-
Notifications
You must be signed in to change notification settings - Fork 1.9k
/
Copy pathmain.py
95 lines (71 loc) · 2.68 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import re
import qdrant_client
from openai import OpenAI
from swarm import Agent
from swarm.repl import run_demo_loop
# Initialize connections
client = OpenAI()
qdrant = qdrant_client.QdrantClient(host="localhost")
# Set embedding model
EMBEDDING_MODEL = "text-embedding-3-large"
# Set qdrant collection
collection_name = "help_center"
def query_qdrant(query, collection_name, vector_name="article", top_k=5):
# Creates embedding vector from user query
embedded_query = (
client.embeddings.create(
input=query,
model=EMBEDDING_MODEL,
)
.data[0]
.embedding
)
query_results = qdrant.search(
collection_name=collection_name,
query_vector=(vector_name, embedded_query),
limit=top_k,
)
return query_results
def query_docs(query):
"""Query the knowledge base for relevant articles."""
print(f"Searching knowledge base with query: {query}")
query_results = query_qdrant(query, collection_name=collection_name)
output = []
for i, article in enumerate(query_results):
title = article.payload["title"]
text = article.payload["text"]
url = article.payload["url"]
output.append((title, text, url))
if output:
title, content, _ = output[0]
response = f"Title: {title}\nContent: {content}"
truncated_content = re.sub(
r"\s+", " ", content[:50] + "..." if len(content) > 50 else content
)
print("Most relevant article title:", truncated_content)
return {"response": response}
else:
print("No results")
return {"response": "No results found."}
def send_email(email_address, message):
"""Send an email to the user."""
response = f"Email sent to: {email_address} with message: {message}"
return {"response": response}
def submit_ticket(description):
"""Submit a ticket for the user."""
return {"response": f"Ticket created for {description}"}
def transfer_to_help_center():
"""Transfer the user to the help center agent."""
return help_center_agent
user_interface_agent = Agent(
name="User Interface Agent",
instructions="You are a user interface agent that handles all interactions with the user. Call this agent for general questions and when no other agent is correct for the user query.",
functions=[transfer_to_help_center],
)
help_center_agent = Agent(
name="Help Center Agent",
instructions="You are an OpenAI help center agent who deals with questions about OpenAI products, such as GPT models, DALL-E, Whisper, etc.",
functions=[query_docs, submit_ticket, send_email],
)
if __name__ == "__main__":
run_demo_loop(user_interface_agent)