From 176e63c5e9887e0596341518e158ab3379c64901 Mon Sep 17 00:00:00 2001 From: Roman Kazantsev Date: Wed, 17 Apr 2024 16:47:24 +0400 Subject: [PATCH] [TF FE] Fix layer tests for binary operations (#24080) **Details:** Fix layer tests for binary operations **Ticket:** TBD --------- Signed-off-by: Kazantsev, Roman --- .../tensorflow_tests/test_tf_BinaryOps.py | 155 ++++++++---------- 1 file changed, 68 insertions(+), 87 deletions(-) diff --git a/tests/layer_tests/tensorflow_tests/test_tf_BinaryOps.py b/tests/layer_tests/tensorflow_tests/test_tf_BinaryOps.py index 97ab31e56195a8..6bf56ba7f339e9 100644 --- a/tests/layer_tests/tensorflow_tests/test_tf_BinaryOps.py +++ b/tests/layer_tests/tensorflow_tests/test_tf_BinaryOps.py @@ -7,98 +7,86 @@ import pytest from common.tf_layer_test_class import CommonTFLayerTest +rng = np.random.default_rng() -def generate_input(op_type, size): - narrow_borders = ["Pow"] - - logical_type = ['LogicalAnd', 'LogicalOr', 'LogicalXor'] - - bitwise_type = ['BitwiseAnd', 'BitwiseOr', 'BitwiseXor'] +def generate_input(x_shape, x_type, bound=False): # usual function domain - lower = -256 - upper = 256 + lower = -25 + upper = 25 # specific domains - if op_type in narrow_borders: - lower = 0 - upper = 16 + if bound: + lower = 1 + upper = 6 - if op_type in logical_type: - return np.random.randint(0, 1, size).astype(bool) - elif op_type in bitwise_type: - return np.random.randint(lower, upper, size).astype(np.int32) - elif op_type in narrow_borders: - return np.random.uniform(lower, upper, size).astype(np.float32) - else: - return np.random.uniform(lower, upper, size).astype(np.float32) + if np.issubdtype(x_type, np.floating): + return rng.uniform(lower, upper, x_shape).astype(x_type) + elif np.issubdtype(x_type, np.signedinteger): + return rng.integers(lower, upper, x_shape).astype(x_type) + elif np.issubdtype(x_type, bool): + return rng.integers(0, 2, x_shape).astype(x_type) + return rng.uniform(lower, upper, x_shape).astype(x_type) -class TestBinaryOps(CommonTFLayerTest): - def _prepare_input(self, inputs_dict): - for input in inputs_dict.keys(): - inputs_dict[input] = generate_input(self.current_op_type, inputs_dict[input]) - return inputs_dict - def create_add_placeholder_const_net(self, x_shape, y_shape, ir_version, op_type, - use_legacy_frontend): - if not use_legacy_frontend and op_type == "Xdivy": - pytest.xfail(reason="95499") +class TestBinaryOps(CommonTFLayerTest): + def _prepare_input(self, inputs_info): + assert 'x:0' in inputs_info, "Test error: inputs_info must contain `x`" + x_shape = inputs_info['x:0'] + x_type = self.input_type - self.current_op_type = op_type + inputs_data = {} + inputs_data['x:0'] = generate_input(x_shape, x_type) + return inputs_data + def create_add_placeholder_const_net(self, x_shape, y_shape, op_type): import tensorflow as tf op_type_to_tf = { - 'Add': tf.math.add, + 'Add': tf.raw_ops.Add, 'AddV2': tf.raw_ops.AddV2, - 'Sub': tf.math.subtract, - 'Mul': tf.math.multiply, - 'Div': tf.math.divide, - 'RealDiv': tf.realdiv, - 'SquaredDifference': tf.math.squared_difference, - 'Pow': tf.math.pow, - 'Maximum': tf.math.maximum, - 'Minimum': tf.math.minimum, - 'Equal': tf.math.equal, - 'NotEqual': tf.math.not_equal, - 'Mod': tf.math.mod, - 'Greater': tf.math.greater, - 'GreaterEqual': tf.math.greater_equal, - 'Less': tf.math.less, - 'LessEqual': tf.math.less_equal, - 'LogicalAnd': tf.math.logical_and, - 'LogicalOr': tf.math.logical_or, - 'LogicalXor': tf.math.logical_xor, - 'FloorMod': tf.math.floormod, - 'FloorDiv': tf.math.floordiv, + 'Sub': tf.raw_ops.Sub, + 'Mul': tf.raw_ops.Mul, + 'Div': tf.raw_ops.Div, + 'RealDiv': tf.raw_ops.RealDiv, + 'SquaredDifference': tf.raw_ops.SquaredDifference, + 'Pow': tf.raw_ops.Pow, + 'Maximum': tf.raw_ops.Maximum, + 'Minimum': tf.raw_ops.Minimum, + 'Equal': tf.raw_ops.Equal, + 'NotEqual': tf.raw_ops.NotEqual, + 'Mod': tf.raw_ops.Mod, + 'Greater': tf.raw_ops.Greater, + 'GreaterEqual': tf.raw_ops.GreaterEqual, + 'Less': tf.raw_ops.Less, + 'LessEqual': tf.raw_ops.LessEqual, + 'LogicalAnd': tf.raw_ops.LogicalAnd, + 'LogicalOr': tf.raw_ops.LogicalOr, + 'FloorMod': tf.raw_ops.FloorMod, + 'FloorDiv': tf.raw_ops.FloorDiv, 'Xdivy': tf.raw_ops.Xdivy, 'BitwiseAnd': tf.raw_ops.BitwiseAnd, 'BitwiseOr': tf.raw_ops.BitwiseOr, 'BitwiseXor': tf.raw_ops.BitwiseXor, } - op_type_kw_args = ["AddV2", "Xdivy", "BitwiseAnd", "BitwiseOr", "BitwiseXor"] - - type = np.float32 + input_type = np.float32 if op_type in ["LogicalAnd", "LogicalOr", "LogicalXor"]: - type = bool - elif op_type in ["BitwiseAnd", "BitwiseOr", "BitwiseXor"]: - type = np.int32 + input_type = bool + elif op_type in ["BitwiseAnd", "BitwiseOr", "BitwiseXor", 'Pow']: + input_type = np.int32 + self.input_type = input_type + tf.compat.v1.reset_default_graph() # Create the graph and model with tf.compat.v1.Session() as sess: - x = tf.compat.v1.placeholder(type, x_shape, 'Input') - constant_value = generate_input(op_type, y_shape) - if (constant_value == 0).all(): - # Avoid elimination of the layer from IR - constant_value = constant_value + 1 - y = tf.constant(constant_value, dtype=type) - - if not op_type in op_type_kw_args: - op = op_type_to_tf[op_type](x, y, name="Operation") - else: - op = op_type_to_tf[op_type](x=x, y=y, name="Operation") + x = tf.compat.v1.placeholder(input_type, x_shape, 'x') + bound = True if op_type in ['Pow', 'Div', 'Xdivy', 'RealDiv', 'Mod', 'FloorMod', + 'FloorDiv'] else False + constant_value = generate_input(y_shape, input_type, bound) + y = tf.constant(constant_value, dtype=input_type) + op_type_to_tf[op_type](x=x, y=y, name=op_type) tf.compat.v1.global_variables_initializer() tf_net = sess.graph_def @@ -107,31 +95,24 @@ def create_add_placeholder_const_net(self, x_shape, y_shape, ir_version, op_type return tf_net, ref_net - test_data_precommits = [dict(x_shape=[2, 3, 4], y_shape=[2, 3, 4]), - pytest.param(dict(x_shape=[2, 3, 4, 5], y_shape=[2, 3, 4, 5]), - marks=pytest.mark.precommit)] - - @pytest.mark.parametrize("params", test_data_precommits) + @pytest.mark.parametrize('x_shape', [[2, 3, 4], [1, 2, 3, 4]]) + @pytest.mark.parametrize('y_shape', [[4], [2, 3, 4]]) @pytest.mark.parametrize("op_type", ['Add', 'AddV2', 'Sub', 'Mul', 'Div', 'RealDiv', 'SquaredDifference', 'Pow', - 'Maximum', 'Minimum', - 'Equal', 'NotEqual', 'Mod', 'Greater', 'GreaterEqual', 'Less', - 'LessEqual', - 'LogicalAnd', 'LogicalOr', 'LogicalXor', 'FloorMod', 'FloorDiv', + 'Maximum', 'Minimum', 'Equal', 'NotEqual', 'Mod', 'Greater', 'GreaterEqual', 'Less', + 'LessEqual', 'LogicalAnd', 'LogicalOr', 'FloorMod', 'FloorDiv', 'Xdivy', 'BitwiseAnd', 'BitwiseOr', 'BitwiseXor', ]) @pytest.mark.nightly @pytest.mark.precommit @pytest.mark.xfail(condition=platform.system() == 'Darwin' and platform.machine() == 'arm64', reason='Ticket - 122716') - def test_binary_op(self, params, ie_device, precision, ir_version, temp_dir, op_type, + def test_binary_op(self, x_shape, y_shape, ie_device, precision, ir_version, temp_dir, op_type, use_legacy_frontend): - if not use_legacy_frontend and op_type in ['BitwiseAnd', 'BitwiseOr', 'BitwiseXor']: - pytest.skip("Bitwise ops are supported only by new TF FE.") - if precision == "FP16": - pytest.skip("BinaryOps tests are skipped with FP16 precision." - "They don't pass accuracy checks because chaotic output.") - self._test( - *self.create_add_placeholder_const_net(**params, ir_version=ir_version, op_type=op_type, - use_legacy_frontend=use_legacy_frontend), ie_device, - precision, - ir_version, temp_dir=temp_dir, use_legacy_frontend=use_legacy_frontend) + if use_legacy_frontend and op_type in ['BitwiseAnd', 'BitwiseOr', 'BitwiseXor', 'Xdivy']: + pytest.skip("Bitwise and Xdivy ops are supported only by new TF FE.") + if op_type in ['BitwiseAnd', 'BitwiseOr', 'BitwiseXor', 'Pow', 'Mod'] and ie_device == 'GPU': + pytest.skip("GPU does not support Bitwise ops. For Mod and Pow it has inference mismatch") + if op_type in ['Mod', 'FloorDiv'] and platform.machine() == 'arm64': + pytest.skip("Arm64 has inference mismatch for Mod and FloorDiv") + self._test(*self.create_add_placeholder_const_net(x_shape=x_shape, y_shape=y_shape, op_type=op_type), ie_device, + precision, ir_version, temp_dir=temp_dir, use_legacy_frontend=use_legacy_frontend)