencies": {
- "@typescript-eslint/types": "6.7.0",
- "@typescript-eslint/visitor-keys": "6.7.0",
+ "@typescript-eslint/types": "6.21.0",
+ "@typescript-eslint/visitor-keys": "6.21.0",
"debug": "^4.3.4",
"globby": "^11.1.0",
"is-glob": "^4.0.3",
+ "minimatch": "9.0.3",
"semver": "^7.5.4",
"ts-api-utils": "^1.0.1"
},
@@ -331,17 +398,18 @@
}
},
"node_modules/@typescript-eslint/utils": {
- "version": "6.7.0",
- "resolved": "https://registry.npmjs.org/@typescript-eslint/utils/-/utils-6.7.0.tgz",
- "integrity": "sha512-MfCq3cM0vh2slSikQYqK2Gq52gvOhe57vD2RM3V4gQRZYX4rDPnKLu5p6cm89+LJiGlwEXU8hkYxhqqEC/V3qA==",
+ "version": "6.21.0",
+ "resolved": "https://registry.npmjs.org/@typescript-eslint/utils/-/utils-6.21.0.tgz",
+ "integrity": "sha512-NfWVaC8HP9T8cbKQxHcsJBY5YE1O33+jpMwN45qzWWaPDZgLIbo12toGMWnmhvCpd3sIxkpDw3Wv1B3dYrbDQQ==",
"dev": true,
+ "license": "MIT",
"dependencies": {
"@eslint-community/eslint-utils": "^4.4.0",
"@types/json-schema": "^7.0.12",
"@types/semver": "^7.5.0",
- "@typescript-eslint/scope-manager": "6.7.0",
- "@typescript-eslint/types": "6.7.0",
- "@typescript-eslint/typescript-estree": "6.7.0",
+ "@typescript-eslint/scope-manager": "6.21.0",
+ "@typescript-eslint/types": "6.21.0",
+ "@typescript-eslint/typescript-estree": "6.21.0",
"semver": "^7.5.4"
},
"engines": {
@@ -356,12 +424,13 @@
}
},
"node_modules/@typescript-eslint/visitor-keys": {
- "version": "6.7.0",
- "resolved": "https://registry.npmjs.org/@typescript-eslint/visitor-keys/-/visitor-keys-6.7.0.tgz",
- "integrity": "sha512-/C1RVgKFDmGMcVGeD8HjKv2bd72oI1KxQDeY8uc66gw9R0OK0eMq48cA+jv9/2Ag6cdrsUGySm1yzYmfz0hxwQ==",
+ "version": "6.21.0",
+ "resolved": "https://registry.npmjs.org/@typescript-eslint/visitor-keys/-/visitor-keys-6.21.0.tgz",
+ "integrity": "sha512-JJtkDduxLi9bivAB+cYOVMtbkqdPOhZ+ZI5LC47MIRrDV4Yn2o+ZnW10Nkmr28xRpSpdJ6Sm42Hjf2+REYXm0A==",
"dev": true,
+ "license": "MIT",
"dependencies": {
- "@typescript-eslint/types": "6.7.0",
+ "@typescript-eslint/types": "6.21.0",
"eslint-visitor-keys": "^3.4.1"
},
"engines": {
@@ -372,11 +441,19 @@
"url": "https://opencollective.com/typescript-eslint"
}
},
+ "node_modules/@ungap/structured-clone": {
+ "version": "1.2.0",
+ "resolved": "https://registry.npmjs.org/@ungap/structured-clone/-/structured-clone-1.2.0.tgz",
+ "integrity": "sha512-zuVdFrMJiuCDQUMCzQaD6KL28MjnqqN8XnAqiEq9PNm/hCPTSGfrXCOfwj1ow4LFb/tNymJPwsNbVePc1xFqrQ==",
+ "dev": true,
+ "license": "ISC"
+ },
"node_modules/acorn": {
- "version": "8.10.0",
- "resolved": "https://registry.npmjs.org/acorn/-/acorn-8.10.0.tgz",
- "integrity": "sha512-F0SAmZ8iUtS//m8DmCTA0jlh6TDKkHQyK6xc6V4KDTyZKA9dnvX9/3sRTVQrWm79glUAZbnmmNcdYwUIHWVybw==",
+ "version": "8.14.0",
+ "resolved": "https://registry.npmjs.org/acorn/-/acorn-8.14.0.tgz",
+ "integrity": "sha512-cl669nCJTZBsL97OF4kUQm5g5hC2uihk0NxY3WENAC0TYdILVkAyHymAntgxGkl7K+t0cXIrH5siy5S4XkFycA==",
"dev": true,
+ "license": "MIT",
"bin": {
"acorn": "bin/acorn"
},
@@ -389,14 +466,16 @@
"resolved": "https://registry.npmjs.org/acorn-jsx/-/acorn-jsx-5.3.2.tgz",
"integrity": "sha512-rq9s+JNhf0IChjtDXxllJ7g41oZk5SlXtp0LHwyA5cejwn7vKmKp4pPri6YEePv2PU65sAsegbXtIinmDFDXgQ==",
"dev": true,
+ "license": "MIT",
"peerDependencies": {
"acorn": "^6.0.0 || ^7.0.0 || ^8.0.0"
}
},
"node_modules/agent-base": {
- "version": "7.1.0",
- "resolved": "https://registry.npmjs.org/agent-base/-/agent-base-7.1.0.tgz",
- "integrity": "sha512-o/zjMZRhJxny7OyEF+Op8X+efiELC7k7yOjMzgfzVqOzXqkBkWI79YoTdOtsuWd5BWhAGAuOY/Xa6xpiaWXiNg==",
+ "version": "7.1.1",
+ "resolved": "https://registry.npmjs.org/agent-base/-/agent-base-7.1.1.tgz",
+ "integrity": "sha512-H0TSyFNDMomMNJQBn8wFV5YC/2eJ+VXECwOadZJT554xP6cODZHPX3H9QMQECxvrgiSOP1pHjy1sMWQVYJOUOA==",
+ "license": "MIT",
"dependencies": {
"debug": "^4.3.4"
},
@@ -409,6 +488,7 @@
"resolved": "https://registry.npmjs.org/ajv/-/ajv-6.12.6.tgz",
"integrity": "sha512-j3fVLgvTo527anyYyJOGTYJbG+vnnQYvE0m5mmkc1TK+nxAppkCLMIL0aZ4dblVCNoGShhm+kzE4ZUykBoMg4g==",
"dev": true,
+ "license": "MIT",
"dependencies": {
"fast-deep-equal": "^3.1.1",
"fast-json-stable-stringify": "^2.0.0",
@@ -425,6 +505,7 @@
"resolved": "https://registry.npmjs.org/ansi-colors/-/ansi-colors-4.1.3.tgz",
"integrity": "sha512-/6w/C21Pm1A7aZitlI5Ni/2J6FFQN8i1Cvz3kHABAAbw93v/NlvKdVOqz7CCWz/3iv/JplRSEEZ83XION15ovw==",
"dev": true,
+ "license": "MIT",
"engines": {
"node": ">=6"
}
@@ -434,6 +515,7 @@
"resolved": "https://registry.npmjs.org/ansi-regex/-/ansi-regex-5.0.1.tgz",
"integrity": "sha512-quJQXlTSUGL2LH9SUXo8VwsY4soanhgo6LNSm84E1LBcE8s3O0wpdiRzyR9z/ZZJMlMWv37qOOb9pdJlMUEKFQ==",
"dev": true,
+ "license": "MIT",
"engines": {
"node": ">=8"
}
@@ -443,6 +525,7 @@
"resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-4.3.0.tgz",
"integrity": "sha512-zbB9rCJAT1rbjiVDb2hqKFHNYLxgtk8NURxZ3IZwD3F6NtxbXZQCnnSi1Lkx+IDohdPlFp222wVALIheZJQSEg==",
"dev": true,
+ "license": "MIT",
"dependencies": {
"color-convert": "^2.0.1"
},
@@ -458,6 +541,7 @@
"resolved": "https://registry.npmjs.org/anymatch/-/anymatch-3.1.3.tgz",
"integrity": "sha512-KMReFUr0B4t+D+OBkjR3KYqvocp2XaSzO55UcB6mgQMd3KbcE+mWTyvVV7D/zsdEbNnV6acZUutkiHQXvTr1Rw==",
"dev": true,
+ "license": "ISC",
"dependencies": {
"normalize-path": "^3.0.0",
"picomatch": "^2.0.4"
@@ -470,33 +554,84 @@
"version": "2.0.1",
"resolved": "https://registry.npmjs.org/argparse/-/argparse-2.0.1.tgz",
"integrity": "sha512-8+9WqebbFzpX9OR+Wa6O29asIogeRMzcGtAINdpMHHyAg10f05aSFVBbcEqGf/PXw1EjAZ+q2/bEBg3DvurK3Q==",
- "dev": true
+ "dev": true,
+ "license": "Python-2.0"
},
"node_modules/array-union": {
"version": "2.1.0",
"resolved": "https://registry.npmjs.org/array-union/-/array-union-2.1.0.tgz",
"integrity": "sha512-HGyxoOTYUyCM6stUe6EJgnd4EoewAI7zMdfqO+kGjnlZmBDz/cR5pf8r/cR4Wq60sL/p0IkcjUEEPwS3GFrIyw==",
"dev": true,
+ "license": "MIT",
"engines": {
"node": ">=8"
}
},
"node_modules/b4a": {
- "version": "1.6.6",
- "resolved": "https://registry.npmjs.org/b4a/-/b4a-1.6.6.tgz",
- "integrity": "sha512-5Tk1HLk6b6ctmjIkAcU/Ujv/1WqiDl0F0JdRCR80VsOcUlHcu7pWeWRlOqQLHfDEsVx9YH/aif5AG4ehoCtTmg=="
+ "version": "1.6.7",
+ "resolved": "https://registry.npmjs.org/b4a/-/b4a-1.6.7.tgz",
+ "integrity": "sha512-OnAYlL5b7LEkALw87fUVafQw5rVR9RjwGd4KUwNQ6DrrNmaVaUCgLipfVlzrPQ4tWOR9P0IXGNOx50jYCCdSJg==",
+ "license": "Apache-2.0"
},
"node_modules/balanced-match": {
"version": "1.0.2",
"resolved": "https://registry.npmjs.org/balanced-match/-/balanced-match-1.0.2.tgz",
"integrity": "sha512-3oSeUO0TMV67hN1AmbXsK4yaqU7tjiHlbxRDZOpH0KW9+CeX4bRAaX0Anxt0tx2MrpRpWwQaPwIlISEJhYU5Pw==",
- "dev": true
+ "dev": true,
+ "license": "MIT"
+ },
+ "node_modules/bare-events": {
+ "version": "2.5.0",
+ "resolved": "https://registry.npmjs.org/bare-events/-/bare-events-2.5.0.tgz",
+ "integrity": "sha512-/E8dDe9dsbLyh2qrZ64PEPadOQ0F4gbl1sUJOrmph7xOiIxfY8vwab/4bFLh4Y88/Hk/ujKcrQKc+ps0mv873A==",
+ "license": "Apache-2.0",
+ "optional": true
+ },
+ "node_modules/bare-fs": {
+ "version": "2.3.5",
+ "resolved": "https://registry.npmjs.org/bare-fs/-/bare-fs-2.3.5.tgz",
+ "integrity": "sha512-SlE9eTxifPDJrT6YgemQ1WGFleevzwY+XAP1Xqgl56HtcrisC2CHCZ2tq6dBpcH2TnNxwUEUGhweo+lrQtYuiw==",
+ "license": "Apache-2.0",
+ "optional": true,
+ "dependencies": {
+ "bare-events": "^2.0.0",
+ "bare-path": "^2.0.0",
+ "bare-stream": "^2.0.0"
+ }
+ },
+ "node_modules/bare-os": {
+ "version": "2.4.4",
+ "resolved": "https://registry.npmjs.org/bare-os/-/bare-os-2.4.4.tgz",
+ "integrity": "sha512-z3UiI2yi1mK0sXeRdc4O1Kk8aOa/e+FNWZcTiPB/dfTWyLypuE99LibgRaQki914Jq//yAWylcAt+mknKdixRQ==",
+ "license": "Apache-2.0",
+ "optional": true
+ },
+ "node_modules/bare-path": {
+ "version": "2.1.3",
+ "resolved": "https://registry.npmjs.org/bare-path/-/bare-path-2.1.3.tgz",
+ "integrity": "sha512-lh/eITfU8hrj9Ru5quUp0Io1kJWIk1bTjzo7JH1P5dWmQ2EL4hFUlfI8FonAhSlgIfhn63p84CDY/x+PisgcXA==",
+ "license": "Apache-2.0",
+ "optional": true,
+ "dependencies": {
+ "bare-os": "^2.1.0"
+ }
+ },
+ "node_modules/bare-stream": {
+ "version": "2.3.2",
+ "resolved": "https://registry.npmjs.org/bare-stream/-/bare-stream-2.3.2.tgz",
+ "integrity": "sha512-EFZHSIBkDgSHIwj2l2QZfP4U5OcD4xFAOwhSb/vlr9PIqyGJGvB/nfClJbcnh3EY4jtPE4zsb5ztae96bVF79A==",
+ "license": "Apache-2.0",
+ "optional": true,
+ "dependencies": {
+ "streamx": "^2.20.0"
+ }
},
"node_modules/binary-extensions": {
"version": "2.3.0",
"resolved": "https://registry.npmjs.org/binary-extensions/-/binary-extensions-2.3.0.tgz",
"integrity": "sha512-Ceh+7ox5qe7LJuLHoY0feh3pHuUDHAcRUeyL2VYghZwfpkNIy/+8Ocg0a3UuSoYzavmylwuLWQOf3hl0jjMMIw==",
"dev": true,
+ "license": "MIT",
"engines": {
"node": ">=8"
},
@@ -505,13 +640,13 @@
}
},
"node_modules/brace-expansion": {
- "version": "1.1.11",
- "resolved": "https://registry.npmjs.org/brace-expansion/-/brace-expansion-1.1.11.tgz",
- "integrity": "sha512-iCuPHDFgrHX7H2vEI/5xpz07zSHB00TpugqhmYtVmMO6518mCuRMoOYFldEBl0g187ufozdaHgWKcYFb61qGiA==",
+ "version": "2.0.1",
+ "resolved": "https://registry.npmjs.org/brace-expansion/-/brace-expansion-2.0.1.tgz",
+ "integrity": "sha512-XnAIvQ8eM+kC6aULx6wuQiwVsnzsi9d3WxzV3FpWTGA19F621kwdbsAcFKXgKUHZWsy+mY6iL1sHTxWEFCytDA==",
"dev": true,
+ "license": "MIT",
"dependencies": {
- "balanced-match": "^1.0.0",
- "concat-map": "0.0.1"
+ "balanced-match": "^1.0.0"
}
},
"node_modules/braces": {
@@ -519,6 +654,7 @@
"resolved": "https://registry.npmjs.org/braces/-/braces-3.0.3.tgz",
"integrity": "sha512-yQbXgO/OSZVD2IsiLlro+7Hf6Q18EJrKSEsdoMzKePKXct3gvD8oLcOQdIzGupr5Fj+EDe8gO/lxc1BzfMpxvA==",
"dev": true,
+ "license": "MIT",
"dependencies": {
"fill-range": "^7.1.1"
},
@@ -530,12 +666,14 @@
"version": "1.3.1",
"resolved": "https://registry.npmjs.org/browser-stdout/-/browser-stdout-1.3.1.tgz",
"integrity": "sha512-qhAVI1+Av2X7qelOfAIYwXONood6XlZE/fXaBSmW/T5SzLAmCgzi+eiWE7fUvbHaeNBQH13UftjpXxsfLkMpgw==",
- "dev": true
+ "dev": true,
+ "license": "ISC"
},
"node_modules/browserify-zlib": {
"version": "0.1.4",
"resolved": "https://registry.npmjs.org/browserify-zlib/-/browserify-zlib-0.1.4.tgz",
"integrity": "sha512-19OEpq7vWgsH6WkvkBJQDFvJS1uPcbFOQ4v9CU839dO+ZZXUZO6XpE6hNCqvlIIj+4fZvRiJ6DsAQ382GwiyTQ==",
+ "license": "MIT",
"dependencies": {
"pako": "~0.2.0"
}
@@ -543,13 +681,15 @@
"node_modules/buffer-from": {
"version": "1.1.2",
"resolved": "https://registry.npmjs.org/buffer-from/-/buffer-from-1.1.2.tgz",
- "integrity": "sha512-E+XQCRwSbaaiChtv6k6Dwgc+bx+Bs6vuKJHHl5kox/BaKbhiXzqQOwK4cO22yElGp2OCmjwVhT3HmxgyPGnJfQ=="
+ "integrity": "sha512-E+XQCRwSbaaiChtv6k6Dwgc+bx+Bs6vuKJHHl5kox/BaKbhiXzqQOwK4cO22yElGp2OCmjwVhT3HmxgyPGnJfQ==",
+ "license": "MIT"
},
"node_modules/callsites": {
"version": "3.1.0",
"resolved": "https://registry.npmjs.org/callsites/-/callsites-3.1.0.tgz",
"integrity": "sha512-P8BjAsXvZS+VIDUI11hHCQEv74YT67YUi5JJFNWIqL235sBmjX4+qx9Muvls5ivyNENctx46xQLQ3aTuE7ssaQ==",
"dev": true,
+ "license": "MIT",
"engines": {
"node": ">=6"
}
@@ -559,6 +699,7 @@
"resolved": "https://registry.npmjs.org/camelcase/-/camelcase-6.3.0.tgz",
"integrity": "sha512-Gmy6FhYlCY7uOElZUSbxo2UCDH8owEk996gkbrpsgGtrJLM3J7jGxl9Ic7Qwwj4ivOE5AWZWRMecDdF7hqGjFA==",
"dev": true,
+ "license": "MIT",
"engines": {
"node": ">=10"
},
@@ -571,6 +712,7 @@
"resolved": "https://registry.npmjs.org/chalk/-/chalk-4.1.2.tgz",
"integrity": "sha512-oKnbhFyRIXpUuez8iBMmyEa4nbj4IOQyuhc/wy9kY7/WVPcwIO9VA668Pu8RkO7+0G76SLROeyw9CpQ061i4mA==",
"dev": true,
+ "license": "MIT",
"dependencies": {
"ansi-styles": "^4.1.0",
"supports-color": "^7.1.0"
@@ -587,6 +729,7 @@
"resolved": "https://registry.npmjs.org/chokidar/-/chokidar-3.6.0.tgz",
"integrity": "sha512-7VT13fmjotKpGipCW9JEQAusEPE+Ei8nl6/g4FBAmIm0GOOLMua9NDDo/DWp0ZAxCr3cPq5ZpBqmPAQgDda2Pw==",
"dev": true,
+ "license": "MIT",
"dependencies": {
"anymatch": "~3.1.2",
"braces": "~3.0.2",
@@ -611,6 +754,7 @@
"resolved": "https://registry.npmjs.org/glob-parent/-/glob-parent-5.1.2.tgz",
"integrity": "sha512-AOIgSQCepiJYwP3ARnGx+5VnTu2HBYdzbGP45eLw1vr3zB3vZLeyed1sC9hnbcOc9/SrMyM5RPQrkGz4aS9Zow==",
"dev": true,
+ "license": "ISC",
"dependencies": {
"is-glob": "^4.0.1"
},
@@ -623,6 +767,7 @@
"resolved": "https://registry.npmjs.org/cliui/-/cliui-7.0.4.tgz",
"integrity": "sha512-OcRE68cOsVMXp1Yvonl/fzkQOyjLSu/8bhPDfQt0e0/Eb283TKP20Fs2MqoPsr9SwA595rRCA+QMzYc9nBP+JQ==",
"dev": true,
+ "license": "ISC",
"dependencies": {
"string-width": "^4.2.0",
"strip-ansi": "^6.0.0",
@@ -634,6 +779,7 @@
"resolved": "https://registry.npmjs.org/color-convert/-/color-convert-2.0.1.tgz",
"integrity": "sha512-RRECPsj7iu/xb5oKYcsFHSppFNnsj/52OVTRKb4zP5onXwVF3zVmmToNcOfGC+CRDpfK/U584fMg38ZHCaElKQ==",
"dev": true,
+ "license": "MIT",
"dependencies": {
"color-name": "~1.1.4"
},
@@ -645,24 +791,28 @@
"version": "1.1.4",
"resolved": "https://registry.npmjs.org/color-name/-/color-name-1.1.4.tgz",
"integrity": "sha512-dOy+3AuW3a2wNbZHIuMZpTcgjGuLU/uBL/ubcZF9OXbDo8ff4O8yVp5Bf0efS8uEoYo5q4Fx7dY9OgQGXgAsQA==",
- "dev": true
+ "dev": true,
+ "license": "MIT"
},
"node_modules/concat-map": {
"version": "0.0.1",
"resolved": "https://registry.npmjs.org/concat-map/-/concat-map-0.0.1.tgz",
"integrity": "sha512-/Srv4dswyQNBfohGpz9o6Yb3Gz3SrUDqBH5rTuhGR7ahtlbYKnVxw2bCFMRljaA7EXHaXZ8wsHdodFvbkhKmqg==",
- "dev": true
+ "dev": true,
+ "license": "MIT"
},
"node_modules/core-util-is": {
"version": "1.0.3",
"resolved": "https://registry.npmjs.org/core-util-is/-/core-util-is-1.0.3.tgz",
- "integrity": "sha512-ZQBvi1DcpJ4GDqanjucZ2Hj3wEO5pZDS89BWbkcrvdxksJorwUDDZamX9ldFkp9aw2lmBDLgkObEA4DWNJ9FYQ=="
+ "integrity": "sha512-ZQBvi1DcpJ4GDqanjucZ2Hj3wEO5pZDS89BWbkcrvdxksJorwUDDZamX9ldFkp9aw2lmBDLgkObEA4DWNJ9FYQ==",
+ "license": "MIT"
},
"node_modules/cross-spawn": {
- "version": "7.0.3",
- "resolved": "https://registry.npmjs.org/cross-spawn/-/cross-spawn-7.0.3.tgz",
- "integrity": "sha512-iRDPJKUPVEND7dHPO8rkbOnPpyDygcDFtWjpeWNCgy8WP2rXcxXL8TskReQl6OrB2G7+UJrags1q15Fudc7G6w==",
+ "version": "7.0.6",
+ "resolved": "https://registry.npmjs.org/cross-spawn/-/cross-spawn-7.0.6.tgz",
+ "integrity": "sha512-uV2QOWP2nWzsy2aMp8aRibhi9dlzF5Hgh5SHaB9OiTGEyDTiJJyx0uy51QXdyWbtAHNua4XJzUKca3OzKUd3vA==",
"dev": true,
+ "license": "MIT",
"dependencies": {
"path-key": "^3.1.0",
"shebang-command": "^2.0.0",
@@ -673,11 +823,12 @@
}
},
"node_modules/debug": {
- "version": "4.3.5",
- "resolved": "https://registry.npmjs.org/debug/-/debug-4.3.5.tgz",
- "integrity": "sha512-pt0bNEmneDIvdL1Xsd9oDQ/wrQRkXDT4AUWlNZNPKvW5x/jyO9VFXkJUP07vQ2upmw5PlaITaPKc31jK13V+jg==",
+ "version": "4.3.7",
+ "resolved": "https://registry.npmjs.org/debug/-/debug-4.3.7.tgz",
+ "integrity": "sha512-Er2nc/H7RrMXZBFCEim6TCmMk02Z8vLC2Rbi1KEBggpo0fS6l0S1nnapwmIi3yW/+GOJap1Krg4w0Hg80oCqgQ==",
+ "license": "MIT",
"dependencies": {
- "ms": "2.1.2"
+ "ms": "^2.1.3"
},
"engines": {
"node": ">=6.0"
@@ -693,6 +844,7 @@
"resolved": "https://registry.npmjs.org/decamelize/-/decamelize-4.0.0.tgz",
"integrity": "sha512-9iE1PgSik9HeIIw2JO94IidnE3eBoQrFJ3w7sFuzSX4DpmZ3v5sZpUiV5Swcf6mQEF+Y0ru8Neo+p+nyh2J+hQ==",
"dev": true,
+ "license": "MIT",
"engines": {
"node": ">=10"
},
@@ -704,13 +856,15 @@
"version": "0.1.4",
"resolved": "https://registry.npmjs.org/deep-is/-/deep-is-0.1.4.tgz",
"integrity": "sha512-oIPzksmTg4/MriiaYGO+okXDT7ztn/w3Eptv/+gSIdMdKsJo0u4CfYNFJPy+4SKMuCqGw2wxnA+URMg3t8a/bQ==",
- "dev": true
+ "dev": true,
+ "license": "MIT"
},
"node_modules/diff": {
"version": "5.2.0",
"resolved": "https://registry.npmjs.org/diff/-/diff-5.2.0.tgz",
"integrity": "sha512-uIFDxqpRZGZ6ThOk84hEfqWoHx2devRFvpTZcTHur85vImfaxUbTW9Ryh4CpCuDnToOP1CEtXKIgytHBPVff5A==",
"dev": true,
+ "license": "BSD-3-Clause",
"engines": {
"node": ">=0.3.1"
}
@@ -720,6 +874,7 @@
"resolved": "https://registry.npmjs.org/dir-glob/-/dir-glob-3.0.1.tgz",
"integrity": "sha512-WkrWp9GR4KXfKGYzOLmTuGVi1UWFfws377n9cc55/tb6DuqyF6pcQ5AbiHEshaDpY9v6oaSr2XCDidGmMwdzIA==",
"dev": true,
+ "license": "MIT",
"dependencies": {
"path-type": "^4.0.0"
},
@@ -732,6 +887,7 @@
"resolved": "https://registry.npmjs.org/doctrine/-/doctrine-3.0.0.tgz",
"integrity": "sha512-yS+Q5i3hBf7GBkd4KG8a7eBNNWNGLTaEwwYWUijIYM7zrlYDM0BFXHjjPWlWZ1Rg7UaddZeIDmi9jF3HmqiQ2w==",
"dev": true,
+ "license": "Apache-2.0",
"dependencies": {
"esutils": "^2.0.2"
},
@@ -743,6 +899,7 @@
"version": "3.7.1",
"resolved": "https://registry.npmjs.org/duplexify/-/duplexify-3.7.1.tgz",
"integrity": "sha512-07z8uv2wMyS51kKhD1KsdXJg5WQ6t93RneqRxUHnskXVtlYYkLqM0gqStQZ3pj073g687jPCHrqNfCzawLYh5g==",
+ "license": "MIT",
"dependencies": {
"end-of-stream": "^1.0.0",
"inherits": "^2.0.1",
@@ -754,21 +911,24 @@
"version": "8.0.0",
"resolved": "https://registry.npmjs.org/emoji-regex/-/emoji-regex-8.0.0.tgz",
"integrity": "sha512-MSjYzcWNOA0ewAHpz0MxpYFvwg6yjy1NG3xteoqz644VCo/RPgnr1/GGt+ic3iJTzQ8Eu3TdM14SawnVUmGE6A==",
- "dev": true
+ "dev": true,
+ "license": "MIT"
},
"node_modules/end-of-stream": {
"version": "1.4.4",
"resolved": "https://registry.npmjs.org/end-of-stream/-/end-of-stream-1.4.4.tgz",
"integrity": "sha512-+uw1inIHVPQoaVuHzRyXd21icM+cnt4CzD5rW+NC1wjOUSTOs+Te7FOv7AhN7vS9x/oIyhLP5PR1H+phQAHu5Q==",
+ "license": "MIT",
"dependencies": {
"once": "^1.4.0"
}
},
"node_modules/escalade": {
- "version": "3.1.2",
- "resolved": "https://registry.npmjs.org/escalade/-/escalade-3.1.2.tgz",
- "integrity": "sha512-ErCHMCae19vR8vQGe50xIsVomy19rg6gFu3+r3jkEO46suLMWBksvVyoGgQV+jOfl84ZSOSlmv6Gxa89PmTGmA==",
+ "version": "3.2.0",
+ "resolved": "https://registry.npmjs.org/escalade/-/escalade-3.2.0.tgz",
+ "integrity": "sha512-WUj2qlxaQtO4g6Pq5c29GTcWGDyd8itL8zTlipgECz3JesAiiOKotd8JU6otB3PACgG6xkJUyVhboMS+bje/jA==",
"dev": true,
+ "license": "MIT",
"engines": {
"node": ">=6"
}
@@ -778,6 +938,7 @@
"resolved": "https://registry.npmjs.org/escape-string-regexp/-/escape-string-regexp-4.0.0.tgz",
"integrity": "sha512-TtpcNJ3XAzx3Gq8sWRzJaVajRs0uVxA2YAkdb1jm2YkPz4G6egUFAyA3n5vtEIZefPk5Wa4UXbKuS5fKkJWdgA==",
"dev": true,
+ "license": "MIT",
"engines": {
"node": ">=10"
},
@@ -786,18 +947,21 @@
}
},
"node_modules/eslint": {
- "version": "8.49.0",
- "resolved": "https://registry.npmjs.org/eslint/-/eslint-8.49.0.tgz",
- "integrity": "sha512-jw03ENfm6VJI0jA9U+8H5zfl5b+FvuU3YYvZRdZHOlU2ggJkxrlkJH4HcDrZpj6YwD8kuYqvQM8LyesoazrSOQ==",
+ "version": "8.57.1",
+ "resolved": "https://registry.npmjs.org/eslint/-/eslint-8.57.1.tgz",
+ "integrity": "sha512-ypowyDxpVSYpkXr9WPv2PAZCtNip1Mv5KTW0SCurXv/9iOpcrH9PaqUElksqEB6pChqHGDRCFTyrZlGhnLNGiA==",
+ "deprecated": "This version is no longer supported. Please see https://eslint.org/version-support for other options.",
"dev": true,
+ "license": "MIT",
"dependencies": {
"@eslint-community/eslint-utils": "^4.2.0",
"@eslint-community/regexpp": "^4.6.1",
- "@eslint/eslintrc": "^2.1.2",
- "@eslint/js": "8.49.0",
- "@humanwhocodes/config-array": "^0.11.11",
+ "@eslint/eslintrc": "^2.1.4",
+ "@eslint/js": "8.57.1",
+ "@humanwhocodes/config-array": "^0.13.0",
"@humanwhocodes/module-importer": "^1.0.1",
"@nodelib/fs.walk": "^1.2.8",
+ "@ungap/structured-clone": "^1.2.0",
"ajv": "^6.12.4",
"chalk": "^4.0.0",
"cross-spawn": "^7.0.2",
@@ -844,6 +1008,7 @@
"resolved": "https://registry.npmjs.org/eslint-scope/-/eslint-scope-7.2.2.tgz",
"integrity": "sha512-dOt21O7lTMhDM+X9mB4GX+DZrZtCUJPL/wlcTqxyrx5IvO0IYtILdtrQGQp+8n5S0gwSVmOf9NQrjMOgfQZlIg==",
"dev": true,
+ "license": "BSD-2-Clause",
"dependencies": {
"esrecurse": "^4.3.0",
"estraverse": "^5.2.0"
@@ -860,6 +1025,7 @@
"resolved": "https://registry.npmjs.org/eslint-visitor-keys/-/eslint-visitor-keys-3.4.3.tgz",
"integrity": "sha512-wpc+LXeiyiisxPlEkUzU6svyS1frIO3Mgxj1fdy7Pm8Ygzguax2N3Fa/D/ag1WqbOprdI+uY6wMUl8/a2G+iag==",
"dev": true,
+ "license": "Apache-2.0",
"engines": {
"node": "^12.22.0 || ^14.17.0 || >=16.0.0"
},
@@ -867,11 +1033,36 @@
"url": "https://opencollective.com/eslint"
}
},
+ "node_modules/eslint/node_modules/brace-expansion": {
+ "version": "1.1.11",
+ "resolved": "https://registry.npmjs.org/brace-expansion/-/brace-expansion-1.1.11.tgz",
+ "integrity": "sha512-iCuPHDFgrHX7H2vEI/5xpz07zSHB00TpugqhmYtVmMO6518mCuRMoOYFldEBl0g187ufozdaHgWKcYFb61qGiA==",
+ "dev": true,
+ "license": "MIT",
+ "dependencies": {
+ "balanced-match": "^1.0.0",
+ "concat-map": "0.0.1"
+ }
+ },
+ "node_modules/eslint/node_modules/minimatch": {
+ "version": "3.1.2",
+ "resolved": "https://registry.npmjs.org/minimatch/-/minimatch-3.1.2.tgz",
+ "integrity": "sha512-J7p63hRiAjw1NDEww1W7i37+ByIrOWO5XQQAzZ3VOcL0PNybwpfmV/N05zFAzwQ9USyEcX6t3UO+K5aqBQOIHw==",
+ "dev": true,
+ "license": "ISC",
+ "dependencies": {
+ "brace-expansion": "^1.1.7"
+ },
+ "engines": {
+ "node": "*"
+ }
+ },
"node_modules/espree": {
"version": "9.6.1",
"resolved": "https://registry.npmjs.org/espree/-/espree-9.6.1.tgz",
"integrity": "sha512-oruZaFkjorTpF32kDSI5/75ViwGeZginGGy2NoOSg3Q9bnwlnmDm4HLnkl0RE3n+njDXR037aY1+x58Z/zFdwQ==",
"dev": true,
+ "license": "BSD-2-Clause",
"dependencies": {
"acorn": "^8.9.0",
"acorn-jsx": "^5.3.2",
@@ -885,10 +1076,11 @@
}
},
"node_modules/esquery": {
- "version": "1.5.0",
- "resolved": "https://registry.npmjs.org/esquery/-/esquery-1.5.0.tgz",
- "integrity": "sha512-YQLXUplAwJgCydQ78IMJywZCceoqk1oH01OERdSAJc/7U2AylwjhSCLDEtqwg811idIS/9fIU5GjG73IgjKMVg==",
+ "version": "1.6.0",
+ "resolved": "https://registry.npmjs.org/esquery/-/esquery-1.6.0.tgz",
+ "integrity": "sha512-ca9pw9fomFcKPvFLXhBKUK90ZvGibiGOvRJNbjljY7s7uq/5YO4BOzcYtJqExdx99rF6aAcnRxHmcUHcz6sQsg==",
"dev": true,
+ "license": "BSD-3-Clause",
"dependencies": {
"estraverse": "^5.1.0"
},
@@ -901,6 +1093,7 @@
"resolved": "https://registry.npmjs.org/esrecurse/-/esrecurse-4.3.0.tgz",
"integrity": "sha512-KmfKL3b6G+RXvP8N1vr3Tq1kL/oCFgn2NYXEtqP8/L3pKapUA4G8cFVaoF3SU323CD4XypR/ffioHmkti6/Tag==",
"dev": true,
+ "license": "BSD-2-Clause",
"dependencies": {
"estraverse": "^5.2.0"
},
@@ -913,6 +1106,7 @@
"resolved": "https://registry.npmjs.org/estraverse/-/estraverse-5.3.0.tgz",
"integrity": "sha512-MMdARuVEQziNTeJD8DgMqmhwR11BRQ/cBP+pLtYdSTnf3MIO8fFeiINEbX36ZdNlfU/7A9f3gUw49B3oQsvwBA==",
"dev": true,
+ "license": "BSD-2-Clause",
"engines": {
"node": ">=4.0"
}
@@ -922,6 +1116,7 @@
"resolved": "https://registry.npmjs.org/esutils/-/esutils-2.0.3.tgz",
"integrity": "sha512-kVscqXk4OCp68SZ0dkgEKVi6/8ij300KBWTJq32P/dYeWTSwK41WyTxalN1eRmA5Z9UU/LX9D7FWSmV9SAYx6g==",
"dev": true,
+ "license": "BSD-2-Clause",
"engines": {
"node": ">=0.10.0"
}
@@ -930,18 +1125,21 @@
"version": "3.1.3",
"resolved": "https://registry.npmjs.org/fast-deep-equal/-/fast-deep-equal-3.1.3.tgz",
"integrity": "sha512-f3qQ9oQy9j2AhBe/H9VC91wLmKBCCU/gDOnKNAYG5hswO7BLKj09Hc5HYNz9cGI++xlpDCIgDaitVs03ATR84Q==",
- "dev": true
+ "dev": true,
+ "license": "MIT"
},
"node_modules/fast-fifo": {
"version": "1.3.2",
"resolved": "https://registry.npmjs.org/fast-fifo/-/fast-fifo-1.3.2.tgz",
- "integrity": "sha512-/d9sfos4yxzpwkDkuN7k2SqFKtYNmCTzgfEpz82x34IM9/zc8KGxQoXg1liNC/izpRM/MBdt44Nmx41ZWqk+FQ=="
+ "integrity": "sha512-/d9sfos4yxzpwkDkuN7k2SqFKtYNmCTzgfEpz82x34IM9/zc8KGxQoXg1liNC/izpRM/MBdt44Nmx41ZWqk+FQ==",
+ "license": "MIT"
},
"node_modules/fast-glob": {
- "version": "3.3.1",
- "resolved": "https://registry.npmjs.org/fast-glob/-/fast-glob-3.3.1.tgz",
- "integrity": "sha512-kNFPyjhh5cKjrUltxs+wFx+ZkbRaxxmZ+X0ZU31SOsxCEtP9VPgtq2teZw1DebupL5GmDaNQ6yKMMVcM41iqDg==",
+ "version": "3.3.2",
+ "resolved": "https://registry.npmjs.org/fast-glob/-/fast-glob-3.3.2.tgz",
+ "integrity": "sha512-oX2ruAFQwf/Orj8m737Y5adxDQO0LAB7/S5MnxCdTNDd4p6BsyIVsv9JQsATbTSq8KHRpLwIHbVlUNatxd+1Ow==",
"dev": true,
+ "license": "MIT",
"dependencies": {
"@nodelib/fs.stat": "^2.0.2",
"@nodelib/fs.walk": "^1.2.3",
@@ -958,6 +1156,7 @@
"resolved": "https://registry.npmjs.org/glob-parent/-/glob-parent-5.1.2.tgz",
"integrity": "sha512-AOIgSQCepiJYwP3ARnGx+5VnTu2HBYdzbGP45eLw1vr3zB3vZLeyed1sC9hnbcOc9/SrMyM5RPQrkGz4aS9Zow==",
"dev": true,
+ "license": "ISC",
"dependencies": {
"is-glob": "^4.0.1"
},
@@ -969,19 +1168,22 @@
"version": "2.1.0",
"resolved": "https://registry.npmjs.org/fast-json-stable-stringify/-/fast-json-stable-stringify-2.1.0.tgz",
"integrity": "sha512-lhd/wF+Lk98HZoTCtlVraHtfh5XYijIjalXck7saUtuanSDyLMxnHhSXEDJqHxD7msR8D0uCmqlkwjCV8xvwHw==",
- "dev": true
+ "dev": true,
+ "license": "MIT"
},
"node_modules/fast-levenshtein": {
"version": "2.0.6",
"resolved": "https://registry.npmjs.org/fast-levenshtein/-/fast-levenshtein-2.0.6.tgz",
"integrity": "sha512-DCXu6Ifhqcks7TZKY3Hxp3y6qphY5SJZmrWMDrKcERSOXWQdMhU9Ig/PYrzyw/ul9jOIyh0N4M0tbC5hodg8dw==",
- "dev": true
+ "dev": true,
+ "license": "MIT"
},
"node_modules/fastq": {
- "version": "1.15.0",
- "resolved": "https://registry.npmjs.org/fastq/-/fastq-1.15.0.tgz",
- "integrity": "sha512-wBrocU2LCXXa+lWBt8RoIRD89Fi8OdABODa/kEnyeyjS5aZO5/GNvI5sEINADqP/h8M29UHTHUb53sUu5Ihqdw==",
+ "version": "1.17.1",
+ "resolved": "https://registry.npmjs.org/fastq/-/fastq-1.17.1.tgz",
+ "integrity": "sha512-sRVD3lWVIXWg6By68ZN7vho9a1pQcN/WBFaAAsDDFzlJjvoGx0P8z7V1t72grFJfJhu3YPZBuu25f7Kaw2jN1w==",
"dev": true,
+ "license": "ISC",
"dependencies": {
"reusify": "^1.0.4"
}
@@ -991,6 +1193,7 @@
"resolved": "https://registry.npmjs.org/file-entry-cache/-/file-entry-cache-6.0.1.tgz",
"integrity": "sha512-7Gps/XWymbLk2QLYK4NzpMOrYjMhdIxXuIvy2QBsLE6ljuodKvdkWs/cpyJJ3CVIVpH0Oi1Hvg1ovbMzLdFBBg==",
"dev": true,
+ "license": "MIT",
"dependencies": {
"flat-cache": "^3.0.4"
},
@@ -1003,6 +1206,7 @@
"resolved": "https://registry.npmjs.org/fill-range/-/fill-range-7.1.1.tgz",
"integrity": "sha512-YsGpe3WHLK8ZYi4tWDg2Jy3ebRz2rXowDxnld4bkQB00cc/1Zw9AWnC0i9ztDJitivtQvaI9KaLyKrc+hBW0yg==",
"dev": true,
+ "license": "MIT",
"dependencies": {
"to-regex-range": "^5.0.1"
},
@@ -1015,6 +1219,7 @@
"resolved": "https://registry.npmjs.org/find-up/-/find-up-5.0.0.tgz",
"integrity": "sha512-78/PXT1wlLLDgTzDs7sjq9hzz0vXD+zn+7wypEe4fXQxCmdmqfGsEPQxmiCSQI3ajFV91bVSsvNtrJRiW6nGng==",
"dev": true,
+ "license": "MIT",
"dependencies": {
"locate-path": "^6.0.0",
"path-exists": "^4.0.0"
@@ -1031,35 +1236,39 @@
"resolved": "https://registry.npmjs.org/flat/-/flat-5.0.2.tgz",
"integrity": "sha512-b6suED+5/3rTpUBdG1gupIl8MPFCAMA0QXwmljLhvCUKcUvdE4gWky9zpuGCcXHOsz4J9wPGNWq6OKpmIzz3hQ==",
"dev": true,
+ "license": "BSD-3-Clause",
"bin": {
"flat": "cli.js"
}
},
"node_modules/flat-cache": {
- "version": "3.1.0",
- "resolved": "https://registry.npmjs.org/flat-cache/-/flat-cache-3.1.0.tgz",
- "integrity": "sha512-OHx4Qwrrt0E4jEIcI5/Xb+f+QmJYNj2rrK8wiIdQOIrB9WrrJL8cjZvXdXuBTkkEwEqLycb5BeZDV1o2i9bTew==",
+ "version": "3.2.0",
+ "resolved": "https://registry.npmjs.org/flat-cache/-/flat-cache-3.2.0.tgz",
+ "integrity": "sha512-CYcENa+FtcUKLmhhqyctpclsq7QF38pKjZHsGNiSQF5r4FtoKDWabFDl3hzaEQMvT1LHEysw5twgLvpYYb4vbw==",
"dev": true,
+ "license": "MIT",
"dependencies": {
- "flatted": "^3.2.7",
+ "flatted": "^3.2.9",
"keyv": "^4.5.3",
"rimraf": "^3.0.2"
},
"engines": {
- "node": ">=12.0.0"
+ "node": "^10.12.0 || >=12.0.0"
}
},
"node_modules/flatted": {
- "version": "3.2.7",
- "resolved": "https://registry.npmjs.org/flatted/-/flatted-3.2.7.tgz",
- "integrity": "sha512-5nqDSxl8nn5BSNxyR3n4I6eDmbolI6WT+QqR547RwxQapgjQBmtktdP+HTBb/a/zLsbzERTONyUB5pefh5TtjQ==",
- "dev": true
+ "version": "3.3.1",
+ "resolved": "https://registry.npmjs.org/flatted/-/flatted-3.3.1.tgz",
+ "integrity": "sha512-X8cqMLLie7KsNUDSdzeN8FYK9rEt4Dt67OsG/DNGnYTSDBG4uFAJFBnUeiV+zCVAvwFy56IjM9sH51jVaEhNxw==",
+ "dev": true,
+ "license": "ISC"
},
"node_modules/fs.realpath": {
"version": "1.0.0",
"resolved": "https://registry.npmjs.org/fs.realpath/-/fs.realpath-1.0.0.tgz",
"integrity": "sha512-OO0pH2lK6a0hZnAdau5ItzHPI6pUlvI7jMVnxUQRtw4owF2wk8lOSabtGDCTP4Ggrg2MbGnWO9X8K1t4+fGMDw==",
- "dev": true
+ "dev": true,
+ "license": "ISC"
},
"node_modules/fsevents": {
"version": "2.3.3",
@@ -1067,6 +1276,7 @@
"integrity": "sha512-5xoDfX+fL7faATnagmWPpbFtwh/R77WmMMqqHGS65C3vvB0YHrgF+B1YmZ3441tMj5n63k0212XNoJwzlhffQw==",
"dev": true,
"hasInstallScript": true,
+ "license": "MIT",
"optional": true,
"os": [
"darwin"
@@ -1080,25 +1290,27 @@
"resolved": "https://registry.npmjs.org/get-caller-file/-/get-caller-file-2.0.5.tgz",
"integrity": "sha512-DyFP3BM/3YHTQOCUL/w0OZHR0lpKeGrxotcHWcqNEdnltqFwXVfhEBQ94eIo34AfQpo0rGki4cyIiftY06h2Fg==",
"dev": true,
+ "license": "ISC",
"engines": {
"node": "6.* || 8.* || >= 10.*"
}
},
"node_modules/glob": {
- "version": "7.2.3",
- "resolved": "https://registry.npmjs.org/glob/-/glob-7.2.3.tgz",
- "integrity": "sha512-nFR0zLpU2YCaRxwoCJvL6UvCH2JFyFVIvwTLsIf21AuHlMskA1hhTdk+LlYJtOlYt9v6dvszD2BGRqBL+iQK9Q==",
+ "version": "8.1.0",
+ "resolved": "https://registry.npmjs.org/glob/-/glob-8.1.0.tgz",
+ "integrity": "sha512-r8hpEjiQEYlF2QU0df3dS+nxxSIreXQS1qRhMJM0Q5NDdR386C7jb7Hwwod8Fgiuex+k0GFjgft18yvxm5XoCQ==",
+ "deprecated": "Glob versions prior to v9 are no longer supported",
"dev": true,
+ "license": "ISC",
"dependencies": {
"fs.realpath": "^1.0.0",
"inflight": "^1.0.4",
"inherits": "2",
- "minimatch": "^3.1.1",
- "once": "^1.3.0",
- "path-is-absolute": "^1.0.0"
+ "minimatch": "^5.0.1",
+ "once": "^1.3.0"
},
"engines": {
- "node": "*"
+ "node": ">=12"
},
"funding": {
"url": "https://github.com/sponsors/isaacs"
@@ -1109,6 +1321,7 @@
"resolved": "https://registry.npmjs.org/glob-parent/-/glob-parent-6.0.2.tgz",
"integrity": "sha512-XxwI8EOhVQgWp6iDL+3b0r86f4d6AX6zSU55HfB4ydCEuXLXc5FcYeOu+nnGftS4TEju/11rt4KJPTMgbfmv4A==",
"dev": true,
+ "license": "ISC",
"dependencies": {
"is-glob": "^4.0.3"
},
@@ -1116,11 +1329,25 @@
"node": ">=10.13.0"
}
},
+ "node_modules/glob/node_modules/minimatch": {
+ "version": "5.1.6",
+ "resolved": "https://registry.npmjs.org/minimatch/-/minimatch-5.1.6.tgz",
+ "integrity": "sha512-lKwV/1brpG6mBUFHtb7NUmtABCb2WZZmm2wNiOA5hAb8VdCS4B3dtMWyvcoViccwAW/COERjXLt0zP1zXUN26g==",
+ "dev": true,
+ "license": "ISC",
+ "dependencies": {
+ "brace-expansion": "^2.0.1"
+ },
+ "engines": {
+ "node": ">=10"
+ }
+ },
"node_modules/globals": {
- "version": "13.21.0",
- "resolved": "https://registry.npmjs.org/globals/-/globals-13.21.0.tgz",
- "integrity": "sha512-ybyme3s4yy/t/3s35bewwXKOf7cvzfreG2lH0lZl0JB7I4GxRP2ghxOK/Nb9EkRXdbBXZLfq/p/0W2JUONB/Gg==",
+ "version": "13.24.0",
+ "resolved": "https://registry.npmjs.org/globals/-/globals-13.24.0.tgz",
+ "integrity": "sha512-AhO5QUcj8llrbG09iWhPU2B204J1xnPeL8kQmVorSsy+Sjj1sk8gIyh6cUocGmH4L0UuhAJy+hJMRA4mgA4mFQ==",
"dev": true,
+ "license": "MIT",
"dependencies": {
"type-fest": "^0.20.2"
},
@@ -1136,6 +1363,7 @@
"resolved": "https://registry.npmjs.org/globby/-/globby-11.1.0.tgz",
"integrity": "sha512-jhIXaOzy1sb8IyocaruWSn1TjmnBVs8Ayhcy83rmxNJ8q2uWKCAj3CnJY+KpGSXCueAPc0i05kVvVKtP1t9S3g==",
"dev": true,
+ "license": "MIT",
"dependencies": {
"array-union": "^2.1.0",
"dir-glob": "^3.0.1",
@@ -1155,12 +1383,14 @@
"version": "1.4.0",
"resolved": "https://registry.npmjs.org/graphemer/-/graphemer-1.4.0.tgz",
"integrity": "sha512-EtKwoO6kxCL9WO5xipiHTZlSzBm7WLT627TqC/uVRd0HKmq8NXyebnNYxDoBi7wt8eTWrUrKXCOVaFq9x1kgag==",
- "dev": true
+ "dev": true,
+ "license": "MIT"
},
"node_modules/gunzip-maybe": {
"version": "1.4.2",
"resolved": "https://registry.npmjs.org/gunzip-maybe/-/gunzip-maybe-1.4.2.tgz",
"integrity": "sha512-4haO1M4mLO91PW57BMsDFf75UmwoRX0GkdD+Faw+Lr+r/OZrOCS0pIBwOL1xCKQqnQzbNFGgK2V2CpBUPeFNTw==",
+ "license": "MIT",
"dependencies": {
"browserify-zlib": "^0.1.4",
"is-deflate": "^1.0.0",
@@ -1178,6 +1408,7 @@
"resolved": "https://registry.npmjs.org/has-flag/-/has-flag-4.0.0.tgz",
"integrity": "sha512-EykJT/Q1KjTWctppgIAgfSO0tKVuZUjhgMr17kqTumMl6Afv3EISleU7qZUzoXDFTAHTDC4NOoG/ZxU3EvlMPQ==",
"dev": true,
+ "license": "MIT",
"engines": {
"node": ">=8"
}
@@ -1187,14 +1418,16 @@
"resolved": "https://registry.npmjs.org/he/-/he-1.2.0.tgz",
"integrity": "sha512-F/1DnUGPopORZi0ni+CvrCgHQ5FyEAHRLSApuYWMmrbSwoN2Mn/7k+Gl38gJnR7yyDZk6WLXwiGod1JOWNDKGw==",
"dev": true,
+ "license": "MIT",
"bin": {
"he": "bin/he"
}
},
"node_modules/https-proxy-agent": {
- "version": "7.0.2",
- "resolved": "https://registry.npmjs.org/https-proxy-agent/-/https-proxy-agent-7.0.2.tgz",
- "integrity": "sha512-NmLNjm6ucYwtcUmL7JQC1ZQ57LmHP4lT15FQ8D61nak1rO6DH+fz5qNK2Ap5UN4ZapYICE3/0KodcLYSPsPbaA==",
+ "version": "7.0.5",
+ "resolved": "https://registry.npmjs.org/https-proxy-agent/-/https-proxy-agent-7.0.5.tgz",
+ "integrity": "sha512-1e4Wqeblerz+tMKPIq2EMGiiWW1dIjZOksyHWSUm1rmuvw/how9hBHZ38lAGj5ID4Ik6EdkOw7NmWPy6LAwalw==",
+ "license": "MIT",
"dependencies": {
"agent-base": "^7.0.2",
"debug": "4"
@@ -1204,10 +1437,11 @@
}
},
"node_modules/ignore": {
- "version": "5.2.4",
- "resolved": "https://registry.npmjs.org/ignore/-/ignore-5.2.4.tgz",
- "integrity": "sha512-MAb38BcSbH0eHNBxn7ql2NH/kX33OkB3lZ1BNdh7ENeRChHTYsTvWrMubiIAMNS2llXEEgZ1MUOBtXChP3kaFQ==",
+ "version": "5.3.2",
+ "resolved": "https://registry.npmjs.org/ignore/-/ignore-5.3.2.tgz",
+ "integrity": "sha512-hsBTNUqQTDwkWtcdYI2i06Y/nUBEsNEDJKjWdigLvegy8kDuJAS8uRlpkkcQpyEXL0Z/pjDy5HBmMjRCJ2gq+g==",
"dev": true,
+ "license": "MIT",
"engines": {
"node": ">= 4"
}
@@ -1217,6 +1451,7 @@
"resolved": "https://registry.npmjs.org/import-fresh/-/import-fresh-3.3.0.tgz",
"integrity": "sha512-veYYhQa+D1QBKznvhUHxb8faxlrwUnxseDAbAp457E0wLNio2bOSKnjYDhMj+YiAq61xrMGhQk9iXVk5FzgQMw==",
"dev": true,
+ "license": "MIT",
"dependencies": {
"parent-module": "^1.0.0",
"resolve-from": "^4.0.0"
@@ -1233,6 +1468,7 @@
"resolved": "https://registry.npmjs.org/imurmurhash/-/imurmurhash-0.1.4.tgz",
"integrity": "sha512-JmXMZ6wuvDmLiHEml9ykzqO6lwFbof0GG4IkcGaENdCRDDmMVnny7s5HsIgHCbaq0w2MyPhDqkhTUgS2LU2PHA==",
"dev": true,
+ "license": "MIT",
"engines": {
"node": ">=0.8.19"
}
@@ -1241,7 +1477,9 @@
"version": "1.0.6",
"resolved": "https://registry.npmjs.org/inflight/-/inflight-1.0.6.tgz",
"integrity": "sha512-k92I/b08q4wvFscXCLvqfsHCrjrF7yiXsQuIVvVE7N82W3+aqpzuUdBbfhWcy/FZR3/4IgflMgKLOsvPDrGCJA==",
+ "deprecated": "This module is not supported, and leaks memory. Do not use it. Check out lru-cache if you want a good and tested way to coalesce async requests by a key value, which is much more comprehensive and powerful.",
"dev": true,
+ "license": "ISC",
"dependencies": {
"once": "^1.3.0",
"wrappy": "1"
@@ -1250,13 +1488,15 @@
"node_modules/inherits": {
"version": "2.0.4",
"resolved": "https://registry.npmjs.org/inherits/-/inherits-2.0.4.tgz",
- "integrity": "sha512-k/vGaX4/Yla3WzyMCvTQOXYeIHvqOKtnqBduzTHpzpQZzAskKMhZ2K+EnBiSM9zGSoIFeMpXKxa4dYeZIQqewQ=="
+ "integrity": "sha512-k/vGaX4/Yla3WzyMCvTQOXYeIHvqOKtnqBduzTHpzpQZzAskKMhZ2K+EnBiSM9zGSoIFeMpXKxa4dYeZIQqewQ==",
+ "license": "ISC"
},
"node_modules/is-binary-path": {
"version": "2.1.0",
"resolved": "https://registry.npmjs.org/is-binary-path/-/is-binary-path-2.1.0.tgz",
"integrity": "sha512-ZMERYes6pDydyuGidse7OsHxtbI7WVeUEozgR/g7rd0xUimYNlvZRE/K2MgZTjWy725IfelLeVcEM97mmtRGXw==",
"dev": true,
+ "license": "MIT",
"dependencies": {
"binary-extensions": "^2.0.0"
},
@@ -1267,13 +1507,15 @@
"node_modules/is-deflate": {
"version": "1.0.0",
"resolved": "https://registry.npmjs.org/is-deflate/-/is-deflate-1.0.0.tgz",
- "integrity": "sha512-YDoFpuZWu1VRXlsnlYMzKyVRITXj7Ej/V9gXQ2/pAe7X1J7M/RNOqaIYi6qUn+B7nGyB9pDXrv02dsB58d2ZAQ=="
+ "integrity": "sha512-YDoFpuZWu1VRXlsnlYMzKyVRITXj7Ej/V9gXQ2/pAe7X1J7M/RNOqaIYi6qUn+B7nGyB9pDXrv02dsB58d2ZAQ==",
+ "license": "MIT"
},
"node_modules/is-extglob": {
"version": "2.1.1",
"resolved": "https://registry.npmjs.org/is-extglob/-/is-extglob-2.1.1.tgz",
"integrity": "sha512-SbKbANkN603Vi4jEZv49LeVJMn4yGwsbzZworEoyEiutsN3nJYdbO36zfhGJ6QEDpOZIFkDtnq5JRxmvl3jsoQ==",
"dev": true,
+ "license": "MIT",
"engines": {
"node": ">=0.10.0"
}
@@ -1283,6 +1525,7 @@
"resolved": "https://registry.npmjs.org/is-fullwidth-code-point/-/is-fullwidth-code-point-3.0.0.tgz",
"integrity": "sha512-zymm5+u+sCsSWyD9qNaejV3DFvhCKclKdizYaJUuHA83RLjb7nSuGnddCHGv0hk+KY7BMAlsWeK4Ueg6EV6XQg==",
"dev": true,
+ "license": "MIT",
"engines": {
"node": ">=8"
}
@@ -1292,6 +1535,7 @@
"resolved": "https://registry.npmjs.org/is-glob/-/is-glob-4.0.3.tgz",
"integrity": "sha512-xelSayHH36ZgE7ZWhli7pW34hNbNl8Ojv5KVmkJD4hBdD3th8Tfk9vYasLM+mXWOZhFkgZfxhLSnrwRr4elSSg==",
"dev": true,
+ "license": "MIT",
"dependencies": {
"is-extglob": "^2.1.1"
},
@@ -1303,6 +1547,7 @@
"version": "1.0.0",
"resolved": "https://registry.npmjs.org/is-gzip/-/is-gzip-1.0.0.tgz",
"integrity": "sha512-rcfALRIb1YewtnksfRIHGcIY93QnK8BIQ/2c9yDYcG/Y6+vRoJuTWBmmSEbyLLYtXm7q35pHOHbZFQBaLrhlWQ==",
+ "license": "MIT",
"engines": {
"node": ">=0.10.0"
}
@@ -1312,6 +1557,7 @@
"resolved": "https://registry.npmjs.org/is-number/-/is-number-7.0.0.tgz",
"integrity": "sha512-41Cifkg6e8TylSpdtTpeLVMqvSBEVzTttHvERD741+pnZ8ANv0004MRL43QKPDlK9cGvNp6NZWZUBlbGXYxxng==",
"dev": true,
+ "license": "MIT",
"engines": {
"node": ">=0.12.0"
}
@@ -1321,6 +1567,7 @@
"resolved": "https://registry.npmjs.org/is-path-inside/-/is-path-inside-3.0.3.tgz",
"integrity": "sha512-Fd4gABb+ycGAmKou8eMftCupSir5lRxqf4aD/vd0cD2qc4HL07OjCeuHMr8Ro4CoMaeCKDB0/ECBOVWjTwUvPQ==",
"dev": true,
+ "license": "MIT",
"engines": {
"node": ">=8"
}
@@ -1330,6 +1577,7 @@
"resolved": "https://registry.npmjs.org/is-plain-obj/-/is-plain-obj-2.1.0.tgz",
"integrity": "sha512-YWnfyRwxL/+SsrWYfOpUtz5b3YD+nyfkHvjbcanzk8zgyO4ASD67uVMRt8k5bM4lLMDnXfriRhOpemw+NfT1eA==",
"dev": true,
+ "license": "MIT",
"engines": {
"node": ">=8"
}
@@ -1339,6 +1587,7 @@
"resolved": "https://registry.npmjs.org/is-unicode-supported/-/is-unicode-supported-0.1.0.tgz",
"integrity": "sha512-knxG2q4UC3u8stRGyAVJCOdxFmv5DZiRcdlIaAQXAbSfJya+OhopNotLQrstBhququ4ZpuKbDc/8S6mgXgPFPw==",
"dev": true,
+ "license": "MIT",
"engines": {
"node": ">=10"
},
@@ -1349,19 +1598,22 @@
"node_modules/isarray": {
"version": "1.0.0",
"resolved": "https://registry.npmjs.org/isarray/-/isarray-1.0.0.tgz",
- "integrity": "sha512-VLghIWNM6ELQzo7zwmcg0NmTVyWKYjvIeM83yjp0wRDTmUnrM678fQbcKBo6n2CJEF0szoG//ytg+TKla89ALQ=="
+ "integrity": "sha512-VLghIWNM6ELQzo7zwmcg0NmTVyWKYjvIeM83yjp0wRDTmUnrM678fQbcKBo6n2CJEF0szoG//ytg+TKla89ALQ==",
+ "license": "MIT"
},
"node_modules/isexe": {
"version": "2.0.0",
"resolved": "https://registry.npmjs.org/isexe/-/isexe-2.0.0.tgz",
"integrity": "sha512-RHxMLp9lnKHGHRng9QFhRCMbYAcVpn69smSGcq3f36xjgVVWThj4qqLbTLlq7Ssj8B+fIQ1EuCEGI2lKsyQeIw==",
- "dev": true
+ "dev": true,
+ "license": "ISC"
},
"node_modules/js-yaml": {
"version": "4.1.0",
"resolved": "https://registry.npmjs.org/js-yaml/-/js-yaml-4.1.0.tgz",
"integrity": "sha512-wpxZs9NoxZaJESJGIZTyDEaYpl0FKSA+FB9aJiyemKhMwkxQg63h4T1KJgUGHpTqPDNRcmmYLugrRjJlBtWvRA==",
"dev": true,
+ "license": "MIT",
"dependencies": {
"argparse": "^2.0.1"
},
@@ -1373,25 +1625,29 @@
"version": "3.0.1",
"resolved": "https://registry.npmjs.org/json-buffer/-/json-buffer-3.0.1.tgz",
"integrity": "sha512-4bV5BfR2mqfQTJm+V5tPPdf+ZpuhiIvTuAB5g8kcrXOZpTT/QwwVRWBywX1ozr6lEuPdbHxwaJlm9G6mI2sfSQ==",
- "dev": true
+ "dev": true,
+ "license": "MIT"
},
"node_modules/json-schema-traverse": {
"version": "0.4.1",
"resolved": "https://registry.npmjs.org/json-schema-traverse/-/json-schema-traverse-0.4.1.tgz",
"integrity": "sha512-xbbCH5dCYU5T8LcEhhuh7HJ88HXuW3qsI3Y0zOZFKfZEHcpWiHU/Jxzk629Brsab/mMiHQti9wMP+845RPe3Vg==",
- "dev": true
+ "dev": true,
+ "license": "MIT"
},
"node_modules/json-stable-stringify-without-jsonify": {
"version": "1.0.1",
"resolved": "https://registry.npmjs.org/json-stable-stringify-without-jsonify/-/json-stable-stringify-without-jsonify-1.0.1.tgz",
"integrity": "sha512-Bdboy+l7tA3OGW6FjyFHWkP5LuByj1Tk33Ljyq0axyzdk9//JSi2u3fP1QSmd1KNwq6VOKYGlAu87CisVir6Pw==",
- "dev": true
+ "dev": true,
+ "license": "MIT"
},
"node_modules/keyv": {
- "version": "4.5.3",
- "resolved": "https://registry.npmjs.org/keyv/-/keyv-4.5.3.tgz",
- "integrity": "sha512-QCiSav9WaX1PgETJ+SpNnx2PRRapJ/oRSXM4VO5OGYGSjrxbKPVFVhB3l2OCbLCk329N8qyAtsJjSjvVBWzEug==",
+ "version": "4.5.4",
+ "resolved": "https://registry.npmjs.org/keyv/-/keyv-4.5.4.tgz",
+ "integrity": "sha512-oxVHkHR/EJf2CNXnWxRLW6mg7JyCCUcG0DtEGmL2ctUo1PNTin1PUil+r/+4r5MpVgC/fn1kjsx7mjSujKqIpw==",
"dev": true,
+ "license": "MIT",
"dependencies": {
"json-buffer": "3.0.1"
}
@@ -1401,6 +1657,7 @@
"resolved": "https://registry.npmjs.org/levn/-/levn-0.4.1.tgz",
"integrity": "sha512-+bT2uH4E5LGE7h/n3evcS/sQlJXCpIp6ym8OWJ5eV6+67Dsql/LaaT7qJBAt2rzfoa/5QBGBhxDix1dMt2kQKQ==",
"dev": true,
+ "license": "MIT",
"dependencies": {
"prelude-ls": "^1.2.1",
"type-check": "~0.4.0"
@@ -1414,6 +1671,7 @@
"resolved": "https://registry.npmjs.org/locate-path/-/locate-path-6.0.0.tgz",
"integrity": "sha512-iPZK6eYjbxRu3uB4/WZ3EsEIMJFMqAoopl3R+zuq0UjcAm/MO6KCweDgPfP3elTztoKP3KtnVHxTn2NHBSDVUw==",
"dev": true,
+ "license": "MIT",
"dependencies": {
"p-locate": "^5.0.0"
},
@@ -1428,13 +1686,15 @@
"version": "4.6.2",
"resolved": "https://registry.npmjs.org/lodash.merge/-/lodash.merge-4.6.2.tgz",
"integrity": "sha512-0KpjqXRVvrYyCsX1swR/XTK0va6VQkQM6MNo7PqW77ByjAhoARA8EfrP1N4+KlKj8YS0ZUCtRT/YUuhyYDujIQ==",
- "dev": true
+ "dev": true,
+ "license": "MIT"
},
"node_modules/log-symbols": {
"version": "4.1.0",
"resolved": "https://registry.npmjs.org/log-symbols/-/log-symbols-4.1.0.tgz",
"integrity": "sha512-8XPvpAA8uyhfteu8pIvQxpJZ7SYYdpUivZpGy6sFsBuKRY/7rQGavedeB8aK+Zkyq6upMFVL/9AW6vOYzfRyLg==",
"dev": true,
+ "license": "MIT",
"dependencies": {
"chalk": "^4.1.0",
"is-unicode-supported": "^0.1.0"
@@ -1451,6 +1711,7 @@
"resolved": "https://registry.npmjs.org/merge2/-/merge2-1.4.1.tgz",
"integrity": "sha512-8q7VEgMJW4J8tcfVPy8g09NcQwZdbwFEqhe/WZkoIzjn/3TGDwtOCYtXGxA3O8tPzpczCCDgv+P2P5y00ZJOOg==",
"dev": true,
+ "license": "MIT",
"engines": {
"node": ">= 8"
}
@@ -1460,6 +1721,7 @@
"resolved": "https://registry.npmjs.org/micromatch/-/micromatch-4.0.8.tgz",
"integrity": "sha512-PXwfBhYu0hBCPw8Dn0E+WDYb7af3dSLVWKi3HGv84IdF4TyFoC0ysxFd0Goxw7nSv4T/PzEJQxsYsEiFCKo2BA==",
"dev": true,
+ "license": "MIT",
"dependencies": {
"braces": "^3.0.3",
"picomatch": "^2.3.1"
@@ -1469,27 +1731,27 @@
}
},
"node_modules/minimatch": {
- "version": "3.1.2",
- "resolved": "https://registry.npmjs.org/minimatch/-/minimatch-3.1.2.tgz",
- "integrity": "sha512-J7p63hRiAjw1NDEww1W7i37+ByIrOWO5XQQAzZ3VOcL0PNybwpfmV/N05zFAzwQ9USyEcX6t3UO+K5aqBQOIHw==",
+ "version": "9.0.3",
+ "resolved": "https://registry.npmjs.org/minimatch/-/minimatch-9.0.3.tgz",
+ "integrity": "sha512-RHiac9mvaRw0x3AYRgDC1CxAP7HTcNrrECeA8YYJeWnpo+2Q5CegtZjaotWTWxDG3UeGA1coE05iH1mPjT/2mg==",
"dev": true,
+ "license": "ISC",
"dependencies": {
- "brace-expansion": "^1.1.7"
+ "brace-expansion": "^2.0.1"
},
"engines": {
- "node": "*"
+ "node": ">=16 || 14 >=14.17"
+ },
+ "funding": {
+ "url": "https://github.com/sponsors/isaacs"
}
},
- "node_modules/mkdirp-classic": {
- "version": "0.5.3",
- "resolved": "https://registry.npmjs.org/mkdirp-classic/-/mkdirp-classic-0.5.3.tgz",
- "integrity": "sha512-gKLcREMhtuZRwRAfqP3RFW+TK4JqApVBtOIftVgjuABpAtpxhPGaDcfvbhNvD0B8iD1oUr/txX35NjcaY6Ns/A=="
- },
"node_modules/mocha": {
- "version": "10.6.0",
- "resolved": "https://registry.npmjs.org/mocha/-/mocha-10.6.0.tgz",
- "integrity": "sha512-hxjt4+EEB0SA0ZDygSS015t65lJw/I2yRCS3Ae+SJ5FrbzrXgfYwJr96f0OvIXdj7h4lv/vLCrH3rkiuizFSvw==",
+ "version": "10.8.2",
+ "resolved": "https://registry.npmjs.org/mocha/-/mocha-10.8.2.tgz",
+ "integrity": "sha512-VZlYo/WE8t1tstuRmqgeyBgCbJc/lEdopaa+axcKzTBJ+UIdlAB9XnmvTCAH4pwR4ElNInaedhEBmZD8iCSVEg==",
"dev": true,
+ "license": "MIT",
"dependencies": {
"ansi-colors": "^4.1.3",
"browser-stdout": "^1.3.1",
@@ -1520,40 +1782,12 @@
"node": ">= 14.0.0"
}
},
- "node_modules/mocha/node_modules/brace-expansion": {
- "version": "2.0.1",
- "resolved": "https://registry.npmjs.org/brace-expansion/-/brace-expansion-2.0.1.tgz",
- "integrity": "sha512-XnAIvQ8eM+kC6aULx6wuQiwVsnzsi9d3WxzV3FpWTGA19F621kwdbsAcFKXgKUHZWsy+mY6iL1sHTxWEFCytDA==",
- "dev": true,
- "dependencies": {
- "balanced-match": "^1.0.0"
- }
- },
- "node_modules/mocha/node_modules/glob": {
- "version": "8.1.0",
- "resolved": "https://registry.npmjs.org/glob/-/glob-8.1.0.tgz",
- "integrity": "sha512-r8hpEjiQEYlF2QU0df3dS+nxxSIreXQS1qRhMJM0Q5NDdR386C7jb7Hwwod8Fgiuex+k0GFjgft18yvxm5XoCQ==",
- "deprecated": "Glob versions prior to v9 are no longer supported",
- "dev": true,
- "dependencies": {
- "fs.realpath": "^1.0.0",
- "inflight": "^1.0.4",
- "inherits": "2",
- "minimatch": "^5.0.1",
- "once": "^1.3.0"
- },
- "engines": {
- "node": ">=12"
- },
- "funding": {
- "url": "https://github.com/sponsors/isaacs"
- }
- },
"node_modules/mocha/node_modules/minimatch": {
"version": "5.1.6",
"resolved": "https://registry.npmjs.org/minimatch/-/minimatch-5.1.6.tgz",
"integrity": "sha512-lKwV/1brpG6mBUFHtb7NUmtABCb2WZZmm2wNiOA5hAb8VdCS4B3dtMWyvcoViccwAW/COERjXLt0zP1zXUN26g==",
"dev": true,
+ "license": "ISC",
"dependencies": {
"brace-expansion": "^2.0.1"
},
@@ -1561,17 +1795,12 @@
"node": ">=10"
}
},
- "node_modules/mocha/node_modules/ms": {
- "version": "2.1.3",
- "resolved": "https://registry.npmjs.org/ms/-/ms-2.1.3.tgz",
- "integrity": "sha512-6FlzubTLZG3J2a/NVCAleEhjzq5oxgHyaCU9yYXvcLsvoVaHJq/s5xXI6/XXP6tz7R9xAOtHnSO/tXtF3WRTlA==",
- "dev": true
- },
"node_modules/mocha/node_modules/supports-color": {
"version": "8.1.1",
"resolved": "https://registry.npmjs.org/supports-color/-/supports-color-8.1.1.tgz",
"integrity": "sha512-MpUEN2OodtUzxvKQl72cUF7RQ5EiHsGvSsVG0ia9c5RbWGL2CI4C7EpPS8UTBIplnlzZiNuV56w+FuNxy3ty2Q==",
"dev": true,
+ "license": "MIT",
"dependencies": {
"has-flag": "^4.0.0"
},
@@ -1583,21 +1812,24 @@
}
},
"node_modules/ms": {
- "version": "2.1.2",
- "resolved": "https://registry.npmjs.org/ms/-/ms-2.1.2.tgz",
- "integrity": "sha512-sGkPx+VjMtmA6MX27oA4FBFELFCZZ4S4XqeGOXCv68tT+jb3vk/RyaKWP0PTKyWtmLSM0b+adUTEvbs1PEaH2w=="
+ "version": "2.1.3",
+ "resolved": "https://registry.npmjs.org/ms/-/ms-2.1.3.tgz",
+ "integrity": "sha512-6FlzubTLZG3J2a/NVCAleEhjzq5oxgHyaCU9yYXvcLsvoVaHJq/s5xXI6/XXP6tz7R9xAOtHnSO/tXtF3WRTlA==",
+ "license": "MIT"
},
"node_modules/natural-compare": {
"version": "1.4.0",
"resolved": "https://registry.npmjs.org/natural-compare/-/natural-compare-1.4.0.tgz",
"integrity": "sha512-OWND8ei3VtNC9h7V60qff3SVobHr996CTwgxubgyQYEpg290h9J0buyECNNJexkFm5sOajh5G116RYA1c8ZMSw==",
- "dev": true
+ "dev": true,
+ "license": "MIT"
},
"node_modules/normalize-path": {
"version": "3.0.0",
"resolved": "https://registry.npmjs.org/normalize-path/-/normalize-path-3.0.0.tgz",
"integrity": "sha512-6eZs5Ls3WtCisHWp9S2GUy8dqkpGi4BVSz3GaqiE6ezub0512ESztXUwUB6C6IKbQkY2Pnb/mD4WYojCRwcwLA==",
"dev": true,
+ "license": "MIT",
"engines": {
"node": ">=0.10.0"
}
@@ -1606,22 +1838,24 @@
"version": "1.4.0",
"resolved": "https://registry.npmjs.org/once/-/once-1.4.0.tgz",
"integrity": "sha512-lNaJgI+2Q5URQBkccEKHTQOPaXdUxnZZElQTZY0MFUAuaEqe1E+Nyvgdz/aIyNi6Z9MzO5dv1H8n58/GELp3+w==",
+ "license": "ISC",
"dependencies": {
"wrappy": "1"
}
},
"node_modules/optionator": {
- "version": "0.9.3",
- "resolved": "https://registry.npmjs.org/optionator/-/optionator-0.9.3.tgz",
- "integrity": "sha512-JjCoypp+jKn1ttEFExxhetCKeJt9zhAgAve5FXHixTvFDW/5aEktX9bufBKLRRMdU7bNtpLfcGu94B3cdEJgjg==",
+ "version": "0.9.4",
+ "resolved": "https://registry.npmjs.org/optionator/-/optionator-0.9.4.tgz",
+ "integrity": "sha512-6IpQ7mKUxRcZNLIObR0hz7lxsapSSIYNZJwXPGeF0mTVqGKFIXj1DQcMoT22S3ROcLyY/rz0PWaWZ9ayWmad9g==",
"dev": true,
+ "license": "MIT",
"dependencies": {
- "@aashutoshrathi/word-wrap": "^1.2.3",
"deep-is": "^0.1.3",
"fast-levenshtein": "^2.0.6",
"levn": "^0.4.1",
"prelude-ls": "^1.2.1",
- "type-check": "^0.4.0"
+ "type-check": "^0.4.0",
+ "word-wrap": "^1.2.5"
},
"engines": {
"node": ">= 0.8.0"
@@ -1632,6 +1866,7 @@
"resolved": "https://registry.npmjs.org/p-limit/-/p-limit-3.1.0.tgz",
"integrity": "sha512-TYOanM3wGwNGsZN2cVTYPArw454xnXj5qmWF1bEoAc4+cU/ol7GVh7odevjp1FNHduHc3KZMcFduxU5Xc6uJRQ==",
"dev": true,
+ "license": "MIT",
"dependencies": {
"yocto-queue": "^0.1.0"
},
@@ -1647,6 +1882,7 @@
"resolved": "https://registry.npmjs.org/p-locate/-/p-locate-5.0.0.tgz",
"integrity": "sha512-LaNjtRWUBY++zB5nE/NwcaoMylSPk+S+ZHNB1TzdbMJMny6dynpAGt7X/tl/QYq3TIeE6nxHppbo2LGymrG5Pw==",
"dev": true,
+ "license": "MIT",
"dependencies": {
"p-limit": "^3.0.2"
},
@@ -1660,13 +1896,15 @@
"node_modules/pako": {
"version": "0.2.9",
"resolved": "https://registry.npmjs.org/pako/-/pako-0.2.9.tgz",
- "integrity": "sha512-NUcwaKxUxWrZLpDG+z/xZaCgQITkA/Dv4V/T6bw7VON6l1Xz/VnrBqrYjZQ12TamKHzITTfOEIYUj48y2KXImA=="
+ "integrity": "sha512-NUcwaKxUxWrZLpDG+z/xZaCgQITkA/Dv4V/T6bw7VON6l1Xz/VnrBqrYjZQ12TamKHzITTfOEIYUj48y2KXImA==",
+ "license": "MIT"
},
"node_modules/parent-module": {
"version": "1.0.1",
"resolved": "https://registry.npmjs.org/parent-module/-/parent-module-1.0.1.tgz",
"integrity": "sha512-GQ2EWRpQV8/o+Aw8YqtfZZPfNRWZYkbidE9k5rpl/hC3vtHHBfGm2Ifi6qWV+coDGkrUKZAxE3Lot5kcsRlh+g==",
"dev": true,
+ "license": "MIT",
"dependencies": {
"callsites": "^3.0.0"
},
@@ -1679,6 +1917,7 @@
"resolved": "https://registry.npmjs.org/path-exists/-/path-exists-4.0.0.tgz",
"integrity": "sha512-ak9Qy5Q7jYb2Wwcey5Fpvg2KoAc/ZIhLSLOSBmRmygPsGwkVVt0fZa0qrtMz+m6tJTAHfZQ8FnmB4MG4LWy7/w==",
"dev": true,
+ "license": "MIT",
"engines": {
"node": ">=8"
}
@@ -1688,6 +1927,7 @@
"resolved": "https://registry.npmjs.org/path-is-absolute/-/path-is-absolute-1.0.1.tgz",
"integrity": "sha512-AVbw3UJ2e9bq64vSaS9Am0fje1Pa8pbGqTTsmXfaIiMpnr5DlDhfJOuLj9Sf95ZPVDAUerDfEk88MPmPe7UCQg==",
"dev": true,
+ "license": "MIT",
"engines": {
"node": ">=0.10.0"
}
@@ -1697,6 +1937,7 @@
"resolved": "https://registry.npmjs.org/path-key/-/path-key-3.1.1.tgz",
"integrity": "sha512-ojmeN0qd+y0jszEtoY48r0Peq5dwMEkIlCOu6Q5f41lfkswXuKtYrhgoTpLnyIcHm24Uhqx+5Tqm2InSwLhE6Q==",
"dev": true,
+ "license": "MIT",
"engines": {
"node": ">=8"
}
@@ -1706,6 +1947,7 @@
"resolved": "https://registry.npmjs.org/path-type/-/path-type-4.0.0.tgz",
"integrity": "sha512-gDKb8aZMDeD/tZWs9P6+q0J9Mwkdl6xMV8TjnGP3qJVJ06bdMgkbBlLU8IdfOsIsFz2BW1rNVT3XuNEl8zPAvw==",
"dev": true,
+ "license": "MIT",
"engines": {
"node": ">=8"
}
@@ -1714,6 +1956,7 @@
"version": "1.1.3",
"resolved": "https://registry.npmjs.org/peek-stream/-/peek-stream-1.1.3.tgz",
"integrity": "sha512-FhJ+YbOSBb9/rIl2ZeE/QHEsWn7PqNYt8ARAY3kIgNGOk13g9FGyIY6JIl/xB/3TFRVoTv5as0l11weORrTekA==",
+ "license": "MIT",
"dependencies": {
"buffer-from": "^1.0.0",
"duplexify": "^3.5.0",
@@ -1725,6 +1968,7 @@
"resolved": "https://registry.npmjs.org/picomatch/-/picomatch-2.3.1.tgz",
"integrity": "sha512-JU3teHTNjmE2VCGFzuY8EXzCDVwEqB2a8fsIvwaStHhAWJEeVd1o1QD80CU6+ZdEXXSLbSsuLwJjkCBWqRQUVA==",
"dev": true,
+ "license": "MIT",
"engines": {
"node": ">=8.6"
},
@@ -1737,6 +1981,7 @@
"resolved": "https://registry.npmjs.org/prelude-ls/-/prelude-ls-1.2.1.tgz",
"integrity": "sha512-vkcDPrRZo1QZLbn5RLGPpg/WmIQ65qoWWhcGKf/b5eplkkarX0m9z8ppCat4mlOqUsWpyNuYgO3VRyrYHSzX5g==",
"dev": true,
+ "license": "MIT",
"engines": {
"node": ">= 0.8.0"
}
@@ -1744,12 +1989,14 @@
"node_modules/process-nextick-args": {
"version": "2.0.1",
"resolved": "https://registry.npmjs.org/process-nextick-args/-/process-nextick-args-2.0.1.tgz",
- "integrity": "sha512-3ouUOpQhtgrbOa17J7+uxOTpITYWaGP7/AhoR3+A+/1e9skrzelGi/dXzEYyvbxubEF6Wn2ypscTKiKJFFn1ag=="
+ "integrity": "sha512-3ouUOpQhtgrbOa17J7+uxOTpITYWaGP7/AhoR3+A+/1e9skrzelGi/dXzEYyvbxubEF6Wn2ypscTKiKJFFn1ag==",
+ "license": "MIT"
},
"node_modules/pump": {
- "version": "3.0.0",
- "resolved": "https://registry.npmjs.org/pump/-/pump-3.0.0.tgz",
- "integrity": "sha512-LwZy+p3SFs1Pytd/jYct4wpv49HiYCqd9Rlc5ZVdk0V+8Yzv6jR5Blk3TRmPL1ft69TxP0IMZGJ+WPFU2BFhww==",
+ "version": "2.0.1",
+ "resolved": "https://registry.npmjs.org/pump/-/pump-2.0.1.tgz",
+ "integrity": "sha512-ruPMNRkN3MHP1cWJc9OWr+T/xDP0jhXYCLfJcBuX54hhfIBnaQmAUMfDcG4DM5UMWByBbJY69QSphm3jtDKIkA==",
+ "license": "MIT",
"dependencies": {
"end-of-stream": "^1.1.0",
"once": "^1.3.1"
@@ -1759,26 +2006,19 @@
"version": "1.5.1",
"resolved": "https://registry.npmjs.org/pumpify/-/pumpify-1.5.1.tgz",
"integrity": "sha512-oClZI37HvuUJJxSKKrC17bZ9Cu0ZYhEAGPsPUy9KlMUmv9dKX2o77RUmq7f3XjIxbwyGwYzbzQ1L2Ks8sIradQ==",
+ "license": "MIT",
"dependencies": {
"duplexify": "^3.6.0",
"inherits": "^2.0.3",
"pump": "^2.0.0"
}
},
- "node_modules/pumpify/node_modules/pump": {
- "version": "2.0.1",
- "resolved": "https://registry.npmjs.org/pump/-/pump-2.0.1.tgz",
- "integrity": "sha512-ruPMNRkN3MHP1cWJc9OWr+T/xDP0jhXYCLfJcBuX54hhfIBnaQmAUMfDcG4DM5UMWByBbJY69QSphm3jtDKIkA==",
- "dependencies": {
- "end-of-stream": "^1.1.0",
- "once": "^1.3.1"
- }
- },
"node_modules/punycode": {
- "version": "2.3.0",
- "resolved": "https://registry.npmjs.org/punycode/-/punycode-2.3.0.tgz",
- "integrity": "sha512-rRV+zQD8tVFys26lAGR9WUuS4iUAngJScM+ZRSKtvl5tKeZ2t5bvdNFdNHBW9FWR4guGHlgmsZ1G7BSm2wTbuA==",
+ "version": "2.3.1",
+ "resolved": "https://registry.npmjs.org/punycode/-/punycode-2.3.1.tgz",
+ "integrity": "sha512-vYt7UD1U9Wg6138shLtLOvdAu+8DsC/ilFtEVHcH+wydcSpNE20AfSOduf6MkRFahL5FY7X1oU7nKVZFtfq8Fg==",
"dev": true,
+ "license": "MIT",
"engines": {
"node": ">=6"
}
@@ -1801,18 +2041,21 @@
"type": "consulting",
"url": "https://feross.org/support"
}
- ]
+ ],
+ "license": "MIT"
},
"node_modules/queue-tick": {
"version": "1.0.1",
"resolved": "https://registry.npmjs.org/queue-tick/-/queue-tick-1.0.1.tgz",
- "integrity": "sha512-kJt5qhMxoszgU/62PLP1CJytzd2NKetjSRnyuj31fDd3Rlcz3fzlFdFLD1SItunPwyqEOkca6GbV612BWfaBag=="
+ "integrity": "sha512-kJt5qhMxoszgU/62PLP1CJytzd2NKetjSRnyuj31fDd3Rlcz3fzlFdFLD1SItunPwyqEOkca6GbV612BWfaBag==",
+ "license": "MIT"
},
"node_modules/random-bigint": {
"version": "0.0.1",
"resolved": "https://registry.npmjs.org/random-bigint/-/random-bigint-0.0.1.tgz",
"integrity": "sha512-X+NTsf5Hzl/tRNLiNTD3N1LRU0eKdIE0+plNlV1CmXLTlnAxj6HipcTnOhWvFRoSytCz6l1f4KYFf/iH8NNSLw==",
"dev": true,
+ "license": "ISC",
"engines": {
"node": ">=10.0.0"
}
@@ -1822,6 +2065,7 @@
"resolved": "https://registry.npmjs.org/randombytes/-/randombytes-2.1.0.tgz",
"integrity": "sha512-vYl3iOX+4CKUWuxGi9Ukhie6fsqXqS9FE2Zaic4tNFD2N2QQaXOMFbuKK4QmDHC0JO6B1Zp41J0LpT0oR68amQ==",
"dev": true,
+ "license": "MIT",
"dependencies": {
"safe-buffer": "^5.1.0"
}
@@ -1830,6 +2074,7 @@
"version": "2.3.8",
"resolved": "https://registry.npmjs.org/readable-stream/-/readable-stream-2.3.8.tgz",
"integrity": "sha512-8p0AUk4XODgIewSi0l8Epjs+EVnWiK7NoDIEGU0HhE7+ZyY8D1IMY7odu5lRrFXGg71L15KG8QrPmum45RTtdA==",
+ "license": "MIT",
"dependencies": {
"core-util-is": "~1.0.0",
"inherits": "~2.0.3",
@@ -1845,6 +2090,7 @@
"resolved": "https://registry.npmjs.org/readdirp/-/readdirp-3.6.0.tgz",
"integrity": "sha512-hOS089on8RduqdbhvQ5Z37A0ESjsqz6qnRcffsMU3495FuTdqSm+7bhJ29JvIOsBDEEnan5DPu9t3To9VRlMzA==",
"dev": true,
+ "license": "MIT",
"dependencies": {
"picomatch": "^2.2.1"
},
@@ -1857,6 +2103,7 @@
"resolved": "https://registry.npmjs.org/require-directory/-/require-directory-2.1.1.tgz",
"integrity": "sha512-fGxEI7+wsG9xrvdjsrlmL22OMTTiHRwAMroiEeMgq8gzoLC/PQr7RsRDSTLUg/bZAZtF+TVIkHc6/4RIKrui+Q==",
"dev": true,
+ "license": "MIT",
"engines": {
"node": ">=0.10.0"
}
@@ -1866,6 +2113,7 @@
"resolved": "https://registry.npmjs.org/resolve-from/-/resolve-from-4.0.0.tgz",
"integrity": "sha512-pb/MYmXstAkysRFx8piNI1tGFNQIFA3vkE3Gq4EuA1dF6gHp/+vgZqsCGJapvy8N3Q+4o7FwvquPJcnZ7RYy4g==",
"dev": true,
+ "license": "MIT",
"engines": {
"node": ">=4"
}
@@ -1875,6 +2123,7 @@
"resolved": "https://registry.npmjs.org/reusify/-/reusify-1.0.4.tgz",
"integrity": "sha512-U9nH88a3fc/ekCF1l0/UP1IosiuIjyTh7hBvXVMHYgVcfGvt897Xguj2UOLDeI5BG2m7/uwyaLVT6fbtCwTyzw==",
"dev": true,
+ "license": "MIT",
"engines": {
"iojs": ">=1.0.0",
"node": ">=0.10.0"
@@ -1884,7 +2133,9 @@
"version": "3.0.2",
"resolved": "https://registry.npmjs.org/rimraf/-/rimraf-3.0.2.tgz",
"integrity": "sha512-JZkJMZkAGFFPP2YqXZXPbMlMBgsxzE8ILs4lMIX/2o0L9UBw9O/Y3o6wFw/i9YLapcUJWwqbi3kdxIPdC62TIA==",
+ "deprecated": "Rimraf versions prior to v4 are no longer supported",
"dev": true,
+ "license": "ISC",
"dependencies": {
"glob": "^7.1.3"
},
@@ -1895,6 +2146,52 @@
"url": "https://github.com/sponsors/isaacs"
}
},
+ "node_modules/rimraf/node_modules/brace-expansion": {
+ "version": "1.1.11",
+ "resolved": "https://registry.npmjs.org/brace-expansion/-/brace-expansion-1.1.11.tgz",
+ "integrity": "sha512-iCuPHDFgrHX7H2vEI/5xpz07zSHB00TpugqhmYtVmMO6518mCuRMoOYFldEBl0g187ufozdaHgWKcYFb61qGiA==",
+ "dev": true,
+ "license": "MIT",
+ "dependencies": {
+ "balanced-match": "^1.0.0",
+ "concat-map": "0.0.1"
+ }
+ },
+ "node_modules/rimraf/node_modules/glob": {
+ "version": "7.2.3",
+ "resolved": "https://registry.npmjs.org/glob/-/glob-7.2.3.tgz",
+ "integrity": "sha512-nFR0zLpU2YCaRxwoCJvL6UvCH2JFyFVIvwTLsIf21AuHlMskA1hhTdk+LlYJtOlYt9v6dvszD2BGRqBL+iQK9Q==",
+ "deprecated": "Glob versions prior to v9 are no longer supported",
+ "dev": true,
+ "license": "ISC",
+ "dependencies": {
+ "fs.realpath": "^1.0.0",
+ "inflight": "^1.0.4",
+ "inherits": "2",
+ "minimatch": "^3.1.1",
+ "once": "^1.3.0",
+ "path-is-absolute": "^1.0.0"
+ },
+ "engines": {
+ "node": "*"
+ },
+ "funding": {
+ "url": "https://github.com/sponsors/isaacs"
+ }
+ },
+ "node_modules/rimraf/node_modules/minimatch": {
+ "version": "3.1.2",
+ "resolved": "https://registry.npmjs.org/minimatch/-/minimatch-3.1.2.tgz",
+ "integrity": "sha512-J7p63hRiAjw1NDEww1W7i37+ByIrOWO5XQQAzZ3VOcL0PNybwpfmV/N05zFAzwQ9USyEcX6t3UO+K5aqBQOIHw==",
+ "dev": true,
+ "license": "ISC",
+ "dependencies": {
+ "brace-expansion": "^1.1.7"
+ },
+ "engines": {
+ "node": "*"
+ }
+ },
"node_modules/run-parallel": {
"version": "1.2.0",
"resolved": "https://registry.npmjs.org/run-parallel/-/run-parallel-1.2.0.tgz",
@@ -1914,6 +2211,7 @@
"url": "https://feross.org/support"
}
],
+ "license": "MIT",
"dependencies": {
"queue-microtask": "^1.2.2"
}
@@ -1921,16 +2219,15 @@
"node_modules/safe-buffer": {
"version": "5.1.2",
"resolved": "https://registry.npmjs.org/safe-buffer/-/safe-buffer-5.1.2.tgz",
- "integrity": "sha512-Gd2UZBJDkXlY7GbJxfsE8/nvKkUEU1G38c1siN6QP6a9PT9MmHB8GnpscSmMJSoF8LOIrt8ud/wPtojys4G6+g=="
+ "integrity": "sha512-Gd2UZBJDkXlY7GbJxfsE8/nvKkUEU1G38c1siN6QP6a9PT9MmHB8GnpscSmMJSoF8LOIrt8ud/wPtojys4G6+g==",
+ "license": "MIT"
},
"node_modules/semver": {
- "version": "7.5.4",
- "resolved": "https://registry.npmjs.org/semver/-/semver-7.5.4.tgz",
- "integrity": "sha512-1bCSESV6Pv+i21Hvpxp3Dx+pSD8lIPt8uVjRrxAUt/nbswYc+tK6Y2btiULjd4+fnq15PX+nqQDC7Oft7WkwcA==",
+ "version": "7.6.3",
+ "resolved": "https://registry.npmjs.org/semver/-/semver-7.6.3.tgz",
+ "integrity": "sha512-oVekP1cKtI+CTDvHWYFUcMtsK/00wmAEfyqKfNdARm8u1wNVhSgaX7A8d4UuIlUI5e84iEwOhs7ZPYRmzU9U6A==",
"dev": true,
- "dependencies": {
- "lru-cache": "^6.0.0"
- },
+ "license": "ISC",
"bin": {
"semver": "bin/semver.js"
},
@@ -1938,23 +2235,12 @@
"node": ">=10"
}
},
- "node_modules/semver/node_modules/lru-cache": {
- "version": "6.0.0",
- "resolved": "https://registry.npmjs.org/lru-cache/-/lru-cache-6.0.0.tgz",
- "integrity": "sha512-Jo6dJ04CmSjuznwJSS3pUeWmd/H0ffTlkXXgwZi+eq1UCmqQwCh+eLsYOYCwY991i2Fah4h1BEMCx4qThGbsiA==",
- "dev": true,
- "dependencies": {
- "yallist": "^4.0.0"
- },
- "engines": {
- "node": ">=10"
- }
- },
"node_modules/serialize-javascript": {
"version": "6.0.2",
"resolved": "https://registry.npmjs.org/serialize-javascript/-/serialize-javascript-6.0.2.tgz",
"integrity": "sha512-Saa1xPByTTq2gdeFZYLLo+RFE35NHZkAbqZeWNd3BpzppeVisAqpDjcp8dyf6uIvEqJRd46jemmyA4iFIeVk8g==",
"dev": true,
+ "license": "BSD-3-Clause",
"dependencies": {
"randombytes": "^2.1.0"
}
@@ -1964,6 +2250,7 @@
"resolved": "https://registry.npmjs.org/shebang-command/-/shebang-command-2.0.0.tgz",
"integrity": "sha512-kHxr2zZpYtdmrN1qDjrrX/Z1rR1kG8Dx+gkpK1G4eXmvXswmcE1hTWBWYUzlraYw1/yZp6YuDY77YtvbN0dmDA==",
"dev": true,
+ "license": "MIT",
"dependencies": {
"shebang-regex": "^3.0.0"
},
@@ -1976,6 +2263,7 @@
"resolved": "https://registry.npmjs.org/shebang-regex/-/shebang-regex-3.0.0.tgz",
"integrity": "sha512-7++dFhtcx3353uBaq8DDR4NuxBetBzC7ZQOhmTQInHEd6bSrXdiEyzCvG07Z44UYdLShWUyXt5M/yhz8ekcb1A==",
"dev": true,
+ "license": "MIT",
"engines": {
"node": ">=8"
}
@@ -1985,6 +2273,7 @@
"resolved": "https://registry.npmjs.org/slash/-/slash-3.0.0.tgz",
"integrity": "sha512-g9Q1haeby36OSStwb4ntCGGGaKsaVSjQ68fBxoQcutl5fS1vuY18H3wSt3jFyFtrkx+Kz0V1G85A4MyAdDMi2Q==",
"dev": true,
+ "license": "MIT",
"engines": {
"node": ">=8"
}
@@ -1992,21 +2281,28 @@
"node_modules/stream-shift": {
"version": "1.0.3",
"resolved": "https://registry.npmjs.org/stream-shift/-/stream-shift-1.0.3.tgz",
- "integrity": "sha512-76ORR0DO1o1hlKwTbi/DM3EXWGf3ZJYO8cXX5RJwnul2DEg2oyoZyjLNoQM8WsvZiFKCRfC1O0J7iCvie3RZmQ=="
+ "integrity": "sha512-76ORR0DO1o1hlKwTbi/DM3EXWGf3ZJYO8cXX5RJwnul2DEg2oyoZyjLNoQM8WsvZiFKCRfC1O0J7iCvie3RZmQ==",
+ "license": "MIT"
},
"node_modules/streamx": {
- "version": "2.15.7",
- "resolved": "https://registry.npmjs.org/streamx/-/streamx-2.15.7.tgz",
- "integrity": "sha512-NPEKS5+yjyo597eafGbKW5ujh7Sm6lDLHZQd/lRSz6S0VarpADBJItqfB4PnwpS+472oob1GX5cCY9vzfJpHUA==",
+ "version": "2.20.2",
+ "resolved": "https://registry.npmjs.org/streamx/-/streamx-2.20.2.tgz",
+ "integrity": "sha512-aDGDLU+j9tJcUdPGOaHmVF1u/hhI+CsGkT02V3OKlHDV7IukOI+nTWAGkiZEKCO35rWN1wIr4tS7YFr1f4qSvA==",
+ "license": "MIT",
"dependencies": {
- "fast-fifo": "^1.1.0",
- "queue-tick": "^1.0.1"
+ "fast-fifo": "^1.3.2",
+ "queue-tick": "^1.0.1",
+ "text-decoder": "^1.1.0"
+ },
+ "optionalDependencies": {
+ "bare-events": "^2.2.0"
}
},
"node_modules/string_decoder": {
"version": "1.1.1",
"resolved": "https://registry.npmjs.org/string_decoder/-/string_decoder-1.1.1.tgz",
"integrity": "sha512-n/ShnvDi6FHbbVfviro+WojiFzv+s8MPMHBczVePfUpDJLwoLT0ht1l4YwBCbi8pJAveEEdnkHyPyTP/mzRfwg==",
+ "license": "MIT",
"dependencies": {
"safe-buffer": "~5.1.0"
}
@@ -2016,6 +2312,7 @@
"resolved": "https://registry.npmjs.org/string-width/-/string-width-4.2.3.tgz",
"integrity": "sha512-wKyQRQpjJ0sIp62ErSZdGsjMJWsap5oRNihHhu6G7JVO/9jIB6UyevL+tXuOqrng8j/cxKTWyWUwvSTriiZz/g==",
"dev": true,
+ "license": "MIT",
"dependencies": {
"emoji-regex": "^8.0.0",
"is-fullwidth-code-point": "^3.0.0",
@@ -2030,6 +2327,7 @@
"resolved": "https://registry.npmjs.org/strip-ansi/-/strip-ansi-6.0.1.tgz",
"integrity": "sha512-Y38VPSHcqkFrCpFnQ9vuSXmquuv5oXOKpGeT6aGrr3o3Gc9AlVa6JBfUSOCnbxGGZF+/0ooI7KrPuUSztUdU5A==",
"dev": true,
+ "license": "MIT",
"dependencies": {
"ansi-regex": "^5.0.1"
},
@@ -2042,6 +2340,7 @@
"resolved": "https://registry.npmjs.org/strip-json-comments/-/strip-json-comments-3.1.1.tgz",
"integrity": "sha512-6fPc+R4ihwqP6N/aIv2f1gMH8lOVtWQHoqC4yK6oSDVVocumAsfCqjkXnqiYMhmMwS/mEHLp7Vehlt3ql6lEig==",
"dev": true,
+ "license": "MIT",
"engines": {
"node": ">=8"
},
@@ -2054,6 +2353,7 @@
"resolved": "https://registry.npmjs.org/supports-color/-/supports-color-7.2.0.tgz",
"integrity": "sha512-qpCAvRl9stuOHveKsn7HncJRvv501qIacKzQlO/+Lwxc9+0q2wLyv4Dfvt80/DPn2pqOBsJdDiogXGR9+OvwRw==",
"dev": true,
+ "license": "MIT",
"dependencies": {
"has-flag": "^4.0.0"
},
@@ -2062,35 +2362,58 @@
}
},
"node_modules/tar-fs": {
- "version": "3.0.4",
- "resolved": "https://registry.npmjs.org/tar-fs/-/tar-fs-3.0.4.tgz",
- "integrity": "sha512-5AFQU8b9qLfZCX9zp2duONhPmZv0hGYiBPJsyUdqMjzq/mqVpy/rEUSeHk1+YitmxugaptgBh5oDGU3VsAJq4w==",
+ "version": "3.0.6",
+ "resolved": "https://registry.npmjs.org/tar-fs/-/tar-fs-3.0.6.tgz",
+ "integrity": "sha512-iokBDQQkUyeXhgPYaZxmczGPhnhXZ0CmrqI+MOb/WFGS9DW5wnfrLgtjUJBvz50vQ3qfRwJ62QVoCFu8mPVu5w==",
+ "license": "MIT",
"dependencies": {
- "mkdirp-classic": "^0.5.2",
"pump": "^3.0.0",
"tar-stream": "^3.1.5"
+ },
+ "optionalDependencies": {
+ "bare-fs": "^2.1.1",
+ "bare-path": "^2.1.0"
+ }
+ },
+ "node_modules/tar-fs/node_modules/pump": {
+ "version": "3.0.2",
+ "resolved": "https://registry.npmjs.org/pump/-/pump-3.0.2.tgz",
+ "integrity": "sha512-tUPXtzlGM8FE3P0ZL6DVs/3P58k9nk8/jZeQCurTJylQA8qFYzHFfhBJkuqyE0FifOsQ0uKWekiZ5g8wtr28cw==",
+ "license": "MIT",
+ "dependencies": {
+ "end-of-stream": "^1.1.0",
+ "once": "^1.3.1"
}
},
"node_modules/tar-stream": {
"version": "3.1.7",
"resolved": "https://registry.npmjs.org/tar-stream/-/tar-stream-3.1.7.tgz",
"integrity": "sha512-qJj60CXt7IU1Ffyc3NJMjh6EkuCFej46zUqJ4J7pqYlThyd9bO0XBTmcOIhSzZJVWfsLks0+nle/j538YAW9RQ==",
+ "license": "MIT",
"dependencies": {
"b4a": "^1.6.4",
"fast-fifo": "^1.2.0",
"streamx": "^2.15.0"
}
},
+ "node_modules/text-decoder": {
+ "version": "1.2.1",
+ "resolved": "https://registry.npmjs.org/text-decoder/-/text-decoder-1.2.1.tgz",
+ "integrity": "sha512-x9v3H/lTKIJKQQe7RPQkLfKAnc9lUTkWDypIQgTzPJAq+5/GCDHonmshfvlsNSj58yyshbIJJDLmU15qNERrXQ==",
+ "license": "Apache-2.0"
+ },
"node_modules/text-table": {
"version": "0.2.0",
"resolved": "https://registry.npmjs.org/text-table/-/text-table-0.2.0.tgz",
"integrity": "sha512-N+8UisAXDGk8PFXP4HAzVR9nbfmVJ3zYLAWiTIoqC5v5isinhr+r5uaO8+7r3BMfuNIufIsA7RdpVgacC2cSpw==",
- "dev": true
+ "dev": true,
+ "license": "MIT"
},
"node_modules/through2": {
"version": "2.0.5",
"resolved": "https://registry.npmjs.org/through2/-/through2-2.0.5.tgz",
"integrity": "sha512-/mrRod8xqpA+IHSLyGCQ2s8SPHiCDEeQJSep1jqLYeEUClOFG2Qsh+4FU6G9VeqpZnGW/Su8LQGc4YKni5rYSQ==",
+ "license": "MIT",
"dependencies": {
"readable-stream": "~2.3.6",
"xtend": "~4.0.1"
@@ -2101,6 +2424,7 @@
"resolved": "https://registry.npmjs.org/to-regex-range/-/to-regex-range-5.0.1.tgz",
"integrity": "sha512-65P7iz6X5yEr1cwcgvQxbbIw7Uk3gOy5dIdtZ4rDveLqhrdJP+Li/Hx6tyK0NEb+2GCyneCMJiGqrADCSNk8sQ==",
"dev": true,
+ "license": "MIT",
"dependencies": {
"is-number": "^7.0.0"
},
@@ -2109,12 +2433,13 @@
}
},
"node_modules/ts-api-utils": {
- "version": "1.0.3",
- "resolved": "https://registry.npmjs.org/ts-api-utils/-/ts-api-utils-1.0.3.tgz",
- "integrity": "sha512-wNMeqtMz5NtwpT/UZGY5alT+VoKdSsOOP/kqHFcUW1P/VRhH2wJ48+DN2WwUliNbQ976ETwDL0Ifd2VVvgonvg==",
+ "version": "1.4.0",
+ "resolved": "https://registry.npmjs.org/ts-api-utils/-/ts-api-utils-1.4.0.tgz",
+ "integrity": "sha512-032cPxaEKwM+GT3vA5JXNzIaizx388rhsSW79vGRNGXfRRAdEAn2mvk36PvK5HnOchyWZ7afLEXqYCvPCrzuzQ==",
"dev": true,
+ "license": "MIT",
"engines": {
- "node": ">=16.13.0"
+ "node": ">=16"
},
"peerDependencies": {
"typescript": ">=4.2.0"
@@ -2125,6 +2450,7 @@
"resolved": "https://registry.npmjs.org/type-check/-/type-check-0.4.0.tgz",
"integrity": "sha512-XleUoc9uwGXqjWwXaUTZAmzMcFZ5858QA2vvx1Ur5xIcixXIP+8LnFDgRplU30us6teqdlskFfu+ae4K79Ooew==",
"dev": true,
+ "license": "MIT",
"dependencies": {
"prelude-ls": "^1.2.1"
},
@@ -2137,6 +2463,7 @@
"resolved": "https://registry.npmjs.org/type-fest/-/type-fest-0.20.2.tgz",
"integrity": "sha512-Ne+eE4r0/iWnpAxD852z3A+N0Bt5RN//NjJwRd2VFHEmrywxf5vsZlh4R6lixl6B+wz/8d+maTSAkN1FIkI3LQ==",
"dev": true,
+ "license": "(MIT OR CC0-1.0)",
"engines": {
"node": ">=10"
},
@@ -2145,10 +2472,11 @@
}
},
"node_modules/typescript": {
- "version": "5.2.2",
- "resolved": "https://registry.npmjs.org/typescript/-/typescript-5.2.2.tgz",
- "integrity": "sha512-mI4WrpHsbCIcwT9cF4FZvr80QUeKvsUsUvKDoR+X/7XHQH98xYD8YHZg7ANtz2GtZt/CBq2QJ0thkGJMHfqc1w==",
+ "version": "5.6.3",
+ "resolved": "https://registry.npmjs.org/typescript/-/typescript-5.6.3.tgz",
+ "integrity": "sha512-hjcS1mhfuyi4WW8IWtjP7brDrG2cuDZukyrYrSauoXGNgx0S7zceP07adYkJycEr56BOUTNPzbInooiN3fn1qw==",
"dev": true,
+ "license": "Apache-2.0",
"bin": {
"tsc": "bin/tsc",
"tsserver": "bin/tsserver"
@@ -2157,11 +2485,19 @@
"node": ">=14.17"
}
},
+ "node_modules/undici-types": {
+ "version": "6.19.8",
+ "resolved": "https://registry.npmjs.org/undici-types/-/undici-types-6.19.8.tgz",
+ "integrity": "sha512-ve2KP6f/JnbPBFyobGHuerC9g1FYGn/F8n1LWTwNxCEzd6IfqTwUQcNXgEtmmQ6DlRrC1hrSrBnCZPokRrDHjw==",
+ "dev": true,
+ "license": "MIT"
+ },
"node_modules/uri-js": {
"version": "4.4.1",
"resolved": "https://registry.npmjs.org/uri-js/-/uri-js-4.4.1.tgz",
"integrity": "sha512-7rKUyy33Q1yc98pQ1DAmLtwX109F7TIfWlW1Ydo8Wl1ii1SeHieeh0HHfPeL2fMXK6z0s8ecKs9frCuLJvndBg==",
"dev": true,
+ "license": "BSD-2-Clause",
"dependencies": {
"punycode": "^2.1.0"
}
@@ -2169,13 +2505,15 @@
"node_modules/util-deprecate": {
"version": "1.0.2",
"resolved": "https://registry.npmjs.org/util-deprecate/-/util-deprecate-1.0.2.tgz",
- "integrity": "sha512-EPD5q1uXyFxJpCrLnCc1nHnq3gOa6DZBocAIiI2TaSCA7VCJ1UJDMagCzIkXNsUYfD1daK//LTEQ8xiIbrHtcw=="
+ "integrity": "sha512-EPD5q1uXyFxJpCrLnCc1nHnq3gOa6DZBocAIiI2TaSCA7VCJ1UJDMagCzIkXNsUYfD1daK//LTEQ8xiIbrHtcw==",
+ "license": "MIT"
},
"node_modules/which": {
"version": "2.0.2",
"resolved": "https://registry.npmjs.org/which/-/which-2.0.2.tgz",
"integrity": "sha512-BLI3Tl1TW3Pvl70l3yq3Y64i+awpwXqsGBYWkkqMtnbXgrMD+yj7rhW0kuEDxzJaYXGjEW5ogapKNMEKNMjibA==",
"dev": true,
+ "license": "ISC",
"dependencies": {
"isexe": "^2.0.0"
},
@@ -2186,17 +2524,29 @@
"node": ">= 8"
}
},
+ "node_modules/word-wrap": {
+ "version": "1.2.5",
+ "resolved": "https://registry.npmjs.org/word-wrap/-/word-wrap-1.2.5.tgz",
+ "integrity": "sha512-BN22B5eaMMI9UMtjrGd5g5eCYPpCPDUy0FJXbYsaT5zYxjFOckS53SQDE3pWkVoWpHXVb3BrYcEN4Twa55B5cA==",
+ "dev": true,
+ "license": "MIT",
+ "engines": {
+ "node": ">=0.10.0"
+ }
+ },
"node_modules/workerpool": {
"version": "6.5.1",
"resolved": "https://registry.npmjs.org/workerpool/-/workerpool-6.5.1.tgz",
"integrity": "sha512-Fs4dNYcsdpYSAfVxhnl1L5zTksjvOJxtC5hzMNl+1t9B8hTJTdKDyZ5ju7ztgPy+ft9tBFXoOlDNiOT9WUXZlA==",
- "dev": true
+ "dev": true,
+ "license": "Apache-2.0"
},
"node_modules/wrap-ansi": {
"version": "7.0.0",
"resolved": "https://registry.npmjs.org/wrap-ansi/-/wrap-ansi-7.0.0.tgz",
"integrity": "sha512-YVGIj2kamLSTxw6NsZjoBxfSwsn0ycdesmc4p+Q21c5zPuZ1pl+NfxVdxPtdHvmNVOQ6XSYG4AUtyt/Fi7D16Q==",
"dev": true,
+ "license": "MIT",
"dependencies": {
"ansi-styles": "^4.0.0",
"string-width": "^4.1.0",
@@ -2212,12 +2562,14 @@
"node_modules/wrappy": {
"version": "1.0.2",
"resolved": "https://registry.npmjs.org/wrappy/-/wrappy-1.0.2.tgz",
- "integrity": "sha512-l4Sp/DRseor9wL6EvV2+TuQn63dMkPjZ/sp9XkghTEbV9KlPS1xUsZ3u7/IQO4wxtcFB4bgpQPRcR3QCvezPcQ=="
+ "integrity": "sha512-l4Sp/DRseor9wL6EvV2+TuQn63dMkPjZ/sp9XkghTEbV9KlPS1xUsZ3u7/IQO4wxtcFB4bgpQPRcR3QCvezPcQ==",
+ "license": "ISC"
},
"node_modules/xtend": {
"version": "4.0.2",
"resolved": "https://registry.npmjs.org/xtend/-/xtend-4.0.2.tgz",
"integrity": "sha512-LKYU1iAXJXUgAXn9URjiu+MWhyUXHsvfp7mcuYm9dSUKK0/CjtrUwFAxD82/mCWbtLsGjFIad0wIsod4zrTAEQ==",
+ "license": "MIT",
"engines": {
"node": ">=0.4"
}
@@ -2227,21 +2579,17 @@
"resolved": "https://registry.npmjs.org/y18n/-/y18n-5.0.8.tgz",
"integrity": "sha512-0pfFzegeDWJHJIAmTLRP2DwHjdF5s7jo9tuztdQxAhINCdvS+3nGINqPd00AphqJR/0LhANUS6/+7SCb98YOfA==",
"dev": true,
+ "license": "ISC",
"engines": {
"node": ">=10"
}
},
- "node_modules/yallist": {
- "version": "4.0.0",
- "resolved": "https://registry.npmjs.org/yallist/-/yallist-4.0.0.tgz",
- "integrity": "sha512-3wdGidZyq5PB084XLES5TpOSRA3wjXAlIWMhum2kRcv/41Sn2emQ0dycQW4uZXLejwKvg6EsvbdlVL+FYEct7A==",
- "dev": true
- },
"node_modules/yargs": {
"version": "16.2.0",
"resolved": "https://registry.npmjs.org/yargs/-/yargs-16.2.0.tgz",
"integrity": "sha512-D1mvvtDG0L5ft/jGWkLpG1+m0eQxOfaBvTNELraWj22wSVUMWxZUvYgJYcKh6jGGIkJFhH4IZPQhR4TKpc8mBw==",
"dev": true,
+ "license": "MIT",
"dependencies": {
"cliui": "^7.0.2",
"escalade": "^3.1.1",
@@ -2260,6 +2608,7 @@
"resolved": "https://registry.npmjs.org/yargs-parser/-/yargs-parser-20.2.9.tgz",
"integrity": "sha512-y11nGElTIV+CT3Zv9t7VKl+Q3hTQoT9a1Qzezhhl6Rp21gJ/IVTW7Z3y9EWXhuUBC2Shnf+DX0antecpAwSP8w==",
"dev": true,
+ "license": "ISC",
"engines": {
"node": ">=10"
}
@@ -2269,6 +2618,7 @@
"resolved": "https://registry.npmjs.org/yargs-unparser/-/yargs-unparser-2.0.0.tgz",
"integrity": "sha512-7pRTIA9Qc1caZ0bZ6RYRGbHJthJWuakf+WmHK0rVeLkNrrGhfoabBNdue6kdINI6r4if7ocq9aD/n7xwKOdzOA==",
"dev": true,
+ "license": "MIT",
"dependencies": {
"camelcase": "^6.0.0",
"decamelize": "^4.0.0",
@@ -2284,6 +2634,7 @@
"resolved": "https://registry.npmjs.org/yocto-queue/-/yocto-queue-0.1.0.tgz",
"integrity": "sha512-rVksvsnNCdJ/ohGc6xgPwyN8eheCxsiLM8mxuE/t/mOVqJewPuO1miLpTHQiRgTKCLexL4MeAFVagts7HmNZ2Q==",
"dev": true,
+ "license": "MIT",
"engines": {
"node": ">=10"
},
diff --git a/src/bindings/js/node/package.json b/src/bindings/js/node/package.json
index 1ca1f10cdf57c2..10fc6d38bd51f4 100644
--- a/src/bindings/js/node/package.json
+++ b/src/bindings/js/node/package.json
@@ -1,6 +1,6 @@
{
"name": "openvino-node",
- "version": "2024.4.0",
+ "version": "2024.5.0-0",
"description": "OpenVINO™ utils for using from Node.js environment",
"repository": {
"url": "git+https://github.com/openvinotoolkit/openvino.git",
@@ -44,6 +44,7 @@
"tar-fs": "^3.0.4"
},
"binary": {
+ "version": "2024.5.0",
"module_path": "./bin/",
"remote_path": "./repositories/openvino/nodejs_bindings/{version}/{platform}/",
"package_name": "openvino_nodejs_bindings_{platform}_{version}_{arch}.tar.gz",
diff --git a/src/bindings/js/node/scripts/download-runtime.js b/src/bindings/js/node/scripts/download-runtime.js
index 90bece67161a6a..0fe2998953c4f3 100644
--- a/src/bindings/js/node/scripts/download-runtime.js
+++ b/src/bindings/js/node/scripts/download-runtime.js
@@ -17,7 +17,7 @@ async function main() {
await BinaryManager.prepareBinary(
join(__dirname, '..'),
- packageJson.version,
+ packageJson.binary.version || packageJson.version,
packageJson.binary,
{ force, ignoreIfExists, proxy },
);
diff --git a/src/bindings/python/src/pyopenvino/graph/ops/constant.cpp b/src/bindings/python/src/pyopenvino/graph/ops/constant.cpp
index d5b7e5878e0184..20361b1fc5ca19 100644
--- a/src/bindings/python/src/pyopenvino/graph/ops/constant.cpp
+++ b/src/bindings/python/src/pyopenvino/graph/ops/constant.cpp
@@ -121,6 +121,22 @@ void regclass_graph_op_Constant(py::module m) {
}
});
+ constant.def("get_tensor_view",
+ &ov::op::v0::Constant::get_tensor_view,
+ R"(
+ Get view on constant data as tensor.
+
+ :rtype: openvino.Tensor
+ )");
+
+ constant.def("get_strides",
+ &ov::op::v0::Constant::get_strides,
+ R"(
+ Constant's strides in bytes.
+
+ :rtype: openvino.Strides
+ )");
+
// TODO: Remove in future and re-use `get_data`
// Provide buffer access
constant.def_buffer([](const ov::op::v0::Constant& self) -> py::buffer_info {
@@ -236,6 +252,22 @@ void regclass_graph_op_Constant(py::module m) {
:rtype: numpy.array
)");
+ constant.def_property_readonly("tensor_view",
+ &ov::op::v0::Constant::get_tensor_view,
+ R"(
+ Get view on constant data as tensor.
+
+ :rtype: openvino.Tensor
+ )");
+
+ constant.def_property_readonly("strides",
+ &ov::op::v0::Constant::get_strides,
+ R"(
+ Constant's strides in bytes.
+
+ :rtype: openvino.Strides
+ )");
+
constant.def("__repr__", [](const ov::op::v0::Constant& self) {
std::stringstream shapes_ss;
for (size_t i = 0; i < self.get_output_size(); ++i) {
diff --git a/src/bindings/python/src/pyopenvino/graph/strides.cpp b/src/bindings/python/src/pyopenvino/graph/strides.cpp
index daecb6e9e3a312..951f4c3e687287 100644
--- a/src/bindings/python/src/pyopenvino/graph/strides.cpp
+++ b/src/bindings/python/src/pyopenvino/graph/strides.cpp
@@ -16,6 +16,14 @@
namespace py = pybind11;
+template
+bool compare_strides(const ov::Strides& a, const T& b) {
+ return a.size() == b.size() &&
+ std::equal(a.begin(), a.end(), b.begin(), [](const size_t& elem_a, const py::handle& elem_b) {
+ return elem_a == elem_b.cast();
+ });
+}
+
void regclass_graph_Strides(py::module m) {
py::class_> strides(m, "Strides");
strides.doc() = "openvino.runtime.Strides wraps ov::Strides";
@@ -48,6 +56,27 @@ void regclass_graph_Strides(py::module m) {
return self.size();
});
+ strides.def(
+ "__eq__",
+ [](const ov::Strides& a, const ov::Strides& b) {
+ return a == b;
+ },
+ py::is_operator());
+
+ strides.def(
+ "__eq__",
+ [](const ov::Strides& a, const py::tuple& b) {
+ return compare_strides(a, b);
+ },
+ py::is_operator());
+
+ strides.def(
+ "__eq__",
+ [](const ov::Strides& a, const py::list& b) {
+ return compare_strides(a, b);
+ },
+ py::is_operator());
+
strides.def(
"__iter__",
[](const ov::Strides& self) {
diff --git a/src/bindings/python/tests/test_graph/test_constant.py b/src/bindings/python/tests/test_graph/test_constant.py
index 7b349ad7cd94b1..a8b4dfa3e1a26b 100644
--- a/src/bindings/python/tests/test_graph/test_constant.py
+++ b/src/bindings/python/tests/test_graph/test_constant.py
@@ -6,7 +6,7 @@
import openvino as ov
import openvino.runtime.opset13 as ops
-from openvino import Type, PartialShape, Model, Tensor, compile_model
+from openvino import Type, PartialShape, Model, Strides, Tensor, compile_model
from openvino.runtime.op import Constant
from openvino.helpers import pack_data, unpack_data
@@ -756,7 +756,7 @@ def test_get_data_casting_packed(src_dtype, ov_type, dst_dtype, copy_flag):
],
)
def test_const_from_tensor(shared_flag):
- shape = [1, 3, 32, 32]
+ shape = [1, 2, 3, 3]
arr = np.ones(shape).astype(np.float32)
ov_tensor = Tensor(arr, shape, Type.f32)
ov_const = ops.constant(tensor=ov_tensor, shared_memory=shared_flag)
@@ -771,3 +771,6 @@ def test_const_from_tensor(shared_flag):
else:
assert not np.array_equal(ov_const.data, arr)
assert not np.shares_memory(arr, ov_const.data)
+
+ assert ov_const.strides == [72, 36, 12, 4]
+ assert ov_const.get_tensor_view().get_strides() == Strides([72, 36, 12, 4])
diff --git a/src/common/transformations/include/ov_ops/rotary_positional_embeddings.hpp b/src/common/transformations/include/ov_ops/rotary_positional_embeddings.hpp
index dcb9aef187d2d9..08c1aa8e3f5ad8 100644
--- a/src/common/transformations/include/ov_ops/rotary_positional_embeddings.hpp
+++ b/src/common/transformations/include/ov_ops/rotary_positional_embeddings.hpp
@@ -23,13 +23,14 @@ class TRANSFORMATIONS_API RoPE : public Op {
struct Config {
size_t slice_start = 0; // slice inner-most dimensions of input
size_t slice_stop = 0;
- bool input_trans0213 = false; // transpose input dim 1&2
- bool is_interleaved = false; // interleaved mode, implies trans0213 happens after RoPE
- size_t rotary_ndims = 0; // dimensions to be embedded (d in the description)
- bool is_chatglm = false; // chatglm is special which overrides other setting
- bool support_2d_rope = false; // 2d rope mode, Support 2 dimentional rope which is independant of batch and
- // each head. change input order to [batch, head_cnt, 4608] to support 2d rope
- bool is_qwen = false; // Qwen is special which overrides other setting
+ bool input_trans0213 = false; // transpose input dim 1&2
+ bool output_trans0213 = false; // implies trans0213 happens after RoPE
+ bool is_interleaved = false; // coordinates are interleaved
+ size_t rotary_ndims = 0; // dimensions to be embedded (d in the description)
+ bool is_chatglm = false; // chatglm is special which overrides other setting
+ bool support_2d_rope = false; // 2d rope mode, Support 2 dimentional rope which is independant of batch and
+ // each head. change input order to [batch, head_cnt, 4608] to support 2d rope
+ bool is_qwen = false; // Qwen is special which overrides other setting
size_t head_cnt = 0;
size_t head_size = 0;
int gather_position_arg_id =
diff --git a/src/common/transformations/include/transformations/common_optimizations/fuse_rotary_positional_embeddings.hpp b/src/common/transformations/include/transformations/common_optimizations/fuse_rotary_positional_embeddings.hpp
index eb1c92bcf9607f..3449151ab93ac5 100644
--- a/src/common/transformations/include/transformations/common_optimizations/fuse_rotary_positional_embeddings.hpp
+++ b/src/common/transformations/include/transformations/common_optimizations/fuse_rotary_positional_embeddings.hpp
@@ -12,6 +12,7 @@ namespace pass {
class TRANSFORMATIONS_API RoPEFusion;
class TRANSFORMATIONS_API RoPEFusionGPTNEOX;
+class TRANSFORMATIONS_API RoPEFusionFlux;
class TRANSFORMATIONS_API RoPEFusionGPTJ;
class TRANSFORMATIONS_API RoPEFusionChatGLM;
class TRANSFORMATIONS_API RoPEFusionQwen;
@@ -29,6 +30,12 @@ class ov::pass::RoPEFusionGPTNEOX : public ov::pass::MatcherPass {
RoPEFusionGPTNEOX();
};
+class ov::pass::RoPEFusionFlux : public ov::pass::MatcherPass {
+public:
+ OPENVINO_RTTI("RoPEFusionFlux", "0");
+ RoPEFusionFlux();
+};
+
class ov::pass::RoPEFusionGPTJ : public ov::pass::MatcherPass {
public:
OPENVINO_RTTI("RoPEFusionGPTJ", "0");
@@ -85,6 +92,7 @@ class ov::pass::RoPEFusion : public ov::pass::GraphRewrite {
public:
OPENVINO_RTTI("RoPEFusion", "0");
RoPEFusion(bool support_2d_rope = false) {
+ add_matcher();
add_matcher();
add_matcher();
// optional heads & tails are fused in separate matcher pass,
diff --git a/src/common/transformations/include/transformations/op_conversions/convert_reduce_to_pooling.hpp b/src/common/transformations/include/transformations/op_conversions/convert_reduce_to_pooling.hpp
index b74a0ff538e011..662660b926aa52 100644
--- a/src/common/transformations/include/transformations/op_conversions/convert_reduce_to_pooling.hpp
+++ b/src/common/transformations/include/transformations/op_conversions/convert_reduce_to_pooling.hpp
@@ -72,7 +72,7 @@ ov::matcher_pass_callback ConvertReduceBase::convert_reduce_to_pooling() {
return [&](ov::pass::pattern::Matcher& m) {
auto reduce = std::dynamic_pointer_cast(m.get_match_root());
- if (!reduce || transformation_callback(reduce)) {
+ if (!reduce || transformation_callback(reduce) || ov::shape_size(reduce->input_value(0).get_shape()) == 0) {
return false;
}
diff --git a/src/common/transformations/src/ov_ops/rotary_positional_embeddings.cpp b/src/common/transformations/src/ov_ops/rotary_positional_embeddings.cpp
index 3e75e2b88df266..88a42a7f456db1 100644
--- a/src/common/transformations/src/ov_ops/rotary_positional_embeddings.cpp
+++ b/src/common/transformations/src/ov_ops/rotary_positional_embeddings.cpp
@@ -76,7 +76,7 @@ void RoPE::validate_and_infer_types() {
if (m_config.input_trans0213) {
// transpose 0213 ([B,L,H,S]=>[B,H,L,S]) happens before RoPE
std::swap(input_pshape[2], input_pshape[1]);
- } else if (m_config.is_interleaved) {
+ } else if (m_config.output_trans0213) {
// transpose 0213 ([B,L,H,S]=>[B,H,L,S]) happens after RoPE
std::swap(input_pshape[2], input_pshape[1]);
}
@@ -90,6 +90,7 @@ bool RoPE::visit_attributes(ov::AttributeVisitor& visitor) {
visitor.on_attribute("slice_start", m_config.slice_start);
visitor.on_attribute("slice_stop", m_config.slice_stop);
visitor.on_attribute("input_trans0213", m_config.input_trans0213);
+ visitor.on_attribute("output_trans0213", m_config.output_trans0213);
visitor.on_attribute("is_interleaved", m_config.is_interleaved);
visitor.on_attribute("rotary_ndims", m_config.rotary_ndims);
visitor.on_attribute("is_chatglm", m_config.is_chatglm);
diff --git a/src/common/transformations/src/transformations/common_optimizations/fuse_rotary_positional_embeddings.cpp b/src/common/transformations/src/transformations/common_optimizations/fuse_rotary_positional_embeddings.cpp
index f002e0043a8744..ec49dd7152fed1 100644
--- a/src/common/transformations/src/transformations/common_optimizations/fuse_rotary_positional_embeddings.cpp
+++ b/src/common/transformations/src/transformations/common_optimizations/fuse_rotary_positional_embeddings.cpp
@@ -23,6 +23,94 @@
using namespace ov::gen_pattern;
+ov::pass::RoPEFusionFlux::RoPEFusionFlux() {
+ MATCHER_SCOPE(RoPEFusionFlux);
+ // x[?,24,?,128]
+ // x1 = reshape(x, [?,24,?,64,2])
+ // x1_0, x1_1 = split(x1, -1)
+ // x2 = concat(x1_0, x1_1 * (-1), -1)
+ // x3 = reshape(x2, [?,24,?,128])
+ // y1 = x * t_cos
+ // y2 = x3 * t_sin
+ // y = y1 + y2
+ auto x = makePattern(ov::Rank(4));
+ auto t_cos = makePattern(ov::Rank(4));
+ auto t_sin = makePattern(ov::Rank(4));
+
+ auto num_heads = ov::gen_pattern::Symbol("num_heads");
+ auto head_size = ov::gen_pattern::Symbol("head_size");
+
+ auto x1_target_shape = makeConst({0, num_heads, 0, -1, 2});
+ auto x1 = makePattern({x, x1_target_shape}, {{"special_zero", true}});
+ auto split = makePattern({x1, -1}, {{"num_splits", 2}});
+ split->set_output_size(2);
+
+ // 3 versions of mulitply by -1 depending on transformations execution prior to this pass
+ auto x1_1_neg_1 = makePattern({split->output(1), -1.0f}, {{"auto_broadcast", "numpy"}});
+
+ auto squeeze_2 = makePattern({split->output(1), -1});
+ auto x1_1_neg_2 = makePattern({squeeze_2, -1.0f}, {{"auto_broadcast", "numpy"}});
+ auto unsqueeze_2 = makePattern({x1_1_neg_2, -1});
+
+ auto x1_1_neg_3 = makePattern({split->output(1), -1.0f}, {{"auto_broadcast", "numpy"}});
+ auto squeeze_3 = makePattern({x1_1_neg_3, -1});
+ auto unsqueeze_3 = makePattern({squeeze_3, -1});
+
+ auto x2 = makePattern({x1_1_neg_1 | unsqueeze_2 | unsqueeze_3, split->output(0)}, {{"axis", -1}});
+ auto x3_target_shape = makeConst({0, num_heads, 0, head_size});
+ auto x3 = makePattern({x2, x3_target_shape}, {{"special_zero", true}});
+
+ auto y1 = makePattern({x, t_cos}, {{"auto_broadcast", "numpy"}});
+ auto y2 = makePattern({x3, t_sin}, {{"auto_broadcast", "numpy"}});
+
+ auto y = makePattern({y1, y2}, {{"auto_broadcast", "numpy"}});
+ auto result = y;
+
+ matcher_pass_callback callback = [OV_CAPTURE_CPY_AND_THIS](ov::pass::pattern::Matcher& m) {
+ PatternValidator validator(m);
+ if (!validator) {
+ return false;
+ }
+
+ const auto& pattern_map = m.get_pattern_value_map();
+ auto root = m.get_match_root();
+
+ op::internal::RoPE::Config config;
+ config.head_cnt = static_cast(validator["num_heads"]);
+ config.head_size = static_cast(validator["head_size"]);
+ config.rotary_ndims = config.head_size;
+ config.is_interleaved = true;
+ config.output_trans0213 = false;
+
+ OutputVector new_args;
+ new_args.push_back(pattern_map.at(x));
+ new_args.push_back(pattern_map.at(t_cos));
+ new_args.push_back(pattern_map.at(t_sin));
+
+ auto old_node = root;
+ auto new_node = std::make_shared(new_args, config);
+ new_node->set_friendly_name(old_node->get_friendly_name());
+ ov::copy_runtime_info({pattern_map.at(x1).get_node_shared_ptr(),
+ pattern_map.at(split).get_node_shared_ptr(),
+ pattern_map.at(x2).get_node_shared_ptr(),
+ pattern_map.at(x3).get_node_shared_ptr(),
+ pattern_map.at(y1).get_node_shared_ptr(),
+ pattern_map.at(y2).get_node_shared_ptr(),
+ pattern_map.at(result).get_node_shared_ptr()},
+ new_node);
+
+ ov::replace_node(old_node, new_node);
+
+ // this new node may match following additional matchers
+ register_new_node(new_node);
+
+ return true;
+ };
+
+ auto m = std::make_shared(result, matcher_name);
+ this->register_matcher(m, callback);
+}
+
ov::pass::RoPEFusionGPTNEOX::RoPEFusionGPTNEOX() {
MATCHER_SCOPE(RoPEFusionGPTNEOX);
@@ -373,6 +461,7 @@ ov::pass::RoPEFusionGPTJ::RoPEFusionGPTJ() {
OutputVector new_args;
config.rotary_ndims = static_cast(validator["ndims"]);
+ config.output_trans0213 = true;
config.is_interleaved = true;
// input is [B,L,H,S]
diff --git a/src/common/transformations/src/transformations/common_optimizations/remove_multi_subgraph_op_dangling_params.cpp b/src/common/transformations/src/transformations/common_optimizations/remove_multi_subgraph_op_dangling_params.cpp
index d86b4b71f102c7..fed6eaf9710420 100644
--- a/src/common/transformations/src/transformations/common_optimizations/remove_multi_subgraph_op_dangling_params.cpp
+++ b/src/common/transformations/src/transformations/common_optimizations/remove_multi_subgraph_op_dangling_params.cpp
@@ -11,10 +11,30 @@
#include "openvino/op/tensor_iterator.hpp"
#include "openvino/op/util/multi_subgraph_base.hpp"
#include "openvino/pass/pattern/op/wrap_type.hpp"
+#include "openvino/util/common_util.hpp"
#include "transformations/utils/utils.hpp"
using namespace ov::op::util;
+namespace {
+/** @brief Value to mark that input idx has been removed (at least one removed so last idx will be always available) */
+constexpr auto mark_removed = std::numeric_limits::max();
+
+constexpr bool is_not_removed_idx(const decltype(mark_removed) idx) {
+ return mark_removed != idx;
+}
+
+uint64_t get_updated_idx(uint64_t idx, uint64_t removed_idx) {
+ if (idx == removed_idx) {
+ return mark_removed;
+ } else if (is_not_removed_idx(idx) && idx > removed_idx) {
+ return idx - 1;
+ } else {
+ return idx;
+ }
+};
+} // namespace
+
bool ov::pass::RemoveMultiSubGraphOpDanglingParamsResults::run_on_model(const std::shared_ptr& m) {
RUN_ON_MODEL_SCOPE(RemoveMultiSubGraphOpDanglingParamsResults);
bool is_changed = false;
@@ -117,7 +137,6 @@ bool ov::pass::RemoveMultiSubGraphOpDanglingParamsResults::run_on_model(const st
// Remove inputs
bool pass_required = false;
std::set required_inputs_indices;
- auto op_inputs = multi_subgraph_op->input_values();
std::vector> to_remove_descriptors_indexes;
to_remove_descriptors_indexes.resize(subgraphs_size);
for (size_t body_idx = 0; body_idx < subgraphs_size; ++body_idx) {
@@ -142,64 +161,57 @@ bool ov::pass::RemoveMultiSubGraphOpDanglingParamsResults::run_on_model(const st
using DescType = op::util::MultiSubGraphOp::MultiSubgraphInputDescriptionVector;
auto update_body_param_desc = [](DescType& descriptors, uint64_t removed_body_idx) {
for (auto& desc : descriptors) {
- if (desc->m_body_parameter_index > removed_body_idx) {
- desc->m_body_parameter_index--;
- }
+ desc->m_body_parameter_index = get_updated_idx(desc->m_body_parameter_index, removed_body_idx);
}
};
auto update_op_inputs_desc = [&subgraphs_size](const std::shared_ptr& op,
- std::set& required_inputs_indices,
uint64_t removed_loop_idx) {
- std::set new_required_inputs_indices;
for (size_t body_idx = 0; body_idx < subgraphs_size; ++body_idx) {
auto& descriptors = op->get_input_descriptions(static_cast(body_idx));
for (auto& desc : descriptors) {
- if (desc->m_input_index > removed_loop_idx) {
- desc->m_input_index--;
- }
+ desc->m_input_index = get_updated_idx(desc->m_input_index, removed_loop_idx);
}
}
- for (auto input_index : required_inputs_indices) {
- if (input_index > removed_loop_idx) {
- new_required_inputs_indices.insert(input_index - 1);
- } else {
- new_required_inputs_indices.insert(input_index);
- }
+ };
+
+ const auto update_required_input_indicies = [](std::set& required_inputs_indices,
+ uint64_t removed_input_idx) {
+ std::set new_required_inputs_indices;
+ for (const auto& input_index : required_inputs_indices) {
+ new_required_inputs_indices.insert(input_index > removed_input_idx ? input_index - 1 : input_index);
}
- required_inputs_indices = new_required_inputs_indices;
+ required_inputs_indices = std::move(new_required_inputs_indices);
};
// Remove dangling body params and input and update input descriptors
+ auto op_inputs = multi_subgraph_op->input_values();
for (size_t body_idx = 0; body_idx < subgraphs_size; ++body_idx) {
auto& body_in_descriptors = multi_subgraph_op->get_input_descriptions(static_cast(body_idx));
- auto& body_func = multi_subgraph_op->get_function(static_cast(body_idx));
- auto& body_params = body_func->get_parameters();
op::util::MultiSubGraphOp::MultiSubgraphInputDescriptionVector updated_body_in_descriptors;
+
for (size_t desc_idx = 0; desc_idx < body_in_descriptors.size(); ++desc_idx) {
- if (std::count(std::begin(to_remove_descriptors_indexes[body_idx]),
- std::end(to_remove_descriptors_indexes[body_idx]),
- desc_idx) > 0) {
- if (body_in_descriptors[desc_idx]->m_body_parameter_index < body_params.size()) {
- auto& body_param = body_params[body_in_descriptors[desc_idx]->m_body_parameter_index];
- body_func->remove_parameter(body_param);
- // Move all body indexes which are after these indicated by to_remove_descriptors_indexes
- update_body_param_desc(body_in_descriptors,
- body_in_descriptors[desc_idx]->m_body_parameter_index);
- }
- // remove dangling input of MultiSubGraphOp which was not removed earlier
- auto current_input_idx = body_in_descriptors[desc_idx]->m_input_index;
- // the same input tensor can go to different input ports
- if (current_input_idx < op_inputs.size() &&
- std::count(std::begin(required_inputs_indices),
- std::end(required_inputs_indices),
- current_input_idx) == 0 &&
- std::count(std::begin(op_inputs), std::end(op_inputs), op_inputs[current_input_idx]) > 0) {
- op_inputs.erase(std::next(op_inputs.begin(), current_input_idx));
- // Move all input indexes (in all bodies) which are after these indicated by
- // to_remove_descriptors_indexes and are not used in any body
- update_op_inputs_desc(multi_subgraph_op, required_inputs_indices, current_input_idx);
- }
- } else {
- updated_body_in_descriptors.emplace_back(body_in_descriptors[desc_idx]);
+ auto& current_body_desc = body_in_descriptors[desc_idx];
+ const auto current_body_parameter_idx = current_body_desc->m_body_parameter_index;
+ if (!util::contains(to_remove_descriptors_indexes[body_idx], desc_idx)) {
+ updated_body_in_descriptors.emplace_back(current_body_desc);
+ } else if (is_not_removed_idx(current_body_parameter_idx)) {
+ auto& body_func = multi_subgraph_op->get_function(body_idx);
+ const auto& body_params = body_func->get_parameters();
+
+ body_func->remove_parameter(body_params[current_body_parameter_idx]);
+ // Move all body indexes which are after these indicated by to_remove_descriptors_indexes
+ update_body_param_desc(body_in_descriptors, current_body_parameter_idx);
+ }
+
+ const auto current_input_idx = current_body_desc->m_input_index;
+ // remove dangling input of MultiSubGraphOp which was not removed earlier
+ // the same input tensor can go to different input ports
+ if (!util::contains(required_inputs_indices, current_input_idx) &&
+ is_not_removed_idx(current_input_idx)) {
+ op_inputs.erase(op_inputs.begin() + current_input_idx);
+ // Move all input indexes (in all bodies) which are after these indicated by
+ // to_remove_descriptors_indexes and are not used in any body
+ update_op_inputs_desc(multi_subgraph_op, current_input_idx);
+ update_required_input_indicies(required_inputs_indices, current_input_idx);
}
}
multi_subgraph_op->set_input_descriptions(static_cast(body_idx), updated_body_in_descriptors);
diff --git a/src/common/transformations/src/transformations/common_optimizations/reverse_shape_and_type_infer.cpp b/src/common/transformations/src/transformations/common_optimizations/reverse_shape_and_type_infer.cpp
index 9a06201f688675..9fbaed822cdfba 100644
--- a/src/common/transformations/src/transformations/common_optimizations/reverse_shape_and_type_infer.cpp
+++ b/src/common/transformations/src/transformations/common_optimizations/reverse_shape_and_type_infer.cpp
@@ -23,6 +23,25 @@
#include "openvino/op/util/unary_elementwise_arithmetic.hpp"
#include "transformations/utils/utils.hpp"
+namespace {
+
+void set_source_output_type_shape(const ov::Node& node,
+ const ov::element::Type& et,
+ const ov::PartialShape& new_shape,
+ const size_t port) {
+ const auto source_output = node.get_input_source_output(port);
+ source_output.get_node()->set_output_type(source_output.get_index(), et, new_shape);
+}
+
+void set_source_output_shape(const ov::Node& node, const ov::PartialShape& new_shape, const size_t port) {
+ set_source_output_type_shape(node, node.get_input_element_type(port), new_shape, port);
+}
+
+void set_source_output_type(const ov::Node& node, const ov::element::Type& et, const size_t port) {
+ set_source_output_type_shape(node, et, node.get_input_partial_shape(port), port);
+}
+} // namespace
+
bool ov::pass::ReverseShapeAndTypeInfer::inherit_output_shape(const std::shared_ptr& node,
const std::vector& input_idxs) {
auto is_changed = false;
@@ -30,7 +49,9 @@ bool ov::pass::ReverseShapeAndTypeInfer::inherit_output_shape(const std::shared_
for (auto idx : input_idxs) {
if (idx < node->get_input_size() && node->get_input_partial_shape(idx).compatible(output_shape)) {
- PartialShape::merge_into(node->get_input_tensor(idx).m_partial_shape, output_shape);
+ auto new_shape = node->get_input_partial_shape(idx);
+ PartialShape::merge_into(new_shape, output_shape);
+ set_source_output_shape(*node, new_shape, idx);
is_changed = true;
}
}
@@ -44,7 +65,7 @@ bool ov::pass::ReverseShapeAndTypeInfer::inherit_output_rank(const std::shared_p
for (auto idx : input_idxs) {
if (idx < node->get_input_size() && node->get_input_partial_shape(idx).rank().is_dynamic()) {
- node->get_input_tensor(idx).m_partial_shape = ov::PartialShape::dynamic(output_shape.rank());
+ set_source_output_shape(*node, ov::PartialShape::dynamic(output_shape.rank()), idx);
is_changed = true;
}
}
@@ -58,7 +79,7 @@ bool ov::pass::ReverseShapeAndTypeInfer::inherit_output_type(const std::shared_p
for (auto idx : input_idxs) {
if (idx < node->get_input_size() && node->get_input_element_type(idx).is_dynamic()) {
- node->get_input_tensor(idx).m_element_type = output_type;
+ set_source_output_type(*node, output_type, idx);
is_changed = true;
}
}
@@ -92,7 +113,9 @@ bool ov::pass::ReverseShapeAndTypeInfer::run_on_model(const std::shared_ptrget_input_partial_shape(1);
if (weigths_pshape.rank().is_static() && op->get_input_partial_shape(1).rank().is_static() &&
weigths_pshape[1] != 1) {
- op->get_input_tensor(0).m_partial_shape[1] = weigths_pshape[1];
+ auto new_shape = op->get_input_partial_shape(0);
+ new_shape[1] = weigths_pshape[1];
+ set_source_output_shape(*op, new_shape, 0);
}
is_changed |= inherit_output_type(op, {0, 1});
} else if (ov::as_type_ptr(op)) {
@@ -101,7 +124,9 @@ bool ov::pass::ReverseShapeAndTypeInfer::run_on_model(const std::shared_ptrget_input_partial_shape(1);
if (weigths_pshape.rank().is_static() && op->get_input_partial_shape(1).rank().is_static() &&
weigths_pshape[2] != 1) {
- op->get_input_tensor(0).m_partial_shape[1] = weigths_pshape[0] * weigths_pshape[2];
+ auto new_shape = op->get_input_partial_shape(0);
+ new_shape[1] = weigths_pshape[0] * weigths_pshape[2];
+ set_source_output_shape(*op, new_shape, 0);
}
is_changed |= inherit_output_type(op, {0, 1});
} else if (ov::as_type_ptr(op)) {
@@ -110,7 +135,9 @@ bool ov::pass::ReverseShapeAndTypeInfer::run_on_model(const std::shared_ptrget_input_partial_shape(1);
if (weigths_pshape.rank().is_static() && op->get_input_partial_shape(1).rank().is_static() &&
weigths_pshape[0] != 1) {
- op->get_input_tensor(0).m_partial_shape[1] = weigths_pshape[0];
+ auto new_shape = op->get_input_partial_shape(0);
+ new_shape[1] = weigths_pshape[0];
+ set_source_output_shape(*op, new_shape, 0);
}
is_changed |= inherit_output_type(op, {0, 1});
} else if (ov::as_type_ptr(op)) {
@@ -119,7 +146,9 @@ bool ov::pass::ReverseShapeAndTypeInfer::run_on_model(const std::shared_ptrget_input_partial_shape(1);
if (weigths_pshape.rank().is_static() && op->get_input_partial_shape(1).rank().is_static() &&
weigths_pshape[1] != 1) {
- op->get_input_tensor(0).m_partial_shape[1] = weigths_pshape[0] * weigths_pshape[1];
+ auto new_shape = op->get_input_partial_shape(0);
+ new_shape[1] = weigths_pshape[0] * weigths_pshape[1];
+ set_source_output_shape(*op, new_shape, 0);
}
is_changed |= inherit_output_type(op, {0, 1});
} else if (ov::as_type_ptr(op)) {
@@ -131,10 +160,10 @@ bool ov::pass::ReverseShapeAndTypeInfer::run_on_model(const std::shared_ptrget_input_partial_shape(1);
auto pads_end_shape = op->get_input_partial_shape(2);
if (pads_begin_shape.is_static() && pads_begin_shape.size() > 0) {
- op->get_input_tensor(0).m_partial_shape = PartialShape::dynamic(pads_begin_shape[0]);
+ set_source_output_shape(*op, PartialShape::dynamic(pads_begin_shape[0]), 0);
is_changed = true;
} else if (pads_end_shape.is_static() && pads_end_shape.size() > 0) {
- op->get_input_tensor(0).m_partial_shape = PartialShape::dynamic(pads_end_shape[0]);
+ set_source_output_shape(*op, PartialShape::dynamic(pads_end_shape[0]), 0);
is_changed = true;
}
}
@@ -147,15 +176,17 @@ bool ov::pass::ReverseShapeAndTypeInfer::run_on_model(const std::shared_ptrget_input_partial_shape(0).rank();
auto in1_rank = op->get_input_partial_shape(1).rank();
if (in0_rank.is_dynamic() && in1_rank.is_static()) {
- if (eltwise->get_autob() == ov::op::AutoBroadcastType::NONE)
- op->get_input_tensor(0).m_partial_shape = output_shape;
- else if (in1_rank.get_length() < output_shape.rank().get_length())
- op->get_input_tensor(0).m_partial_shape = PartialShape::dynamic(output_shape.rank());
+ if (eltwise->get_autob() == ov::op::AutoBroadcastType::NONE) {
+ set_source_output_shape(*op, output_shape, 0);
+ } else if (in1_rank.get_length() < output_shape.rank().get_length()) {
+ set_source_output_shape(*op, PartialShape::dynamic(output_shape.rank()), 0);
+ }
} else if (in1_rank.is_dynamic() && in0_rank.is_static()) {
- if (eltwise->get_autob() == ov::op::AutoBroadcastType::NONE)
- op->get_input_tensor(1).m_partial_shape = output_shape;
- else if (in0_rank.get_length() < output_shape.rank().get_length())
- op->get_input_tensor(1).m_partial_shape = PartialShape::dynamic(output_shape.rank());
+ if (eltwise->get_autob() == ov::op::AutoBroadcastType::NONE) {
+ set_source_output_shape(*op, output_shape, 1);
+ } else if (in0_rank.get_length() < output_shape.rank().get_length()) {
+ set_source_output_shape(*op, PartialShape::dynamic(output_shape.rank()), 1);
+ }
}
}
is_changed |= inherit_output_type(op, {0, 1});
@@ -172,7 +203,9 @@ bool ov::pass::ReverseShapeAndTypeInfer::run_on_model(const std::shared_ptrget_input_size() && op->get_input_partial_shape(idx).compatible(input_pshape)) {
- PartialShape::merge_into(op->get_input_tensor(idx).m_partial_shape, input_pshape);
+ auto new_shape = op->get_input_partial_shape(idx);
+ PartialShape::merge_into(new_shape, input_pshape);
+ set_source_output_shape(*op, new_shape, idx);
is_changed = true;
}
}
@@ -189,8 +222,9 @@ bool ov::pass::ReverseShapeAndTypeInfer::run_on_model(const std::shared_ptrget_input_partial_shape(1);
if (in1_pshape.is_static()) {
auto num_dims = in1_pshape.size() == 0 ? 1 : in1_pshape[0].get_length();
- op->get_input_tensor(0).m_partial_shape =
- PartialShape::dynamic(output_shape.rank().get_length() + num_dims);
+ set_source_output_shape(*op,
+ PartialShape::dynamic(output_shape.rank().get_length() + num_dims),
+ 0);
}
} else if (in0_rank.is_static() && op->get_input_size() == 1) {
// attempt to create second input
@@ -215,8 +249,7 @@ bool ov::pass::ReverseShapeAndTypeInfer::run_on_model(const std::shared_ptrget_input_partial_shape(1);
if (output_shape.rank().is_static() && in0_rank.is_dynamic() && in1_pshape.is_static()) {
auto num_dims = in1_pshape.size() == 0 ? 1 : in1_pshape[0].get_length();
- op->get_input_tensor(0).m_partial_shape =
- PartialShape::dynamic(output_shape.rank().get_length() - num_dims);
+ set_source_output_shape(*op, PartialShape::dynamic(output_shape.rank().get_length() - num_dims), 0);
}
is_changed |= inherit_output_type(op, {0});
} else if (const auto& if_op = ov::as_type_ptr(op)) {
@@ -227,21 +260,24 @@ bool ov::pass::ReverseShapeAndTypeInfer::run_on_model(const std::shared_ptrget_results();
const auto& then_out_desc = if_op->get_output_descriptions(ov::op::v8::If::THEN_BODY_INDEX);
const auto& else_out_desc = if_op->get_output_descriptions(ov::op::v8::If::ELSE_BODY_INDEX);
+
for (const auto& out_desc : then_out_desc) {
const auto& out_indx = out_desc->m_output_index;
const auto& body_indx = out_desc->m_body_value_index;
- then_body_results[body_indx]->get_input_tensor(0).m_partial_shape =
- if_op->get_output_partial_shape(out_indx);
- then_body_results[body_indx]->get_input_tensor(0).m_element_type =
- if_op->get_output_element_type(out_indx);
+
+ set_source_output_type_shape(*then_body_results[body_indx],
+ if_op->get_output_element_type(out_indx),
+ if_op->get_output_partial_shape(out_indx),
+ 0);
}
+
for (const auto& out_desc : else_out_desc) {
const auto& out_indx = out_desc->m_output_index;
const auto& body_indx = out_desc->m_body_value_index;
- else_body_results[body_indx]->get_input_tensor(0).m_partial_shape =
- if_op->get_output_partial_shape(out_indx);
- else_body_results[body_indx]->get_input_tensor(0).m_element_type =
- if_op->get_output_element_type(out_indx);
+ set_source_output_type_shape(*else_body_results[body_indx],
+ if_op->get_output_element_type(out_indx),
+ if_op->get_output_partial_shape(out_indx),
+ 0);
}
is_changed |= run_on_model(then_body);
is_changed |= run_on_model(else_body);
@@ -252,34 +288,30 @@ bool ov::pass::ReverseShapeAndTypeInfer::run_on_model(const std::shared_ptrm_input_index;
const auto& body_indx = in_desc->m_body_parameter_index;
- if (if_op->get_input_tensor(in_indx).get_partial_shape().rank().is_dynamic()) {
- if_op->get_input_tensor(in_indx).m_partial_shape =
- then_body_params.at(body_indx)->get_partial_shape();
- is_changed = true;
- }
- if (if_op->get_input_tensor(in_indx).get_element_type().is_dynamic()) {
- if_op->get_input_tensor(in_indx).m_element_type =
- then_body_params.at(body_indx)->get_element_type();
+ if (if_op->get_input_tensor(in_indx).get_partial_shape().rank().is_dynamic() ||
+ if_op->get_input_tensor(in_indx).get_element_type().is_dynamic()) {
+ set_source_output_type_shape(*if_op,
+ then_body_params.at(body_indx)->get_element_type(),
+ then_body_params.at(body_indx)->get_partial_shape(),
+ in_indx);
is_changed = true;
}
}
for (const auto& in_desc : else_in_desc) {
const auto& in_indx = in_desc->m_input_index;
const auto& body_indx = in_desc->m_body_parameter_index;
- if (if_op->get_input_tensor(in_indx).get_partial_shape().rank().is_dynamic()) {
- if_op->get_input_tensor(in_indx).m_partial_shape =
- else_body_params.at(body_indx)->get_partial_shape();
- is_changed = true;
- }
- if (if_op->get_input_tensor(in_indx).get_element_type().is_dynamic()) {
- if_op->get_input_tensor(in_indx).m_element_type =
- else_body_params.at(body_indx)->get_element_type();
+ if (if_op->get_input_tensor(in_indx).get_partial_shape().rank().is_dynamic() ||
+ if_op->get_input_tensor(in_indx).get_element_type().is_dynamic()) {
+ set_source_output_type_shape(*if_op,
+ then_body_params.at(body_indx)->get_element_type(),
+ then_body_params.at(body_indx)->get_partial_shape(),
+ in_indx);
is_changed = true;
}
}
// Set type for If condition
if (if_op->get_input_element_type(0).is_dynamic()) {
- if_op->get_input_tensor(0).m_element_type = element::boolean;
+ set_source_output_type(*if_op, element::boolean, 0);
is_changed = true;
}
@@ -288,7 +320,7 @@ bool ov::pass::ReverseShapeAndTypeInfer::run_on_model(const std::shared_ptrget_rt_info().count("tf_switch_merge_if") &&
if_op->get_rt_info()["tf_switch_merge_if"].as() &&
if_op->input_value(0).get_partial_shape().rank().is_dynamic()) {
- if_op->get_input_tensor(0).m_partial_shape = ov::PartialShape({});
+ set_source_output_shape(*if_op, PartialShape{}, 0);
is_changed = true;
}
} else if (ov::as_type_ptr(op)) {
@@ -301,24 +333,24 @@ bool ov::pass::ReverseShapeAndTypeInfer::run_on_model(const std::shared_ptrget_input_tensor(0).m_partial_shape,
- PartialShape::dynamic(output_shape.rank()));
+ auto new_shape = op->get_input_partial_shape(0);
+ PartialShape::merge_into(new_shape, PartialShape::dynamic(output_shape.rank()));
auto order_value = transpose_order->cast_vector();
OPENVINO_ASSERT(order_value.size() == static_cast(rank_length),
"The length of Transpose order and the input rank mismatch");
for (int64_t dim_idx = 0; dim_idx < rank_length; ++dim_idx) {
OPENVINO_ASSERT(0 <= order_value[dim_idx] && order_value[dim_idx] < rank_length,
"Transpose order is out-of-range");
- op->get_input_tensor(0).m_partial_shape[order_value[dim_idx]] = output_shape[dim_idx];
+ new_shape[order_value[dim_idx]] = output_shape[dim_idx];
}
+ set_source_output_shape(*op, new_shape, 0);
is_changed = true;
} else {
is_changed |= inherit_output_rank(op, {0});
}
} else if (transpose_order) {
auto order_value = transpose_order->cast_vector();
- PartialShape::merge_into(op->get_input_tensor(0).m_partial_shape,
- PartialShape::dynamic(order_value.size()));
+ set_source_output_shape(*op, PartialShape::dynamic(order_value.size()), 0);
is_changed = true;
}
is_changed |= inherit_output_type(op, {0});
diff --git a/src/common/transformations/tests/common_optimizations/fuse_rotary_positional_embeddings.cpp b/src/common/transformations/tests/common_optimizations/fuse_rotary_positional_embeddings.cpp
index ea928de5c01702..a42e11120d7276 100644
--- a/src/common/transformations/tests/common_optimizations/fuse_rotary_positional_embeddings.cpp
+++ b/src/common/transformations/tests/common_optimizations/fuse_rotary_positional_embeddings.cpp
@@ -6,7 +6,9 @@
#include
+#include "common_test_utils/graph_comparator.hpp"
#include "common_test_utils/ov_test_utils.hpp"
+#include "openvino/core/node_vector.hpp"
#include "openvino/opsets/opset1.hpp"
#include "openvino/opsets/opset3.hpp"
#include "ov_ops/rotary_positional_embeddings.hpp"
@@ -133,6 +135,7 @@ TEST_F(TransformationTestsF, ConvertToROPE_LLama2_no_gather) {
{{"config.slice_start", 0},
{"config.slice_stop", 0},
{"config.input_trans0213", true},
+ {"config.output_trans0213", false},
{"config.is_interleaved", false},
{"config.is_chatglm", false},
{"config.support_2d_rope", false},
@@ -169,6 +172,7 @@ TEST_F(TransformationTestsF, ConvertToROPE_LLama2_with_gather) {
{{"config.slice_start", 0},
{"config.slice_stop", 0},
{"config.input_trans0213", true},
+ {"config.output_trans0213", false},
{"config.is_interleaved", false},
{"config.is_chatglm", false},
{"config.support_2d_rope", false},
@@ -308,6 +312,7 @@ TEST_F(TransformationTestsF, ConvertToROPE_GPTNEOX_no_gather) {
{{"config.slice_start", 0},
{"config.slice_stop", ndims},
{"config.input_trans0213", true},
+ {"config.output_trans0213", false},
{"config.is_interleaved", false},
{"config.is_chatglm", false},
{"config.support_2d_rope", false},
@@ -343,6 +348,7 @@ TEST_F(TransformationTestsF, ConvertToROPE_GPTNEOX_with_gather) {
{{"config.slice_start", 0},
{"config.slice_stop", ndims},
{"config.input_trans0213", true},
+ {"config.output_trans0213", false},
{"config.is_interleaved", false},
{"config.is_chatglm", false},
{"config.support_2d_rope", false},
@@ -459,6 +465,7 @@ TEST_F(TransformationTestsF, ConvertToROPE_GPTJ) {
{{"config.slice_start", 0},
{"config.slice_stop", 0},
{"config.input_trans0213", false},
+ {"config.output_trans0213", true},
{"config.is_interleaved", true},
{"config.is_chatglm", false},
{"config.support_2d_rope", false},
@@ -568,6 +575,7 @@ TEST_F(TransformationTestsF, ConvertToROPE_chatGML) {
{{"config.slice_start", 0},
{"config.slice_stop", 4096},
{"config.input_trans0213", false},
+ {"config.output_trans0213", false},
{"config.is_interleaved", false},
{"config.rotary_ndims", rotary_ndims},
{"config.is_chatglm", true},
@@ -646,6 +654,7 @@ TEST_F(TransformationTestsF, ConvertToROPE_chatGML_Slice) {
{{"config.slice_start", 0},
{"config.slice_stop", 4096},
{"config.input_trans0213", false},
+ {"config.output_trans0213", false},
{"config.is_interleaved", false},
{"config.rotary_ndims", rotary_ndims},
{"config.is_chatglm", true},
@@ -728,6 +737,7 @@ TEST_F(TransformationTestsF, ConvertToROPE_GPTJ_Slice) {
{{"config.slice_start", 0},
{"config.slice_stop", 0},
{"config.input_trans0213", false},
+ {"config.output_trans0213", true},
{"config.is_interleaved", true},
{"config.is_chatglm", false},
{"config.support_2d_rope", false},
@@ -843,6 +853,7 @@ TEST_F(TransformationTestsF, ConvertToROPE_chatGML_2d_rope) {
{{"config.slice_start", 0},
{"config.slice_stop", 4096},
{"config.input_trans0213", false},
+ {"config.output_trans0213", false},
{"config.is_interleaved", false},
{"config.rotary_ndims", rotary_ndims},
{"config.is_chatglm", true},
@@ -951,6 +962,7 @@ TEST_F(TransformationTestsF, ConvertToROPE_chatGML_nano_2d_rope) {
{{"config.slice_start", 0},
{"config.slice_stop", 2048},
{"config.input_trans0213", false},
+ {"config.output_trans0213", false},
{"config.is_interleaved", false},
{"config.rotary_ndims", rotary_ndims},
{"config.is_chatglm", true},
@@ -962,4 +974,160 @@ TEST_F(TransformationTestsF, ConvertToROPE_chatGML_nano_2d_rope) {
model_ref =
std::make_shared(ov::NodeVector{rope}, ov::ParameterVector{input, cos_sin_cache, position_ids});
}
-}
\ No newline at end of file
+}
+
+TEST_F(TransformationTestsF, ConvertToROPE_Flux_mul) {
+ disable_rt_info_check();
+ const int batch = 2;
+ const int num_heads = 32;
+ const int ndims = 128;
+ {
+ auto x =
+ std::make_shared(ov::element::f32, ov::PartialShape{batch, num_heads, -1, ndims});
+ auto t_cos = std::make_shared(ov::element::f32, ov::PartialShape{1, 1, -1, ndims});
+ auto t_sin = std::make_shared(ov::element::f32, ov::PartialShape{1, 1, -1, ndims});
+
+ auto x1_shape = makeConst(ov::element::i64, ov::Shape({5}), {0, num_heads, 0, -1, 2});
+ auto x1 = std::make_shared(x, x1_shape, true);
+
+ auto split_axis = makeConst(ov::element::i64, ov::Shape(), {-1});
+ auto split = std::make_shared(x1, split_axis, 2);
+
+ auto minus_one = makeConst(ov::element::f32, ov::Shape({}), {-1.0f});
+ auto x1_1_neg = std::make_shared(split->output(1), minus_one);
+
+ auto x2 = std::make_shared(ov::OutputVector{x1_1_neg->output(0), split->output(0)}, -1);
+
+ auto x3_shape = makeConst(ov::element::i64, ov::Shape({4}), {0, num_heads, 0, ndims});
+ auto x3 = std::make_shared(x2, x3_shape, true);
+
+ auto y1 = std::make_shared(x, t_cos);
+ auto y2 = std::make_shared(x3, t_sin);
+ auto y = std::make_shared(y1, y2);
+
+ model = std::make_shared(ov::NodeVector{y}, ov::ParameterVector{x, t_cos, t_sin});
+ }
+ manager.register_pass(true);
+ {
+ auto x =
+ std::make_shared(ov::element::f32, ov::PartialShape{batch, num_heads, -1, ndims});
+ auto t_cos = std::make_shared(ov::element::f32, ov::PartialShape{1, 1, -1, ndims});
+ auto t_sin = std::make_shared(ov::element::f32, ov::PartialShape{1, 1, -1, ndims});
+ ov::op::internal::RoPE::Config config;
+ config.is_interleaved = true;
+ config.rotary_ndims = ndims;
+ config.head_cnt = num_heads;
+ config.head_size = ndims;
+ auto rope = std::make_shared(ov::OutputVector{x, t_cos, t_sin}, config);
+ model_ref = std::make_shared(ov::NodeVector{rope}, ov::ParameterVector{x, t_cos, t_sin});
+ }
+ comparator.enable(FunctionsComparator::ATTRIBUTES);
+}
+
+TEST_F(TransformationTestsF, ConvertToROPE_Flux_squeeze_mul_unsqueeze) {
+ disable_rt_info_check();
+ const int batch = 2;
+ const int num_heads = 32;
+ const int ndims = 128;
+ {
+ auto x =
+ std::make_shared(ov::element::f32, ov::PartialShape{batch, num_heads, -1, ndims});
+ auto t_cos = std::make_shared(ov::element::f32, ov::PartialShape{1, 1, -1, ndims});
+ auto t_sin = std::make_shared(ov::element::f32, ov::PartialShape{1, 1, -1, ndims});
+
+ auto x1_shape = makeConst(ov::element::i64, ov::Shape({5}), {0, num_heads, 0, -1, 2});
+ auto x1 = std::make_shared(x, x1_shape, true);
+
+ auto split_axis = makeConst(ov::element::i64, ov::Shape(), {-1});
+ auto split = std::make_shared(x1, split_axis, 2);
+
+ auto squeeze_axis = makeConst(ov::element::i32, ov::Shape({}), {-1});
+ auto squeeze = std::make_shared(split->output(1), squeeze_axis);
+
+ auto minus_one = makeConst(ov::element::f32, ov::Shape({}), {-1.0f});
+ auto x1_1_neg = std::make_shared(squeeze, minus_one);
+
+ auto unsqueeze_axis = makeConst(ov::element::i32, ov::Shape({}), {-1});
+ auto unsqueeze = std::make_shared(x1_1_neg, unsqueeze_axis);
+
+ auto x2 = std::make_shared(ov::OutputVector{unsqueeze->output(0), split->output(0)}, -1);
+
+ auto x3_shape = makeConst(ov::element::i64, ov::Shape({4}), {0, num_heads, 0, ndims});
+ auto x3 = std::make_shared(x2, x3_shape, true);
+
+ auto y1 = std::make_shared(x, t_cos);
+ auto y2 = std::make_shared(x3, t_sin);
+ auto y = std::make_shared(y1, y2);
+
+ model = std::make_shared(ov::NodeVector{y}, ov::ParameterVector{x, t_cos, t_sin});
+ }
+ manager.register_pass(true);
+ {
+ auto x =
+ std::make_shared(ov::element::f32, ov::PartialShape{batch, num_heads, -1, ndims});
+ auto t_cos = std::make_shared(ov::element::f32, ov::PartialShape{1, 1, -1, ndims});
+ auto t_sin = std::make_shared(ov::element::f32, ov::PartialShape{1, 1, -1, ndims});
+ ov::op::internal::RoPE::Config config;
+ config.is_interleaved = true;
+ config.rotary_ndims = ndims;
+ config.head_cnt = num_heads;
+ config.head_size = ndims;
+ auto rope = std::make_shared(ov::OutputVector{x, t_cos, t_sin}, config);
+ model_ref = std::make_shared(ov::NodeVector{rope}, ov::ParameterVector{x, t_cos, t_sin});
+ }
+ comparator.enable(FunctionsComparator::ATTRIBUTES);
+}
+
+TEST_F(TransformationTestsF, ConvertToROPE_Flux_mul_squeeze_unsqueeze) {
+ disable_rt_info_check();
+ const int batch = 2;
+ const int num_heads = 32;
+ const int ndims = 128;
+ {
+ auto x =
+ std::make_shared(ov::element::f32, ov::PartialShape{batch, num_heads, -1, ndims});
+ auto t_cos = std::make_shared(ov::element::f32, ov::PartialShape{1, 1, -1, ndims});
+ auto t_sin = std::make_shared(ov::element::f32, ov::PartialShape{1, 1, -1, ndims});
+
+ auto x1_shape = makeConst(ov::element::i64, ov::Shape({5}), {0, num_heads, 0, -1, 2});
+ auto x1 = std::make_shared(x, x1_shape, true);
+
+ auto split_axis = makeConst(ov::element::i64, ov::Shape(), {-1});
+ auto split = std::make_shared(x1, split_axis, 2);
+
+ auto minus_one = makeConst(ov::element::f32, ov::Shape({}), {-1.0f});
+ auto x1_1_neg = std::make_shared(split->output(1), minus_one);
+
+ auto squeeze_axis = makeConst(ov::element::i32, ov::Shape({}), {-1});
+ auto squeeze = std::make_shared(x1_1_neg, squeeze_axis);
+
+ auto unsqueeze_axis = makeConst(ov::element::i32, ov::Shape({}), {-1});
+ auto unsqueeze = std::make_shared(squeeze, unsqueeze_axis);
+
+ auto x2 = std::make_shared(ov::OutputVector{unsqueeze->output(0), split->output(0)}, -1);
+
+ auto x3_shape = makeConst(ov::element::i64, ov::Shape({4}), {0, num_heads, 0, ndims});
+ auto x3 = std::make_shared(x2, x3_shape, true);
+
+ auto y1 = std::make_shared(x, t_cos);
+ auto y2 = std::make_shared(x3, t_sin);
+ auto y = std::make_shared(y1, y2);
+
+ model = std::make_shared(ov::NodeVector{y}, ov::ParameterVector{x, t_cos, t_sin});
+ }
+ manager.register_pass(true);
+ {
+ auto x =
+ std::make_shared(ov::element::f32, ov::PartialShape{batch, num_heads, -1, ndims});
+ auto t_cos = std::make_shared(ov::element::f32, ov::PartialShape{1, 1, -1, ndims});
+ auto t_sin = std::make_shared(ov::element::f32, ov::PartialShape{1, 1, -1, ndims});
+ ov::op::internal::RoPE::Config config;
+ config.is_interleaved = true;
+ config.rotary_ndims = ndims;
+ config.head_cnt = num_heads;
+ config.head_size = ndims;
+ auto rope = std::make_shared(ov::OutputVector{x, t_cos, t_sin}, config);
+ model_ref = std::make_shared(ov::NodeVector{rope}, ov::ParameterVector{x, t_cos, t_sin});
+ }
+ comparator.enable(FunctionsComparator::ATTRIBUTES);
+}
diff --git a/src/common/transformations/tests/common_optimizations/remove_multi_subgraph_op_dangling_params_tests.cpp b/src/common/transformations/tests/common_optimizations/remove_multi_subgraph_op_dangling_params_tests.cpp
index 89f332bffebff8..4e8ad1765bd20f 100644
--- a/src/common/transformations/tests/common_optimizations/remove_multi_subgraph_op_dangling_params_tests.cpp
+++ b/src/common/transformations/tests/common_optimizations/remove_multi_subgraph_op_dangling_params_tests.cpp
@@ -175,7 +175,7 @@ TEST_F(TransformationTestsF, RemoveLoopDanglingParametersIfConcatEmptyTensor) {
}
}
-TEST_F(TransformationTestsF, RemoveIfDanglingParametersFromBodiesAndInputs) {
+TEST_F(TransformationTestsF, RemoveIfDanglingParametersFromBodiesAndInputsConsecutive) {
auto X = std::make_shared(element::f32, Shape{2, 4, 1});
auto Y = std::make_shared(element::f32, Shape{3, 4, 1});
auto cond = std::make_shared(element::boolean, Shape{1}, true);
@@ -196,6 +196,8 @@ TEST_F(TransformationTestsF, RemoveIfDanglingParametersFromBodiesAndInputs) {
if_op->set_else_body(else_body);
if_op->set_input(X, Xte, Xte);
if_op->set_input(Y, Yte, Yte);
+ // if_op descriptors are [desc_0, desc_1, desc_2, desc_3]
+ // desc_0, desc_2 are dangling, Parameters Y, Yte should be removed
auto res = if_op->set_output(then_op_res, else_op_res);
model = std::make_shared(OutputVector{res}, ParameterVector{X, Y});
@@ -213,6 +215,46 @@ TEST_F(TransformationTestsF, RemoveIfDanglingParametersFromBodiesAndInputs) {
}
}
+TEST_F(TransformationTestsF, RemoveIfDanglingParametersFromBodiesAndInputsNotConsecutive) {
+ auto X = std::make_shared(element::f32, Shape{2, 4, 1});
+ auto Y = std::make_shared(element::f32, Shape{3, 4, 1});
+ auto cond = std::make_shared(element::boolean, Shape{1}, false);
+
+ auto Xte = std::make_shared(element::f32, PartialShape::dynamic());
+ auto Yte = std::make_shared(element::f32, PartialShape::dynamic());
+
+ auto then_op = std::make_shared(Yte, Yte);
+ auto then_op_res = std::make_shared(then_op);
+
+ auto else_op = std::make_shared(Yte, Yte);
+ auto else_op_res = std::make_shared(else_op);
+ {
+ auto then_body = std::make_shared(OutputVector{then_op_res}, ParameterVector{Xte, Yte});
+ auto else_body = std::make_shared(OutputVector{else_op_res}, ParameterVector{Xte, Yte});
+ auto if_op = std::make_shared(cond);
+ if_op->set_then_body(then_body);
+ if_op->set_else_body(else_body);
+ if_op->set_input(X, Xte, Yte);
+ if_op->set_input(Y, Xte, Xte);
+ // if_op descriptors are [desc_0, desc_1, desc_2, desc_3]
+ // desc_0, desc_2, desc_3 are dangling, Parameters Y, Xte should be removed
+ auto res = if_op->set_output(then_op_res, else_op_res);
+ model = std::make_shared(OutputVector{res}, ParameterVector{X, Y});
+
+ manager.register_pass();
+ }
+ {
+ auto then_body = std::make_shared(OutputVector{then_op_res}, ParameterVector{Yte});
+ auto else_body = std::make_shared(OutputVector{else_op_res}, ParameterVector{Yte});
+ auto if_op = std::make_shared(cond);
+ if_op->set_then_body(then_body);
+ if_op->set_else_body(else_body);
+ if_op->set_input(X, Yte, Yte);
+ auto res = if_op->set_output(then_op_res, else_op_res);
+ model_ref = std::make_shared(OutputVector{res}, ParameterVector{X, Y});
+ }
+}
+
TEST_F(TransformationTestsF, RemoveIfDanglingParametersOnlyFromBodies) {
auto X = std::make_shared(element::f32, Shape{2, 4, 1});
auto Y = std::make_shared(element::f32, Shape{3, 4, 1});
@@ -518,23 +560,28 @@ TEST_F(TransformationTestsF, RemoveLoopDanglingParamsAndResults) {
auto ai = std::make_shared(element::f32, Shape{2, 2});
auto b = std::make_shared(element::f32, Shape{2, 2});
auto bi = std::make_shared(element::f32, Shape{2, 2});
+ auto c = std::make_shared(element::f32, Shape{2, 2});
+ auto ci = std::make_shared(element::f32, Shape{2, 2});
+ auto d = std::make_shared(element::f32, Shape{2, 2});
auto mul = std::make_shared(ai, ai);
auto abs1 = std::make_shared(mul);
auto add = std::make_shared(bi, bi);
auto abs2 = std::make_shared(add);
{
- auto body = std::make_shared(OutputVector{condition, abs1, abs2}, ParameterVector{ai, bi});
+ auto body = std::make_shared(OutputVector{condition, abs1, abs2}, ParameterVector{ai, bi, ci});
auto loop = std::make_shared(trip_count, condition);
loop->set_special_body_ports({-1, 0});
loop->set_function(body);
loop->set_invariant_input(ai, a);
+ loop->set_invariant_input(ci, d);
loop->set_invariant_input(bi, b);
+ loop->set_invariant_input(ci, c);
auto loop_res = std::make_shared(loop->get_iter_value(abs1));
loop->get_iter_value(abs2);
// abs2 result is unused
- model = std::make_shared(OutputVector{loop_res}, ParameterVector{a, b});
+ model = std::make_shared(OutputVector{loop_res}, ParameterVector{a, b, c, d});
manager.register_pass();
}
diff --git a/src/common/util/include/openvino/util/common_util.hpp b/src/common/util/include/openvino/util/common_util.hpp
index d068db373360b3..312aab17419af4 100644
--- a/src/common/util/include/openvino/util/common_util.hpp
+++ b/src/common/util/include/openvino/util/common_util.hpp
@@ -15,24 +15,42 @@
namespace ov {
namespace util {
-template
-std::string join(const T& v, const std::string& sep = ", ") {
+/**
+ * @brief Join container's elements to string using user string as separator.
+ *
+ * @param container Element to make joined string.
+ * @param sep User string used as separator. Default ", ".
+ * @return Joined elements as string.
+ */
+template
+std::string join(const Container& container, const std::string& sep = ", ") {
std::ostringstream ss;
- size_t count = 0;
- for (const auto& x : v) {
- if (count++ > 0) {
- ss << sep;
+ auto first = std::begin(container);
+ const auto last = std::end(container);
+ if (first != last) {
+ ss << *first;
+ ++first;
+ for (; first != last; ++first) {
+ ss << sep << *first;
}
- ss << x;
}
return ss.str();
}
-template
-std::string vector_to_string(const T& v) {
- std::ostringstream os;
- os << "[ " << ov::util::join(v) << " ]";
- return os.str();
+/**
+ * @brief Stringify the input vector.
+ *
+ * The vector is converted to the string as "[ element 0, element 1, ..., element N ]".
+ * Examples:
+ * - std::vector{1,3,5} -> "[ 1, 3, 5 ]"
+ * - std::vector{} -> "[ ]"
+ *
+ * @param v Vector to be converted
+ * @return String contains
+ */
+template
+std::string vector_to_string(const std::vector& v) {
+ return "[ " + ov::util::join(v) + " ]";
}
std::string to_lower(const std::string& s);
@@ -113,11 +131,16 @@ T ceil_div(const T& x, const T& y) {
return (x == 0 ? 0 : (1 + (x - 1) / y));
}
-template
-bool contains(const std::vector