diff --git a/.dev/batch_test_list.py b/.dev/batch_test_list.py
index c4fd8f97e4..0d096ed943 100644
--- a/.dev/batch_test_list.py
+++ b/.dev/batch_test_list.py
@@ -2,25 +2,25 @@
# Inference Speed is tested on NVIDIA V100
hrnet = [
dict(
- config='configs/hrnet/fcn_hr18s_512x512_160k_ade20k.py',
+ config='configs/hrnet/fcn_hr18s_4xb4-160k_ade20k-512x512.py',
checkpoint='fcn_hr18s_512x512_160k_ade20k_20200614_214413-870f65ac.pth', # noqa
eval='mIoU',
metric=dict(mIoU=33.0),
),
dict(
- config='configs/hrnet/fcn_hr18s_512x1024_160k_cityscapes.py',
+ config='configs/hrnet/fcn_hr18s_4xb2-160k_cityscapes-512x1024.py',
checkpoint='fcn_hr18s_512x1024_160k_cityscapes_20200602_190901-4a0797ea.pth', # noqa
eval='mIoU',
metric=dict(mIoU=76.31),
),
dict(
- config='configs/hrnet/fcn_hr48_512x512_160k_ade20k.py',
+ config='configs/hrnet/fcn_hr48_4xb4-160k_ade20k-512x512.py',
checkpoint='fcn_hr48_512x512_160k_ade20k_20200614_214407-a52fc02c.pth',
eval='mIoU',
metric=dict(mIoU=42.02),
),
dict(
- config='configs/hrnet/fcn_hr48_512x1024_160k_cityscapes.py',
+ config='configs/hrnet/fcn_hr48_4xb2-160k_cityscapes-512x1024.py',
checkpoint='fcn_hr48_512x1024_160k_cityscapes_20200602_190946-59b7973e.pth', # noqa
eval='mIoU',
metric=dict(mIoU=80.65),
@@ -28,25 +28,25 @@
]
pspnet = [
dict(
- config='configs/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes.py',
+ config='configs/pspnet/pspnet_r50-d8_4xb2-80k_cityscapes-512x1024.py',
checkpoint='pspnet_r50-d8_512x1024_80k_cityscapes_20200606_112131-2376f12b.pth', # noqa
eval='mIoU',
metric=dict(mIoU=78.55),
),
dict(
- config='configs/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes.py',
+ config='configs/pspnet/pspnet_r101-d8_4xb2-80k_cityscapes-512x1024.py',
checkpoint='pspnet_r101-d8_512x1024_80k_cityscapes_20200606_112211-e1e1100f.pth', # noqa
eval='mIoU',
metric=dict(mIoU=79.76),
),
dict(
- config='configs/pspnet/pspnet_r101-d8_512x512_160k_ade20k.py',
+ config='configs/pspnet/pspnet_r101-d8_4xb4-160k_ade20k-512x512.py',
checkpoint='pspnet_r101-d8_512x512_160k_ade20k_20200615_100650-967c316f.pth', # noqa
eval='mIoU',
metric=dict(mIoU=44.39),
),
dict(
- config='configs/pspnet/pspnet_r50-d8_512x512_160k_ade20k.py',
+ config='configs/pspnet/pspnet_r50-d8_4xb4-160k_ade20k-512x512.py',
checkpoint='pspnet_r50-d8_512x512_160k_ade20k_20200615_184358-1890b0bd.pth', # noqa
eval='mIoU',
metric=dict(mIoU=42.48),
@@ -54,13 +54,13 @@
]
resnest = [
dict(
- config='configs/resnest/pspnet_s101-d8_512x512_160k_ade20k.py',
+ config='configs/resnest/resnest_s101-d8_pspnet_4xb4-160k_ade20k-512x512.py', # noqa
checkpoint='pspnet_s101-d8_512x512_160k_ade20k_20200807_145416-a6daa92a.pth', # noqa
eval='mIoU',
metric=dict(mIoU=45.44),
),
dict(
- config='configs/resnest/pspnet_s101-d8_512x1024_80k_cityscapes.py',
+ config='configs/resnest/resnest_s101-d8_pspnet_4xb2-80k_cityscapes512x1024.py', # noqa
checkpoint='pspnet_s101-d8_512x1024_80k_cityscapes_20200807_140631-c75f3b99.pth', # noqa
eval='mIoU',
metric=dict(mIoU=78.57),
@@ -68,7 +68,7 @@
]
fastscnn = [
dict(
- config='configs/fastscnn/fast_scnn_lr0.12_8x4_160k_cityscapes.py',
+ config='configs/fastscnn/fast_scnn_8xb4-160k_cityscapes-512x1024.py',
checkpoint='fast_scnn_8x4_160k_lr0.12_cityscapes-0cec9937.pth',
eval='mIoU',
metric=dict(mIoU=70.96),
@@ -76,25 +76,25 @@
]
deeplabv3plus = [
dict(
- config='configs/deeplabv3plus/deeplabv3plus_r101-d8_769x769_80k_cityscapes.py', # noqa
+ config='configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-80k_cityscapes-769x769.py', # noqa
checkpoint='deeplabv3plus_r101-d8_769x769_80k_cityscapes_20200607_000405-a7573d20.pth', # noqa
eval='mIoU',
metric=dict(mIoU=80.98),
),
dict(
- config='configs/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes.py', # noqa
+ config='configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-80k_cityscapes-512x1024.py', # noqa
checkpoint='deeplabv3plus_r101-d8_512x1024_80k_cityscapes_20200606_114143-068fcfe9.pth', # noqa
eval='mIoU',
metric=dict(mIoU=80.97),
),
dict(
- config='configs/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_80k_cityscapes.py', # noqa
+ config='configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-80k_cityscapes-512x1024.py', # noqa
checkpoint='deeplabv3plus_r50-d8_512x1024_80k_cityscapes_20200606_114049-f9fb496d.pth', # noqa
eval='mIoU',
metric=dict(mIoU=80.09),
),
dict(
- config='configs/deeplabv3plus/deeplabv3plus_r50-d8_769x769_80k_cityscapes.py', # noqa
+ config='configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-80k_cityscapes-769x769.py', # noqa
checkpoint='deeplabv3plus_r50-d8_769x769_80k_cityscapes_20200606_210233-0e9dfdc4.pth', # noqa
eval='mIoU',
metric=dict(mIoU=79.83),
@@ -102,13 +102,13 @@
]
vit = [
dict(
- config='configs/vit/upernet_vit-b16_ln_mln_512x512_160k_ade20k.py',
+ config='configs/vit/vit_vit-b16-ln_mln_upernet_8xb2-160k_ade20k-512x512.py', # noqa
checkpoint='upernet_vit-b16_ln_mln_512x512_160k_ade20k-f444c077.pth',
eval='mIoU',
metric=dict(mIoU=47.73),
),
dict(
- config='configs/vit/upernet_deit-s16_ln_mln_512x512_160k_ade20k.py',
+ config='configs/vit/vit_deit-s16-ln_mln_upernet_512x512_160k_ade20k-512x512.py', # noqa
checkpoint='upernet_deit-s16_ln_mln_512x512_160k_ade20k-c0cd652f.pth',
eval='mIoU',
metric=dict(mIoU=43.52),
@@ -116,7 +116,7 @@
]
fp16 = [
dict(
- config='configs/deeplabv3plus/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes.py', # noqa
+ config='configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-amp-80k_cityscapes-512x1024.py', # noqa
checkpoint='deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230920-f1104f4b.pth', # noqa
eval='mIoU',
metric=dict(mIoU=80.46),
@@ -124,7 +124,7 @@
]
swin = [
dict(
- config='configs/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K.py', # noqa
+ config='configs/swin/swin-tiny-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512.py', # noqa
checkpoint='upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth', # noqa
eval='mIoU',
metric=dict(mIoU=44.41),
diff --git a/.dev/batch_train_list.txt b/.dev/batch_train_list.txt
index 17d19932e6..6c1a122dc4 100644
--- a/.dev/batch_train_list.txt
+++ b/.dev/batch_train_list.txt
@@ -1,19 +1,19 @@
-configs/hrnet/fcn_hr18s_512x512_160k_ade20k.py
-configs/hrnet/fcn_hr18s_512x1024_160k_cityscapes.py
-configs/hrnet/fcn_hr48_512x512_160k_ade20k.py
-configs/hrnet/fcn_hr48_512x1024_160k_cityscapes.py
-configs/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes.py
-configs/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes.py
-configs/pspnet/pspnet_r101-d8_512x512_160k_ade20k.py
-configs/pspnet/pspnet_r50-d8_512x512_160k_ade20k.py
-configs/resnest/pspnet_s101-d8_512x512_160k_ade20k.py
-configs/resnest/pspnet_s101-d8_512x1024_80k_cityscapes.py
-configs/fastscnn/fast_scnn_lr0.12_8x4_160k_cityscapes.py
-configs/deeplabv3plus/deeplabv3plus_r101-d8_769x769_80k_cityscapes.py
-configs/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes.py
-configs/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_80k_cityscapes.py
-configs/deeplabv3plus/deeplabv3plus_r50-d8_769x769_80k_cityscapes.py
-configs/vit/upernet_vit-b16_ln_mln_512x512_160k_ade20k.py
-configs/vit/upernet_deit-s16_ln_mln_512x512_160k_ade20k.py
-configs/deeplabv3plus/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes.py
-configs/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K.py
+configs/hrnet/fcn_hr18s_4xb4-160k_ade20k-512x512.py
+configs/hrnet/fcn_hr18s_4xb2-160k_cityscapes-512x1024.py
+configs/hrnet/fcn_hr48_4xb4-160k_ade20k-512x512.py
+configs/hrnet/fcn_hr48_4xb2-160k_cityscapes-512x1024.py
+configs/pspnet/pspnet_r50-d8_4xb2-80k_cityscapes-512x1024.py
+configs/pspnet/pspnet_r101-d8_4xb2-80k_cityscapes-512x1024.py
+configs/pspnet/pspnet_r101-d8_4xb4-160k_ade20k-512x512.py
+configs/pspnet/pspnet_r50-d8_4xb4-160k_ade20k-512x512.py
+configs/resnest/resnest_s101-d8_pspnet_4xb4-160k_ade20k-512x512.py
+configs/resnest/resnest_s101-d8_pspnet_4xb2-80k_cityscapes512x1024.py
+configs/fastscnn/fast_scnn_8xb4-160k_cityscapes-512x1024.py
+configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-80k_cityscapes-769x769.py
+configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-80k_cityscapes-512x1024.py
+configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-80k_cityscapes-512x1024.py
+configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-80k_cityscapes-769x769.py
+configs/vit/vit_vit-b16-ln_mln_upernet_8xb2-160k_ade20k-512x512.py
+configs/vit/vit_deit-s16-ln_mln_upernet_512x512_160k_ade20k-512x512.py
+configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-amp-80k_cityscapes-512x1024.py
+configs/swin/swin-tiny-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512.py
diff --git a/README.md b/README.md
index 308fca8716..9b4a580f39 100644
--- a/README.md
+++ b/README.md
@@ -17,8 +17,6 @@
-
-
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/mmsegmentation)](https://pypi.org/project/mmsegmentation/)
[![PyPI](https://img.shields.io/pypi/v/mmsegmentation)](https://pypi.org/project/mmsegmentation)
@@ -33,6 +31,22 @@ Documentation:
English | [简体中文](README_zh-CN.md)
+
+
+
+
## Introduction
MMSegmentation is an open source semantic segmentation toolbox based on PyTorch.
@@ -62,11 +76,11 @@ The 1.x branch works with **PyTorch 1.6+**.
## What's New
-v1.0.0rc5 was released on 01/02/2023.
+v1.0.0rc6 was released on 03/03/2023.
Please refer to [changelog.md](docs/en/notes/changelog.md) for details and release history.
-- Support ISNet (ICCV'2021) in projects ([#2400](https://github.com/open-mmlab/mmsegmentation/pull/2400))
-- Support HSSN (CVPR'2022) in projects ([#2444](https://github.com/open-mmlab/mmsegmentation/pull/2444))
+- Support MMSegInferencer ([#2413](https://github.com/open-mmlab/mmsegmentation/pull/2413), [#2658](https://github.com/open-mmlab/mmsegmentation/pull/2658))
+- Support REFUGE dataset ([#2554](https://github.com/open-mmlab/mmsegmentation/pull/2554))
## Installation
@@ -81,13 +95,14 @@ There are also [advanced tutorials](https://mmsegmentation.readthedocs.io/en/dev
A Colab tutorial is also provided. You may preview the notebook [here](demo/MMSegmentation_Tutorial.ipynb) or directly [run](https://colab.research.google.com/github/open-mmlab/mmsegmentation/blob/1.x/demo/MMSegmentation_Tutorial.ipynb) on Colab.
-To migrate from MMSegmentation 1.x, please refer to [migration](docs/en/migration.md).
+To migrate from MMSegmentation 1.x, please refer to [migration](docs/en/migration).
## Benchmark and model zoo
Results and models are available in the [model zoo](docs/en/model_zoo.md).
-Supported backbones:
+
+Supported backbones:
- [x] ResNet (CVPR'2016)
- [x] ResNeXt (CVPR'2017)
@@ -103,7 +118,10 @@ Supported backbones:
- [x] [MAE (CVPR'2022)](configs/mae)
- [x] [PoolFormer (CVPR'2022)](configs/poolformer)
-Supported methods:
+
+
+
+Supported methods:
- [x] [FCN (CVPR'2015/TPAMI'2017)](configs/fcn)
- [x] [ERFNet (T-ITS'2017)](configs/erfnet)
@@ -142,7 +160,10 @@ Supported methods:
- [x] [MaskFormer (NeurIPS'2021)](configs/maskformer)
- [x] [Mask2Former (CVPR'2022)](configs/mask2former)
-Supported datasets:
+
+
+
+Supported datasets:
- [x] [Cityscapes](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#cityscapes)
- [x] [PASCAL VOC](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#pascal-voc)
@@ -161,8 +182,14 @@ Supported datasets:
- [x] [Vaihingen](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#isprs-vaihingen)
- [x] [iSAID](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#isaid)
+
+
Please refer to [FAQ](docs/en/notes/faq.md) for frequently asked questions.
+## Projects
+
+[Here](projects/README.md) are some implementations of SOTA models and solutions built on MMSegmentation, which are supported and maintained by community users. These projects demonstrate the best practices based on MMSegmentation for research and product development. We welcome and appreciate all the contributions to OpenMMLab ecosystem.
+
## Contributing
We appreciate all contributions to improve MMSegmentation. Please refer to [CONTRIBUTING.md](.github/CONTRIBUTING.md) for the contributing guideline.
@@ -191,7 +218,7 @@ If you find this project useful in your research, please consider cite:
This project is released under the [Apache 2.0 license](LICENSE).
-## Projects in OpenMMLab
+## OpenMMLab Family
- [MMEngine](https://github.com/open-mmlab/mmengine): OpenMMLab foundational library for training deep learning models
- [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab foundational library for computer vision.
diff --git a/README_zh-CN.md b/README_zh-CN.md
index 8db2746413..858485fd54 100644
--- a/README_zh-CN.md
+++ b/README_zh-CN.md
@@ -61,7 +61,7 @@ MMSegmentation 是一个基于 PyTorch 的语义分割开源工具箱。它是 O
## 更新日志
-最新版本 v1.0.0rc5 在 2023.02.01 发布。
+最新版本 v1.0.0rc6 在 2023.03.03 发布。
如果想了解更多版本更新细节和历史信息,请阅读[更新日志](docs/en/notes/changelog.md)。
## 安装
@@ -82,7 +82,8 @@ MMSegmentation 是一个基于 PyTorch 的语义分割开源工具箱。它是 O
测试结果和模型可以在[模型库](docs/zh_cn/model_zoo.md)中找到。
-已支持的骨干网络:
+
+已支持的骨干网络:
- [x] ResNet (CVPR'2016)
- [x] ResNeXt (CVPR'2017)
@@ -98,7 +99,10 @@ MMSegmentation 是一个基于 PyTorch 的语义分割开源工具箱。它是 O
- [x] [MAE (CVPR'2022)](configs/mae)
- [x] [PoolFormer (CVPR'2022)](configs/poolformer)
-已支持的算法:
+
+
+
+已支持的算法:
- [x] [FCN (CVPR'2015/TPAMI'2017)](configs/fcn)
- [x] [ERFNet (T-ITS'2017)](configs/erfnet)
@@ -137,7 +141,10 @@ MMSegmentation 是一个基于 PyTorch 的语义分割开源工具箱。它是 O
- [x] [MaskFormer (NeurIPS'2021)](configs/maskformer)
- [x] [Mask2Former (CVPR'2022)](configs/mask2former)
-已支持的数据集:
+
+
+
+已支持的数据集:
- [x] [Cityscapes](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/zh_cn/dataset_prepare.md#cityscapes)
- [x] [PASCAL VOC](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/zh_cn/dataset_prepare.md#pascal-voc)
@@ -156,15 +163,22 @@ MMSegmentation 是一个基于 PyTorch 的语义分割开源工具箱。它是 O
- [x] [Vaihingen](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/zh_cn/dataset_prepare.md#isprs-vaihingen)
- [x] [iSAID](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/zh_cn/dataset_prepare.md#isaid)
+
+
如果遇到问题,请参考 [常见问题解答](docs/zh_cn/notes/faq.md)。
+## 社区项目
+
+[这里](projects/README.md)有一些由社区用户支持和维护的基于 MMSegmentation 的 SOTA 模型和解决方案的实现。这些项目展示了基于 MMSegmentation 的研究和产品开发的最佳实践。
+我们欢迎并感谢对 OpenMMLab 生态系统的所有贡献。
+
## 贡献指南
我们感谢所有的贡献者为改进和提升 MMSegmentation 所作出的努力。请参考[贡献指南](.github/CONTRIBUTING.md)来了解参与项目贡献的相关指引。
## 致谢
-MMSegmentation 是一个由来自不同高校和企业的研发人员共同参与贡献的开源项目。我们感谢所有为项目提供算法复现和新功能支持的贡献者,以及提供宝贵反馈的用户。 我们希望这个工具箱和基准测试可以为社区提供灵活的代码工具,供用户复现已有算法并开发自己的新模型,从而不断为开源社区提供贡献。
+MMSegmentation 是一个由来自不同高校和企业的研发人员共同参与贡献的开源项目。我们感谢所有为项目提供算法复现和新功能支持的贡献者,以及提供宝贵反馈的用户。我们希望这个工具箱和基准测试可以为社区提供灵活的代码工具,供用户复现已有算法并开发自己的新模型,从而不断为开源社区提供贡献。
## 引用
diff --git a/configs/_base_/datasets/ade20k.py b/configs/_base_/datasets/ade20k.py
index 2c01b2ff59..48340d11ee 100644
--- a/configs/_base_/datasets/ade20k.py
+++ b/configs/_base_/datasets/ade20k.py
@@ -25,7 +25,7 @@
]
img_ratios = [0.5, 0.75, 1.0, 1.25, 1.5, 1.75]
tta_pipeline = [
- dict(type='LoadImageFromFile', backend_args=dict(backend='local')),
+ dict(type='LoadImageFromFile', backend_args=None),
dict(
type='TestTimeAug',
transforms=[
diff --git a/configs/_base_/datasets/ade20k_640x640.py b/configs/_base_/datasets/ade20k_640x640.py
index 866403b27f..c1f642da7f 100644
--- a/configs/_base_/datasets/ade20k_640x640.py
+++ b/configs/_base_/datasets/ade20k_640x640.py
@@ -25,7 +25,7 @@
]
img_ratios = [0.5, 0.75, 1.0, 1.25, 1.5, 1.75]
tta_pipeline = [
- dict(type='LoadImageFromFile', backend_args=dict(backend='local')),
+ dict(type='LoadImageFromFile', backend_args=None),
dict(
type='TestTimeAug',
transforms=[
diff --git a/configs/_base_/datasets/chase_db1.py b/configs/_base_/datasets/chase_db1.py
index 62dd3b3cbe..ed47c2dbe5 100644
--- a/configs/_base_/datasets/chase_db1.py
+++ b/configs/_base_/datasets/chase_db1.py
@@ -26,7 +26,7 @@
]
img_ratios = [0.5, 0.75, 1.0, 1.25, 1.5, 1.75]
tta_pipeline = [
- dict(type='LoadImageFromFile', backend_args=dict(backend='local')),
+ dict(type='LoadImageFromFile', backend_args=None),
dict(
type='TestTimeAug',
transforms=[
diff --git a/configs/_base_/datasets/cityscapes.py b/configs/_base_/datasets/cityscapes.py
index b7d95c1ec0..b63a4cdfe7 100644
--- a/configs/_base_/datasets/cityscapes.py
+++ b/configs/_base_/datasets/cityscapes.py
@@ -25,7 +25,7 @@
]
img_ratios = [0.5, 0.75, 1.0, 1.25, 1.5, 1.75]
tta_pipeline = [
- dict(type='LoadImageFromFile', backend_args=dict(backend='local')),
+ dict(type='LoadImageFromFile', backend_args=None),
dict(
type='TestTimeAug',
transforms=[
diff --git a/configs/_base_/datasets/coco-stuff10k.py b/configs/_base_/datasets/coco-stuff10k.py
index 9d3026bd4c..5d6bb12b97 100644
--- a/configs/_base_/datasets/coco-stuff10k.py
+++ b/configs/_base_/datasets/coco-stuff10k.py
@@ -25,7 +25,7 @@
]
img_ratios = [0.5, 0.75, 1.0, 1.25, 1.5, 1.75]
tta_pipeline = [
- dict(type='LoadImageFromFile', backend_args=dict(backend='local')),
+ dict(type='LoadImageFromFile', backend_args=None),
dict(
type='TestTimeAug',
transforms=[
diff --git a/configs/_base_/datasets/coco-stuff164k.py b/configs/_base_/datasets/coco-stuff164k.py
index c785e313ff..baf633f9d6 100644
--- a/configs/_base_/datasets/coco-stuff164k.py
+++ b/configs/_base_/datasets/coco-stuff164k.py
@@ -25,7 +25,7 @@
]
img_ratios = [0.5, 0.75, 1.0, 1.25, 1.5, 1.75]
tta_pipeline = [
- dict(type='LoadImageFromFile', backend_args=dict(backend='local')),
+ dict(type='LoadImageFromFile', backend_args=None),
dict(
type='TestTimeAug',
transforms=[
diff --git a/configs/_base_/datasets/drive.py b/configs/_base_/datasets/drive.py
index 3bd6080aa7..6a3dd82c64 100644
--- a/configs/_base_/datasets/drive.py
+++ b/configs/_base_/datasets/drive.py
@@ -26,7 +26,7 @@
]
img_ratios = [0.5, 0.75, 1.0, 1.25, 1.5, 1.75]
tta_pipeline = [
- dict(type='LoadImageFromFile', backend_args=dict(backend='local')),
+ dict(type='LoadImageFromFile', backend_args=None),
dict(
type='TestTimeAug',
transforms=[
diff --git a/configs/_base_/datasets/hrf.py b/configs/_base_/datasets/hrf.py
index b0ae34abe6..353d070472 100644
--- a/configs/_base_/datasets/hrf.py
+++ b/configs/_base_/datasets/hrf.py
@@ -26,7 +26,7 @@
]
img_ratios = [0.5, 0.75, 1.0, 1.25, 1.5, 1.75]
tta_pipeline = [
- dict(type='LoadImageFromFile', backend_args=dict(backend='local')),
+ dict(type='LoadImageFromFile', backend_args=None),
dict(
type='TestTimeAug',
transforms=[
diff --git a/configs/_base_/datasets/isaid.py b/configs/_base_/datasets/isaid.py
index 8407e06ac9..5cd4309f6d 100644
--- a/configs/_base_/datasets/isaid.py
+++ b/configs/_base_/datasets/isaid.py
@@ -32,7 +32,7 @@
]
img_ratios = [0.5, 0.75, 1.0, 1.25, 1.5, 1.75]
tta_pipeline = [
- dict(type='LoadImageFromFile', backend_args=dict(backend='local')),
+ dict(type='LoadImageFromFile', backend_args=None),
dict(
type='TestTimeAug',
transforms=[
diff --git a/configs/_base_/datasets/loveda.py b/configs/_base_/datasets/loveda.py
index 8ecc919654..b93bc74af1 100644
--- a/configs/_base_/datasets/loveda.py
+++ b/configs/_base_/datasets/loveda.py
@@ -25,7 +25,7 @@
]
img_ratios = [0.5, 0.75, 1.0, 1.25, 1.5, 1.75]
tta_pipeline = [
- dict(type='LoadImageFromFile', backend_args=dict(backend='local')),
+ dict(type='LoadImageFromFile', backend_args=None),
dict(
type='TestTimeAug',
transforms=[
diff --git a/configs/_base_/datasets/pascal_context_59.py b/configs/_base_/datasets/pascal_context_59.py
index bb144dd202..7f31043ed0 100644
--- a/configs/_base_/datasets/pascal_context_59.py
+++ b/configs/_base_/datasets/pascal_context_59.py
@@ -28,7 +28,7 @@
]
img_ratios = [0.5, 0.75, 1.0, 1.25, 1.5, 1.75]
tta_pipeline = [
- dict(type='LoadImageFromFile', backend_args=dict(backend='local')),
+ dict(type='LoadImageFromFile', backend_args=None),
dict(
type='TestTimeAug',
transforms=[
diff --git a/configs/_base_/datasets/pascal_voc12.py b/configs/_base_/datasets/pascal_voc12.py
index 0fa3d55764..5235ca9cfe 100644
--- a/configs/_base_/datasets/pascal_voc12.py
+++ b/configs/_base_/datasets/pascal_voc12.py
@@ -25,7 +25,7 @@
]
img_ratios = [0.5, 0.75, 1.0, 1.25, 1.5, 1.75]
tta_pipeline = [
- dict(type='LoadImageFromFile', backend_args=dict(backend='local')),
+ dict(type='LoadImageFromFile', backend_args=None),
dict(
type='TestTimeAug',
transforms=[
diff --git a/configs/_base_/datasets/pascal_voc12_aug.py b/configs/_base_/datasets/pascal_voc12_aug.py
index 8b358cc0cd..69c3654880 100644
--- a/configs/_base_/datasets/pascal_voc12_aug.py
+++ b/configs/_base_/datasets/pascal_voc12_aug.py
@@ -27,7 +27,7 @@
]
img_ratios = [0.5, 0.75, 1.0, 1.25, 1.5, 1.75]
tta_pipeline = [
- dict(type='LoadImageFromFile', backend_args=dict(backend='local')),
+ dict(type='LoadImageFromFile', backend_args=None),
dict(
type='TestTimeAug',
transforms=[
diff --git a/configs/_base_/datasets/potsdam.py b/configs/_base_/datasets/potsdam.py
index 4439f41919..95f6039351 100644
--- a/configs/_base_/datasets/potsdam.py
+++ b/configs/_base_/datasets/potsdam.py
@@ -25,7 +25,7 @@
]
img_ratios = [0.5, 0.75, 1.0, 1.25, 1.5, 1.75]
tta_pipeline = [
- dict(type='LoadImageFromFile', backend_args=dict(backend='local')),
+ dict(type='LoadImageFromFile', backend_args=None),
dict(
type='TestTimeAug',
transforms=[
diff --git a/configs/_base_/datasets/refuge.py b/configs/_base_/datasets/refuge.py
new file mode 100644
index 0000000000..79bb4d4e94
--- /dev/null
+++ b/configs/_base_/datasets/refuge.py
@@ -0,0 +1,90 @@
+# dataset settings
+dataset_type = 'REFUGEDataset'
+data_root = 'data/REFUGE'
+train_img_scale = (2056, 2124)
+val_img_scale = (1634, 1634)
+test_img_scale = (1634, 1634)
+crop_size = (512, 512)
+
+train_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='LoadAnnotations', reduce_zero_label=False),
+ dict(
+ type='RandomResize',
+ scale=train_img_scale,
+ ratio_range=(0.5, 2.0),
+ keep_ratio=True),
+ dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
+ dict(type='RandomFlip', prob=0.5),
+ dict(type='PhotoMetricDistortion'),
+ dict(type='PackSegInputs')
+]
+val_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='Resize', scale=val_img_scale, keep_ratio=True),
+ # add loading annotation after ``Resize`` because ground truth
+ # does not need to do resize data transform
+ dict(type='LoadAnnotations', reduce_zero_label=False),
+ dict(type='PackSegInputs')
+]
+test_pipeline = [
+ dict(type='LoadImageFromFile'),
+ dict(type='Resize', scale=test_img_scale, keep_ratio=True),
+ # add loading annotation after ``Resize`` because ground truth
+ # does not need to do resize data transform
+ dict(type='LoadAnnotations', reduce_zero_label=False),
+ dict(type='PackSegInputs')
+]
+img_ratios = [0.5, 0.75, 1.0, 1.25, 1.5, 1.75]
+tta_pipeline = [
+ dict(type='LoadImageFromFile', backend_args=dict(backend='local')),
+ dict(
+ type='TestTimeAug',
+ transforms=[
+ [
+ dict(type='Resize', scale_factor=r, keep_ratio=True)
+ for r in img_ratios
+ ],
+ [
+ dict(type='RandomFlip', prob=0., direction='horizontal'),
+ dict(type='RandomFlip', prob=1., direction='horizontal')
+ ], [dict(type='LoadAnnotations')], [dict(type='PackSegInputs')]
+ ])
+]
+train_dataloader = dict(
+ batch_size=4,
+ num_workers=4,
+ persistent_workers=True,
+ sampler=dict(type='InfiniteSampler', shuffle=True),
+ dataset=dict(
+ type=dataset_type,
+ data_root=data_root,
+ data_prefix=dict(
+ img_path='images/training', seg_map_path='annotations/training'),
+ pipeline=train_pipeline))
+val_dataloader = dict(
+ batch_size=1,
+ num_workers=4,
+ persistent_workers=True,
+ sampler=dict(type='DefaultSampler', shuffle=False),
+ dataset=dict(
+ type=dataset_type,
+ data_root=data_root,
+ data_prefix=dict(
+ img_path='images/validation',
+ seg_map_path='annotations/validation'),
+ pipeline=val_pipeline))
+test_dataloader = dict(
+ batch_size=1,
+ num_workers=4,
+ persistent_workers=True,
+ sampler=dict(type='DefaultSampler', shuffle=False),
+ dataset=dict(
+ type=dataset_type,
+ data_root=data_root,
+ data_prefix=dict(
+ img_path='images/test', seg_map_path='annotations/test'),
+ pipeline=val_pipeline))
+
+val_evaluator = dict(type='IoUMetric', iou_metrics=['mDice'])
+test_evaluator = val_evaluator
diff --git a/configs/_base_/datasets/stare.py b/configs/_base_/datasets/stare.py
index e55519b595..b7545dc623 100644
--- a/configs/_base_/datasets/stare.py
+++ b/configs/_base_/datasets/stare.py
@@ -26,7 +26,7 @@
]
img_ratios = [0.5, 0.75, 1.0, 1.25, 1.5, 1.75]
tta_pipeline = [
- dict(type='LoadImageFromFile', backend_args=dict(backend='local')),
+ dict(type='LoadImageFromFile', backend_args=None),
dict(
type='TestTimeAug',
transforms=[
diff --git a/configs/_base_/datasets/vaihingen.py b/configs/_base_/datasets/vaihingen.py
index 2b3fa76093..6c78994fe7 100644
--- a/configs/_base_/datasets/vaihingen.py
+++ b/configs/_base_/datasets/vaihingen.py
@@ -25,7 +25,7 @@
]
img_ratios = [0.5, 0.75, 1.0, 1.25, 1.5, 1.75]
tta_pipeline = [
- dict(type='LoadImageFromFile', backend_args=dict(backend='local')),
+ dict(type='LoadImageFromFile', backend_args=None),
dict(
type='TestTimeAug',
transforms=[
diff --git a/configs/_base_/models/fpn_poolformer_s12.py b/configs/_base_/models/fpn_poolformer_s12.py
index 483d823308..b6893f6977 100644
--- a/configs/_base_/models/fpn_poolformer_s12.py
+++ b/configs/_base_/models/fpn_poolformer_s12.py
@@ -1,7 +1,10 @@
# model settings
norm_cfg = dict(type='SyncBN', requires_grad=True)
checkpoint_file = 'https://download.openmmlab.com/mmclassification/v0/poolformer/poolformer-s12_3rdparty_32xb128_in1k_20220414-f8d83051.pth' # noqa
-custom_imports = dict(imports='mmcls.models', allow_failed_imports=False)
+# TODO: delete custom_imports after mmcls supports auto import
+# please install mmcls>=1.0
+# import mmcls.models to trigger register_module in mmcls
+custom_imports = dict(imports=['mmcls.models'], allow_failed_imports=False)
data_preprocessor = dict(
type='SegDataPreProcessor',
mean=[123.675, 116.28, 103.53],
diff --git a/configs/mask2former/mask2former_r50_8xb2-90k_cityscapes-512x1024.py b/configs/mask2former/mask2former_r50_8xb2-90k_cityscapes-512x1024.py
index fc132a698f..d2211b66a3 100644
--- a/configs/mask2former/mask2former_r50_8xb2-90k_cityscapes-512x1024.py
+++ b/configs/mask2former/mask2former_r50_8xb2-90k_cityscapes-512x1024.py
@@ -1,7 +1,5 @@
_base_ = ['../_base_/default_runtime.py', '../_base_/datasets/cityscapes.py']
-custom_imports = dict(imports='mmdet.models', allow_failed_imports=False)
-
crop_size = (512, 1024)
data_preprocessor = dict(
type='SegDataPreProcessor',
diff --git a/configs/mask2former/mask2former_swin-b-in1k-384x384-pre_8xb2-160k_ade20k-640x640.py b/configs/mask2former/mask2former_swin-b-in1k-384x384-pre_8xb2-160k_ade20k-640x640.py
index 4e4036db3a..b8b1d6cfff 100644
--- a/configs/mask2former/mask2former_swin-b-in1k-384x384-pre_8xb2-160k_ade20k-640x640.py
+++ b/configs/mask2former/mask2former_swin-b-in1k-384x384-pre_8xb2-160k_ade20k-640x640.py
@@ -3,7 +3,6 @@
]
pretrained = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_base_patch4_window12_384_20220317-55b0104a.pth' # noqa
-custom_imports = dict(imports='mmdet.models', allow_failed_imports=False)
crop_size = (640, 640)
data_preprocessor = dict(
diff --git a/configs/mobilenet_v2/README.md b/configs/mobilenet_v2/README.md
index c1010044a9..30f1fe3ce2 100644
--- a/configs/mobilenet_v2/README.md
+++ b/configs/mobilenet_v2/README.md
@@ -39,12 +39,12 @@ The MobileNetV2 architecture is based on an inverted residual structure where th
### Cityscapes
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
-| ---------- | -------- | --------- | ------: | -------: | -------------- | ----: | ------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
-| FCN | M-V2-D8 | 512x1024 | 80000 | 3.4 | 14.2 | 61.54 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mobilenet_v2/mobilenet-v2-d8_fcn_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/fcn_m-v2-d8_512x1024_80k_cityscapes/fcn_m-v2-d8_512x1024_80k_cityscapes_20200825_124817-d24c28c1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/fcn_m-v2-d8_512x1024_80k_cityscapes/fcn_m-v2-d8_512x1024_80k_cityscapes-20200825_124817.log.json) |
-| PSPNet | M-V2-D8 | 512x1024 | 80000 | 3.6 | 11.2 | 70.23 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mobilenet_v2/mobilenet-v2-d8_pspnet_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/pspnet_m-v2-d8_512x1024_80k_cityscapes/pspnet_m-v2-d8_512x1024_80k_cityscapes_20200825_124817-19e81d51.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/pspnet_m-v2-d8_512x1024_80k_cityscapes/pspnet_m-v2-d8_512x1024_80k_cityscapes-20200825_124817.log.json) |
-| DeepLabV3 | M-V2-D8 | 512x1024 | 80000 | 3.9 | 8.4 | 73.84 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mobilenet_v2/mobilenet-v2-d8_deeplabv3_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3_m-v2-d8_512x1024_80k_cityscapes/deeplabv3_m-v2-d8_512x1024_80k_cityscapes_20200825_124836-bef03590.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3_m-v2-d8_512x1024_80k_cityscapes/deeplabv3_m-v2-d8_512x1024_80k_cityscapes-20200825_124836.log.json) |
-| DeepLabV3+ | M-V2-D8 | 512x1024 | 80000 | 5.1 | 8.4 | 75.20 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mobilenet_v2/mobilenet-v2-d8_deeplabv3plus_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes/deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes_20200825_124836-d256dd4b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes/deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes-20200825_124836.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
+| ---------- | -------- | --------- | ------: | -------: | -------------- | ----: | ------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| FCN | M-V2-D8 | 512x1024 | 80000 | 3.4 | 14.2 | 71.19 | 73.34 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mobilenet_v2/mobilenet-v2-d8_fcn_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/mobilenet-v2-d8_fcn_4xb2-80k_cityscapes-512x1024/mobilenet-v2-d8_fcn_4xb2-80k_cityscapes-512x1024-20230224_185436-13fef4ea.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/mobilenet-v2-d8_fcn_4xb2-80k_cityscapes-512x1024/mobilenet-v2-d8_fcn_4xb2-80k_cityscapes-512x1024_20230224_185436.json) |
+| PSPNet | M-V2-D8 | 512x1024 | 80000 | 3.6 | 11.2 | 70.23 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mobilenet_v2/mobilenet-v2-d8_pspnet_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/pspnet_m-v2-d8_512x1024_80k_cityscapes/pspnet_m-v2-d8_512x1024_80k_cityscapes_20200825_124817-19e81d51.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/pspnet_m-v2-d8_512x1024_80k_cityscapes/pspnet_m-v2-d8_512x1024_80k_cityscapes-20200825_124817.log.json) |
+| DeepLabV3 | M-V2-D8 | 512x1024 | 80000 | 3.9 | 8.4 | 73.84 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mobilenet_v2/mobilenet-v2-d8_deeplabv3_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3_m-v2-d8_512x1024_80k_cityscapes/deeplabv3_m-v2-d8_512x1024_80k_cityscapes_20200825_124836-bef03590.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3_m-v2-d8_512x1024_80k_cityscapes/deeplabv3_m-v2-d8_512x1024_80k_cityscapes-20200825_124836.log.json) |
+| DeepLabV3+ | M-V2-D8 | 512x1024 | 80000 | 5.1 | 8.4 | 75.20 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/mobilenet_v2/mobilenet-v2-d8_deeplabv3plus_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes/deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes_20200825_124836-d256dd4b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes/deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes-20200825_124836.log.json) |
### ADE20K
diff --git a/configs/mobilenet_v2/mobilenet_v2.yml b/configs/mobilenet_v2/mobilenet_v2.yml
index 69d73d568a..6d87401ce8 100644
--- a/configs/mobilenet_v2/mobilenet_v2.yml
+++ b/configs/mobilenet_v2/mobilenet_v2.yml
@@ -17,9 +17,10 @@ Models:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
- mIoU: 61.54
+ mIoU: 71.19
+ mIoU(ms+flip): 73.34
Config: configs/mobilenet_v2/mobilenet-v2-d8_fcn_4xb2-80k_cityscapes-512x1024.py
- Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/fcn_m-v2-d8_512x1024_80k_cityscapes/fcn_m-v2-d8_512x1024_80k_cityscapes_20200825_124817-d24c28c1.pth
+ Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/mobilenet-v2-d8_fcn_4xb2-80k_cityscapes-512x1024/mobilenet-v2-d8_fcn_4xb2-80k_cityscapes-512x1024-20230224_185436-13fef4ea.pth
- Name: mobilenet-v2-d8_pspnet_4xb2-80k_cityscapes-512x1024
In Collection: PSPNet
Metadata:
diff --git a/configs/ocrnet/README.md b/configs/ocrnet/README.md
index 5cbfbabfce..4bd9c7d0b0 100644
--- a/configs/ocrnet/README.md
+++ b/configs/ocrnet/README.md
@@ -46,17 +46,17 @@ In this paper, we address the problem of semantic segmentation and focus on the
#### HRNet backbone
-| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
-| ------ | ------------------ | --------- | ------: | -------- | -------------- | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| OCRNet | HRNetV2p-W18-Small | 512x1024 | 40000 | 3.5 | 10.45 | 74.30 | 75.95 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_40k_cityscapes/ocrnet_hr18s_512x1024_40k_cityscapes_20200601_033304-fa2436c2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_40k_cityscapes/ocrnet_hr18s_512x1024_40k_cityscapes_20200601_033304.log.json) |
-| OCRNet | HRNetV2p-W18 | 512x1024 | 40000 | 4.7 | 7.50 | 77.72 | 79.49 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_40k_cityscapes/ocrnet_hr18_512x1024_40k_cityscapes_20200601_033320-401c5bdd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_40k_cityscapes/ocrnet_hr18_512x1024_40k_cityscapes_20200601_033320.log.json) |
-| OCRNet | HRNetV2p-W48 | 512x1024 | 40000 | 8 | 4.22 | 80.58 | 81.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr48_4xb2-40k_cityscapes-512x1024.pyy) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_40k_cityscapes/ocrnet_hr48_512x1024_40k_cityscapes_20200601_033336-55b32491.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_40k_cityscapes/ocrnet_hr48_512x1024_40k_cityscapes_20200601_033336.log.json) |
-| OCRNet | HRNetV2p-W18-Small | 512x1024 | 80000 | - | - | 77.16 | 78.66 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18s_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_80k_cityscapes/ocrnet_hr18s_512x1024_80k_cityscapes_20200601_222735-55979e63.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_80k_cityscapes/ocrnet_hr18s_512x1024_80k_cityscapes_20200601_222735.log.json) |
-| OCRNet | HRNetV2p-W18 | 512x1024 | 80000 | - | - | 78.57 | 80.46 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_80k_cityscapes/ocrnet_hr18_512x1024_80k_cityscapes_20200614_230521-c2e1dd4a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_80k_cityscapes/ocrnet_hr18_512x1024_80k_cityscapes_20200614_230521.log.json) |
-| OCRNet | HRNetV2p-W48 | 512x1024 | 80000 | - | - | 80.70 | 81.87 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr48_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_80k_cityscapes/ocrnet_hr48_512x1024_80k_cityscapes_20200601_222752-9076bcdf.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_80k_cityscapes/ocrnet_hr48_512x1024_80k_cityscapes_20200601_222752.log.json) |
-| OCRNet | HRNetV2p-W18-Small | 512x1024 | 160000 | - | - | 78.45 | 79.97 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18s_4xb2-160k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_160k_cityscapes/ocrnet_hr18s_512x1024_160k_cityscapes_20200602_191005-f4a7af28.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_160k_cityscapes/ocrnet_hr18s_512x1024_160k_cityscapes_20200602_191005.log.json) |
-| OCRNet | HRNetV2p-W18 | 512x1024 | 160000 | - | - | 79.47 | 80.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18_4xb2-160k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_160k_cityscapes/ocrnet_hr18_512x1024_160k_cityscapes_20200602_191001-b9172d0c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_160k_cityscapes/ocrnet_hr18_512x1024_160k_cityscapes_20200602_191001.log.json) |
-| OCRNet | HRNetV2p-W48 | 512x1024 | 160000 | - | - | 81.35 | 82.70 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr48_4xb2-160k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_160k_cityscapes/ocrnet_hr48_512x1024_160k_cityscapes_20200602_191037-dfbf1b0c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_160k_cityscapes/ocrnet_hr48_512x1024_160k_cityscapes_20200602_191037.log.json) |
+| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
+| ------ | ------------------ | --------- | ------: | -------- | -------------- | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| OCRNet | HRNetV2p-W18-Small | 512x1024 | 40000 | 3.5 | 10.45 | 76.61 | 78.01 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024_20230227_145026-6c052a14.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024_20230227_145026.json) |
+| OCRNet | HRNetV2p-W18 | 512x1024 | 40000 | 4.7 | 7.50 | 77.72 | 79.49 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_40k_cityscapes/ocrnet_hr18_512x1024_40k_cityscapes_20200601_033320-401c5bdd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_40k_cityscapes/ocrnet_hr18_512x1024_40k_cityscapes_20200601_033320.log.json) |
+| OCRNet | HRNetV2p-W48 | 512x1024 | 40000 | 8 | 4.22 | 80.58 | 81.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr48_4xb2-40k_cityscapes-512x1024.pyy) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_40k_cityscapes/ocrnet_hr48_512x1024_40k_cityscapes_20200601_033336-55b32491.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_40k_cityscapes/ocrnet_hr48_512x1024_40k_cityscapes_20200601_033336.log.json) |
+| OCRNet | HRNetV2p-W18-Small | 512x1024 | 80000 | - | - | 77.16 | 78.66 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18s_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_80k_cityscapes/ocrnet_hr18s_512x1024_80k_cityscapes_20200601_222735-55979e63.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_80k_cityscapes/ocrnet_hr18s_512x1024_80k_cityscapes_20200601_222735.log.json) |
+| OCRNet | HRNetV2p-W18 | 512x1024 | 80000 | - | - | 78.57 | 80.46 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_80k_cityscapes/ocrnet_hr18_512x1024_80k_cityscapes_20200614_230521-c2e1dd4a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_80k_cityscapes/ocrnet_hr18_512x1024_80k_cityscapes_20200614_230521.log.json) |
+| OCRNet | HRNetV2p-W48 | 512x1024 | 80000 | - | - | 80.70 | 81.87 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr48_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_80k_cityscapes/ocrnet_hr48_512x1024_80k_cityscapes_20200601_222752-9076bcdf.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_80k_cityscapes/ocrnet_hr48_512x1024_80k_cityscapes_20200601_222752.log.json) |
+| OCRNet | HRNetV2p-W18-Small | 512x1024 | 160000 | - | - | 78.45 | 79.97 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18s_4xb2-160k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_160k_cityscapes/ocrnet_hr18s_512x1024_160k_cityscapes_20200602_191005-f4a7af28.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_160k_cityscapes/ocrnet_hr18s_512x1024_160k_cityscapes_20200602_191005.log.json) |
+| OCRNet | HRNetV2p-W18 | 512x1024 | 160000 | - | - | 79.47 | 80.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr18_4xb2-160k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_160k_cityscapes/ocrnet_hr18_512x1024_160k_cityscapes_20200602_191001-b9172d0c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_160k_cityscapes/ocrnet_hr18_512x1024_160k_cityscapes_20200602_191001.log.json) |
+| OCRNet | HRNetV2p-W48 | 512x1024 | 160000 | - | - | 81.35 | 82.70 | [config](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/configs/ocrnet/ocrnet_hr48_4xb2-160k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_160k_cityscapes/ocrnet_hr48_512x1024_160k_cityscapes_20200602_191037-dfbf1b0c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_160k_cityscapes/ocrnet_hr48_512x1024_160k_cityscapes_20200602_191037.log.json) |
#### ResNet backbone
diff --git a/configs/ocrnet/ocrnet.yml b/configs/ocrnet/ocrnet.yml
index a81aec2c75..20002e8864 100644
--- a/configs/ocrnet/ocrnet.yml
+++ b/configs/ocrnet/ocrnet.yml
@@ -33,10 +33,10 @@ Models:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
- mIoU: 74.3
- mIoU(ms+flip): 75.95
+ mIoU: 76.61
+ mIoU(ms+flip): 78.01
Config: configs/ocrnet/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024.py
- Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_40k_cityscapes/ocrnet_hr18s_512x1024_40k_cityscapes_20200601_033304-fa2436c2.pth
+ Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024_20230227_145026-6c052a14.pth
- Name: ocrnet_hr18_4xb2-40k_cityscapes-512x1024
In Collection: OCRNet
Metadata:
diff --git a/demo/MMSegmentation_Tutorial.ipynb b/demo/MMSegmentation_Tutorial.ipynb
index 89d6e52613..1d92342ae6 100644
--- a/demo/MMSegmentation_Tutorial.ipynb
+++ b/demo/MMSegmentation_Tutorial.ipynb
@@ -460,12 +460,8 @@
"outputs": [],
"source": [
"from mmengine.runner import Runner\n",
- "from mmseg.utils import register_all_modules\n",
"\n",
- "# register all modules in mmseg into the registries\n",
- "# do not init the default scope here because it will be init in the runner\n",
- "register_all_modules(init_default_scope=False)\n",
- "runner = Runner.from_cfg(cfg)\n"
+ "runner = Runner.from_cfg(cfg)"
]
},
{
@@ -523,7 +519,7 @@
"provenance": []
},
"kernelspec": {
- "display_name": "Python 3.8.5 ('tensorflow')",
+ "display_name": "Python 3.10.6 ('pt1.12')",
"language": "python",
"name": "python3"
},
@@ -537,7 +533,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.8.5"
+ "version": "3.10.6"
},
"pycharm": {
"stem_cell": {
@@ -550,7 +546,7 @@
},
"vscode": {
"interpreter": {
- "hash": "20d4b83e0c8b3730b580c42434163d64f4b735d580303a8fade7c849d4d29eba"
+ "hash": "0442e67aee3d9cbb788fa6e86d60c4ffa94ad7f1943c65abfecb99a6f4696c58"
}
}
},
diff --git a/demo/image_demo.py b/demo/image_demo.py
index fe11b7693a..231aacb9dd 100644
--- a/demo/image_demo.py
+++ b/demo/image_demo.py
@@ -4,7 +4,6 @@
from mmengine.model import revert_sync_batchnorm
from mmseg.apis import inference_model, init_model, show_result_pyplot
-from mmseg.utils import register_all_modules
def main():
@@ -24,8 +23,6 @@ def main():
'--title', default='result', help='The image identifier.')
args = parser.parse_args()
- register_all_modules()
-
# build the model from a config file and a checkpoint file
model = init_model(args.config, args.checkpoint, device=args.device)
if args.device == 'cpu':
diff --git a/demo/image_demo_with_inferencer.py b/demo/image_demo_with_inferencer.py
new file mode 100644
index 0000000000..26bf0f257c
--- /dev/null
+++ b/demo/image_demo_with_inferencer.py
@@ -0,0 +1,45 @@
+# Copyright (c) OpenMMLab. All rights reserved.
+from argparse import ArgumentParser
+
+from mmseg.apis import MMSegInferencer
+
+
+def main():
+ parser = ArgumentParser()
+ parser.add_argument('img', help='Image file')
+ parser.add_argument('model', help='Config file')
+ parser.add_argument('--checkpoint', default=None, help='Checkpoint file')
+ parser.add_argument(
+ '--out-dir', default='', help='Path to save result file')
+ parser.add_argument(
+ '--show',
+ action='store_true',
+ default=False,
+ help='Whether to display the drawn image.')
+ parser.add_argument(
+ '--dataset-name',
+ default='cityscapes',
+ help='Color palette used for segmentation map')
+ parser.add_argument(
+ '--device', default='cuda:0', help='Device used for inference')
+ parser.add_argument(
+ '--opacity',
+ type=float,
+ default=0.5,
+ help='Opacity of painted segmentation map. In (0, 1] range.')
+ args = parser.parse_args()
+
+ # build the model from a config file and a checkpoint file
+ mmseg_inferencer = MMSegInferencer(
+ args.model,
+ args.checkpoint,
+ dataset_name=args.dataset_name,
+ device=args.device)
+
+ # test a single image
+ mmseg_inferencer(
+ args.img, show=args.show, out_dir=args.out_dir, opacity=args.opacity)
+
+
+if __name__ == '__main__':
+ main()
diff --git a/demo/inference_demo.ipynb b/demo/inference_demo.ipynb
index f05a947483..3a29a96466 100644
--- a/demo/inference_demo.ipynb
+++ b/demo/inference_demo.ipynb
@@ -2,9 +2,28 @@
"cells": [
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 1,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "mkdir: ../checkpoints: File exists\n",
+ "--2023-02-23 19:23:01-- https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth\n",
+ "正在解析主机 download.openmmlab.com (download.openmmlab.com)... 116.0.89.205, 116.0.89.209, 116.0.89.207, ...\n",
+ "正在连接 download.openmmlab.com (download.openmmlab.com)|116.0.89.205|:443... 已连接。\n",
+ "已发出 HTTP 请求,正在等待回应... 200 OK\n",
+ "长度:196205945 (187M) [application/octet-stream]\n",
+ "正在保存至: “../checkpoints/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth.3”\n",
+ "\n",
+ "pspnet_r50-d8_512x1 100%[===================>] 187.12M 861KB/s 用时 2m 56s \n",
+ "\n",
+ "2023-02-23 19:25:57 (1.06 MB/s) - 已保存 “../checkpoints/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth.3” [196205945/196205945])\n",
+ "\n"
+ ]
+ }
+ ],
"source": [
"!mkdir ../checkpoints\n",
"!wget https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth -P ../checkpoints"
@@ -12,7 +31,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 2,
"metadata": {
"pycharm": {
"is_executing": true
@@ -24,14 +43,12 @@
"import mmcv\n",
"import matplotlib.pyplot as plt\n",
"from mmengine.model.utils import revert_sync_batchnorm\n",
- "from mmseg.apis import init_model, inference_model, show_result_pyplot\n",
- "from mmseg.utils import register_all_modules\n",
- "register_all_modules()"
+ "from mmseg.apis import init_model, inference_model, show_result_pyplot"
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 3,
"metadata": {
"pycharm": {
"is_executing": true
@@ -39,15 +56,33 @@
},
"outputs": [],
"source": [
- "config_file = '../configs/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes.py'\n",
+ "config_file = '../configs/pspnet/pspnet_r50-d8_4xb2-40k_cityscapes-512x1024.py'\n",
"checkpoint_file = '../checkpoints/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth'"
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 4,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/Users/xxc/Desktop/pjlab/mmsegv2/mmseg/models/builder.py:36: UserWarning: ``build_loss`` would be deprecated soon, please use ``mmseg.registry.MODELS.build()`` \n",
+ " warnings.warn('``build_loss`` would be deprecated soon, please use '\n",
+ "/Users/xxc/Desktop/pjlab/mmsegv2/mmseg/models/losses/cross_entropy_loss.py:235: UserWarning: Default ``avg_non_ignore`` is False, if you would like to ignore the certain label and average loss over non-ignore labels, which is the same with PyTorch official cross_entropy, set ``avg_non_ignore=True``.\n",
+ " warnings.warn(\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Loads checkpoint by local backend from path: ../checkpoints/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth\n"
+ ]
+ }
+ ],
"source": [
"# build the model from a config file and a checkpoint file\n",
"model = init_model(config_file, checkpoint_file, device='cuda:0')"
@@ -55,7 +90,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
@@ -68,9 +103,38 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 6,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/opt/anaconda3/envs/pt1.13/lib/python3.10/site-packages/mmengine/visualization/visualizer.py:163: UserWarning: `Visualizer` backend is not initialized because save_dir is None.\n",
+ " warnings.warn('`Visualizer` backend is not initialized '\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi4AAAEoCAYAAAB/+3pfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9SYxlSXrfC/5sOOfcwYeIyIyMzKzMqsoqTkVSJPVEid16m36NAggKEDT0QgS4ECgBWlEbrkRAosAVAUELQsOqV9JCgBqNBpfsFtgPUENiS1RxEllVZE05xhzhwx3PYGa9+Mzs2LnukUMV+9VLyC2R4e73nsHG7/t/swohBG7aTbtpN+2m3bSbdtM+BU1/vztw027aTbtpN+2m3bSb9nHbDXC5aTftpt20m3bTbtqnpt0Al5t2027aTbtpN+2mfWraDXC5aTftpt20m3bTbtqnpt0Al5t2027aTbtpN+2mfWraDXC5aTftpt20m3bTbtqnpt0Al5t2027aTbtpN+2mfWraDXC5aTftpt20m3bTbtqnpt0Al5t2027aTbtpN+2mfWraDXC5aTftpt20m3bTbtqnpn1fgcu//tf/ms9//vPMZjN+5md+hv/6X//r97M7N+2m3bSbdtNu2k3733n7vgGXf//v/z2//Mu/zD/9p/+U3/u93+Mnf/In+dmf/VkeP378/erSTbtpN+2m3bSbdtP+d97U96vI4s/8zM/wl//yX+Zf/at/BYD3njfffJN/+A//If/oH/2jD73Xe8/9+/c5Pj5GKfW/RXdv2k27aTftpt20m/Y9thACq9WK119/Ha2/O92J/XPu08dqXdfxla98hV/5lV/Jn2mt+fKXv8zv/M7vXLm+bVvats1/f/DBB/zoj/7o/yZ9vWk37abdtJt2027an2977733eOONN76re78vwOXp06c457h3797k83v37vH1r3/9yvW//uu/zq/92q9d+fyv/V/+FreOjwAIPmCMZr25YL3bY7QihEBlLUEpmqrCaIvWigAoIADBe0ChtWhuQvwn4MEHvA+AJwTQRgtCVJqk5/HOsd5uefTgMV3boZRcY4xmeXLEYrng5GiJNhpCwHtP33coFC4oHj16ghscx0cLmuWc4D3eOQiB9eUK5wJaK6wGQiCg8LbGaIXRhrqpqCpLPwzsLi/ph4A1ChmOQtuKdvDUlaFpauqmZrfdsV2t6AcP8V0KqJsKU1m2+56hH7CVRSlo9x0+BLRSVEYzn1U4Zdi3nlsv3aaqLUPbst/vqDQMg2PwMKsMIHPoPBgja+J8wGpF3/eAYnBga4N3jkorVFXx8st3sLYiBLi8uKTd7wi2ZrGYE/zAdrWWxVKa2awhENiutwz9QAhxzqxGEVBK4VEoBSrE2wiMqkb5DmTerDEYo6nmC+7eu4fSKu6JgA/Q7luqWUM1a2jChuXJHV6tPe3qCT/wQ1/kc6+/gdUGrRS6ePb477SFEBi8wxFkjwJaqSvXyk6M+xbpTx5FoPwrfnS9MjUpWSffT28EYOMN/+bpD/HkcsXjBw84P7tkGHp8iDZmpeUpwWOMwVrLbNbw6uuvs9vt+cl7FT936wEnTaB3im4ArWFWgVbgA+w6cP5qH9U1v125QBv5NYyX2dkx1fJUhqAgBPlfGYOdHeOL2/NNwcv+MFbOgtYcnZ7KfkHmXKX1UAoVd49SCm3MZF7lf4+Kv6fPfd/SX4oZvD+7z7A9x3vPMAysVpc8uP8+z56fQYDFyRGvvPIKd196maaeyXuiZlkpUFpoibyLTMxCCLF/ZHqWb5KOjMsbQqZ1Pp5/H+Byr/izhzv+8A/+mHfeeZu6qSLNkz4MXQ/BSx9Q9MPA6e1bzBcLNudnsgdDoO8di5MT2t0Oq2Uh2r7n5PYdAtDudoShhzjHubdKy1hDwAWPR+Oc55XPvM5yVtP3AxC4uFxxeX5B3/W8/OpdjpcLun3Hfr+nbXvmx0ccL5d56N55ht7RDS2gqEyNbQxGa1zv6Pse5z3WVBhr0EboAEbjup71es3qcsViVnF0tEApm+dVaS1zt17RbTdU1jKf1RhboZUWq4BS8acWekLiQ/Hf6wwfIYwTkzZ0mqxQXKN12gB5JkOA1eqS7XbHdrPHDS6ueeRpSmGritffeJV5ZQvLRXrwuH/SflFKMYTAMAwopVhfrtjsWpq6om1bnAuYymCrmlu3X8KowGa7JjjH8uiIZrZAGcXQDfw//t3/jePj46tj/pjt+wJcPmn7lV/5FX75l385/315ecmbb74JAaytZP8kYLEzWKPR2uT1tVrjvMeHjkpXVFWFUhqFYt/uhSHXNULKC2LmE4uQpnQiHnIvgA+eIxVoX7rF6uyCYfB5D21WG7p9x2LWsJwtAYX3DggohKnVVUXrArvNht12Sz2fUVUGayusMSglTMxalYlVFxTWWKrKUFWWqrIorRiqCpQAF4LHBzDWYvHYylLVNVVV0VcD1lpcGm0IGMBai60rKi8HPQSomxrvwTmHUioDJmMsfdeyuTxncXzKfHHMbLFk2K8xXY92AROBg/cePFTWELxHeemjMQbvPWEIWGsJSmM0KC1g01bCFGxlcIPFa0NTVwRv6MxeDpvWVE2NUtC1HQFF8ANWIcCr2Ech7oh8SPM5j6AmE31NU1Uoa7B1jdGatu/p+wE39DjnGDYbBuXYBs+RqtD+OUfzmnfe/g777SX1bM5iseTk5JjGVhwtjrBKoyNhFqaoir4IIxni5rFKodRUjToFLpGwB3+V6B08OxAmwCTE/Xf4eX4JkQkGS7VbYnuPnS3RdSvAHOI4ND4xaq3BaKga7GxBpSx7q7l9smBuhcF2DmrLhLEuB+iG+OIE8NJ4il9TS2DnEAgGkH3atbjucRxGsfoh0KqHRJ6YaUP+aWt0NctEunv6weGUHD4RU1XMFnN0NUM3C1CKo5MTlBZGEJRGaYOtKkLwhJdfQSlNcD9Kf/GI/aNv4dsNt0+Pef21Vzk/f867773L+dkFj+5/QN9ueeONz3J6cgurdQYQKg4i9TUx0OB9/v46FXwCVmlSffw9PWfv4ele8cHDd1FKsTxaoJSi73qMNdjKoIIwW2WEWaMUprIE76jqKoMgxUBdV/hhoKosfuhxPuCGjv2+xSgVBSOFCsWZjGcwEFBOyxwqT1PV1FUN8Xwr76KwVTNrapq6ySDMB6H5VV1lwBe8QxuFbz1aGayx2MpGembRRjEMHmMrjNbYSuZbAUMNVVVRV7KWdd1k4JY2xW63xwTHrdNj6rqWe5WOazOuh+yLdP4LEBny8CP+UOD9uL/jOLSRuS7XMaOzdL8PeDTNfI7Swqt2+1b2RwDnZb5tU1PXIvgm+jeetxHAhOI9KoIjpaCuKxwKa4S/GhPQ1lI1NfP5jBAcVV/htcJWDbau43okPvrdu3l8X4DLyy+/jDGGR48eTT5/9OgRr7766pXrm6ahaZorn5cgMU+zUiit8MGhlRaJy3uMtYTg2e/2DIPD2AprTdQkCCvwIdB1LXVVoYyK9/sR7cZ3KpLoLtdUdcPtWydUVrO6WNN3A957nPP0wQlSX85RSjQQCWdrJZoeoxVWG5z3dJstLWAqkbxVRNkqj1E2TeBw0dMGSxtLobNsPgJ1pdR0wySJJElskDe7UWCNZjA6a6ZS32XaA64fWJ09p93tWJ4eY6sGuh4BCLH/WeswMqc8h+lZ6d1RK3V+dkm4dUxT15EYJ+Co0YrxeXFMWqs4tjQujULWT+Y6almimCkar7SGCdKQTn58p8b1Pd4YLs7Phdl7Rz94ed/O8PpnX+Uzn32D3XPDbPeUGnhw/wFGK6qq5vad25jKUtcN2ljqSiRYU9XcvX0HawxucEJAK4tSOks0tbFopTOHFeAystttu+Wd995jaFuaWYUxFbauqW3NcrlgOV9MNARly8So0FYcAqCgQBktzCoR3mL9ffCAEPcQPCFovHdxjhWvLRy1lX2gtWKmARUy6AewFqxJG7EkxNdriwCOZ6m/aa1FazNkzU3eBIQA2y6teDk4sgbNe2Do8EM7aiGKiSmmaNIGYH8+/fZpcbZ01WDqGcuX7qGbBcuTU2bLBdpW1Hdep779Om6/pn3yHbqzD3jZGG6d3uLhowe8887bPHn4iPVmw+c/9wXu3b1LY5pxHZTOa5rXTesIvlWhpRmZYohcMQGWkal7tr3n//MnD3nn/UfooKmsaCO6rhdNaFUxSvyKxLaHpB0RtVRkbCPd0Qqs1XROQMX6ck1dWYw1WVCYAMjY34Dsv0DAI+uhtDDcgKKZNcy6qP3TOu85pSMNECKJ0iPjDUFFTWEcSgns834Ruq2NlfmJ8zndN4APWZAlBGprMEdLtBahudyHWietC+ggwgdCekZFSbpDjpT0KoEcAsYYtLYEROtBFIAT3c9zWZwJozXWGqw1IiQmraFzMi49agvJ9073s1Jh/K7oaNIiCZiOL4w4LVk23CDzlIBavJE/j/Z9AS51XfOX/tJf4rd/+7f5m3/zbwLicPvbv/3b/NIv/dLHfk5mVKOAxqy2BGbs2zYfHx01MIn39v2A0ZrdtsN7j6oszgvV884TqoDGjJKMCqggoCOR7UTAk8q4sjXHR8dU1uCdp+8HNts9JqrTu66jbmZj3+XJeYtorUBpjJLnumFAGZMPIIqks8ZaQcihQMhZ/oxSVdYgaIXWUyZwSMDzYYxEIR0ypRTKGDmM8fU6ES4Fs1ktKtbB0+/3bHzP0XKOD55+CCgNlZa+4AMhqCRijOOKPfJedAkhSmztvuXZ057j02O8cyPgiHYBh0KHEEGMjDPjyyxJys/4+myyCVEyE8EmkOQaVTIAK2Ct3++Z3zqlaWacHC8J3rPZ7tDGcnrrlGHref5sxXaYofxLvGrOmTWBtu3QwOXlmqB0njeRMD11XTGfNSgFT549JwyeoEEjYzK25t4r91jM5mgUPmoAh9DjPVTaslqteftb36Hdb8b1VhqtFa+98Xl+7Ed+RDRZhyDgEBOEq1oZEEgixHuUiJWSeU+SvooEFqJE70M2WTxqa0LeOWm/J43BeHZIIDSMoEgVktmVFj9WWZWuMBrquIcT2E/POZqTBY3y/hBNmP0QJg8OidkX2K4UCBIjHFxg30+vIEr8PoDvdvhux/n6HFXNuDCWxUv3OH3lVZrFEVVTo5enVIu/gHv1i7RP3qZ7/j5v1g23bt3m29/6Fo+fPuUb3/g6m92Gz3/28yyauZzp4uxn81cGLXGdlCao2JliCnS5XiGw6wa+8qeP+crv/Qln5+f82Jd+BG01/TAwDEIrE2MUEGNHRkxh1hy5k1DKCHiVMhAiiKkrjEkgmKxh8FFbNGWaUeiJ6+H9CG+SadKFQAgGpQ2jJlwlTpuZeijojUqEItLVZMIRKOroB4fSQUxFCCgucX7gwBSHQmmh3VNNl8q0KTUfzc7KB4LOmzT2KwhYi7Qq0V9rxPyitAg1Q9+KQB17pKJmaAIs4vxpbdBGgItWGo8nWu6wdtQaFYo7EthN9HIc+bhmqd/aaNGYAUSzmDZVBEV9vod8DX8u7ftmKvrlX/5l/u7f/bv89E//NH/lr/wVfuM3foPNZsMv/uIvfuxn6EJ7kBC3sRU1CqM1g3d03RD52CgBBBTb3V5Uf0bR9QP94Kgri3Muay6Cd/S9o3eOeVOjlSFLHRSgSYG2mkrXwigial8cdVS2iiqycUOLti2IrFpsaqN1pK0h23lDZvLSJ4Vi3lSgtRxaIPkaFAOMZ3cK50Pu7Ojng1aj4iOEzKyUEjWtSBAqE5EQgYHSCqMMSiuc8RA8xmiGfqDvPX0PyiiWx8d0+y24TjBFwTuUUviJdF0yAHD9wPr8UrRjifED6DKOP6leR+Ka36OSxJWFrAjOwvj3SOriDdEvJaqC9/3AwnsqYzBVRQgB23mCD1xerEHBrutYHB1RVZaH7jbHuqGyKzZ9z62jBmN0ZPZR8+Ed3vX88R//d1RQzGY1bdcLQVQapcUMMQwdt45voRU479j3PU8fPWC7WfPSS3cJ2jL0HT5SVlk3TzCWoXeZMamCaMsyF2g3MAUSB8xbKy0KqELVPbk5f5aYOoTgMVqxcjYC4USI0z5NoGdK/NPRmjLBD2mqWMG8r6agZbxsykBCCGAE1FtT3BdpRfLVIM1GGJ+VmWFQHM0KNX8c3RC1P20P+z7i6H6H62H1wYrVg7epj+9w+zOf4/TuXfGFWJxiP/sTzO9+js27f4S1lh//C0vefe9t3nn7Xd5/7136vueHvviDLOeLQnMaUKFU8RM1XPE8BEXQIY85r2+kHbtu4A+//Zz/+tXv8OzZGdYKKHCDp+8EtJQmqtliHlVUBXhVyfQRRroS17iezVBRI1JNfCmKdYg0WSUAHQWjRPoUyDsjKAQZn9EqKkcLOpf5QdIQR8BZrH9+ZvxHawEiQQVW6w0az2L+EuBBiTlp6g9WoNo81HEeZEhqBEzl5khmoWIvqjQPEDUsoLSJ5rkKWxlCgM12x37fUh8cjdKUkwTXxA+1FpOuMRqvQhR+I4A1+sp6ZEoYP/b+YGOFknrG8cZnJrBlrUGbpPmK35d7489B6/J9Ay5/5+/8HZ48ecKv/uqv8vDhQ37qp36K3/qt37risPthLY2/VHGfnpzw9PwMW9dUBJo64KJDIYhpqLaGbnCy4Yxl6PeRaQd651H7jqZyaGOjM5in61pmswXJZjNuSBWlCUPQ0ckviBrORnWojtIAFCw6o309ov48JgVaJEJ8QPDSeCC99zSzGUdNRRejrRLgSRLwuHmJwCb+mqTceJISGk4EiEz00vBkLBG2ELw4uhpUtGsajLW4ro8alYB3A94rhnbP4BbMjk7RdovvWoJ34/gTCk+7PgB4NIG6MjgXRKr2nmB0Ho8uNn6hs8rAxkVTV3BJIp8StWSmyqpRNXWUE6daCFrhuk7WARXNZREMJbHaKIauY/XsjGY+Y3FyzJk/Juglrlvz7vsrVL/ltFGcNop5laQwzXazBa0x9iX8ID5JuhLp1Pc9b3/rbfA9JuqExBdqC27gycOn3H7pJYJzeU0z8FAKjc/ApeAmU7CQpMgDE1HeK4kh6QgMtUZHxu7T1CZQoKKPYNzTWglAU3lvF+A3BAFEWYq74ip9bX+udnD8qcYBRhNv4TcxuWV0rM3XpMvKeQrj51NptARgaWyjqVEBtVVUITCzsKxFu7fvxZdn8IAf6C4e83h1xuWDl7jz2S9yfPs2VV3B0R3mP/Z/YvvBV6mevscP/cCM+fyYb37jGzy+fx+C54d+4Iej46km88Civ+PaJU1kuAJcvRc68tV3LviDP32Xxx88QKtAPatxzuGGITq4m1GciBJ2MjWVJqlSFPB5cUTT3LWdON2XTLxYPE3UgCawguyvQ/NeGquP66iMKejZuJfKfaZItNAXYC99D8mze9d17NaXzCrLbHEiTtcqOn8fgAyCOLhqsaHm98qz9Miwyw1aHjGVB5qFqrFpdGWpK/E3dN6z3ey4uFix3Www1nL7eJmFgSTCyVAKh/AMJMQZWEWarkLU0ISAVgY12cfTPTJtBYXMGrYQ9+AgM1r4dGW6nqY48xomwvR3276vzrm/9Eu/9IlMQ4dNfFBDdEoD0FgTPUMUgBE03ZgsxhtjGIaBphojInRSKUbGP/QdTTWPi+eprETt+ODEhASk4xPiQcsETwucVUoR/LiJs9Ik940IFqLmKG6m7BAcyCpAH8YD4b3n8nKN3bWcnB5TNw3ODRC89D6EbMdNR1QzBQijhvJ6BqG1QmkhElqJD06vhMRoHUR7QJJ6DMZqiD49aUtqFX1VnjxlfnzE0ckpqmnYXV5AcBGnpMMeMsEK8f0asZU6N5LBUXIfj4VK96r0GDlUOjOuqFLNtFvWygdIdCdLogqRKLTOc+m8Z/B+1F6NC5m1WypSoO1qzTD0HJ2eoq1BN0twA65znG/hcgcz41lWDqt6GuXxQ8/Z02f4INJ/VdeiclYBv9+hvcclZus9c6XAVgwBut2O95737PoBqhoXYiSTCehTxY94jwUCXvbkAUCYNBWZdf4zMqXoUFRV0SdMj+NPLr4R7WK0OHhrrXA+OgGSTDcq77k01+qQoMPku1IDdF0LyYSVhIDY55F5paUfmVoa5wS8XDcvB9dN3hulDqXIJubxXeM+Vgqifzl1JdO278TnZnAKwkB7/ohHuxXru29y73OfY3F0hLWW21/8nxjufZ6zP/3PfO6zbzBrar7+1a/x+MFDDJ4f+eEfZz5foNHpkOe5Kvub56dQyqaxvf/4kj/65vu89867uGGgaSrc4Bk68bGqrMkmkSz6ZIFDQTIDR1NonokIFC7Pz1FKUYtKC4USWubDCLgQITA7jEdQPDhxvjW2YhgkkkhpTXCjWao0yqQVDnGNq1mD0WR1QN6rUTMblPAND6wuzxmGgZOjJVVVo4z4mok2SE81VQWtL3en9D85405bGe0lvfTx8+KzBGK0OByDZr3Zs768YHO5YreTaKnl0ZJwvIhzNdJEAqKVSrQ985qQBQ+jwujnkkGtigAq5H4AGOJ6puOewIfSKLw8F9FW+bQeWiwdRo/zkMFhAtYvPs6fqH0qoope1FxCmHHhvA8MziVYTMBn4JCYkq0MxijqytJ1PYMb0ErjcAzO4ZwDJMyvrrSo4Sto+4Gw3TFvGgltltWPttN4ZPMmShw2SfrRxSwxRkJW6amoQXFDlFmi9J+kZR/SBhBiEHxABej2LU+3W7S12NpSN5WEUXtP0KVDZ1LtBQheNl2ekhQqHPelUvmzUvVptGxyFc0R4oOhIWjqSmyofpB328rgqUG76KDs2K1XDH3H0fExxhoGJyBLRzOOVk5AEmAL6baMqhEQFfIcpghArUTyEXUvWXGTGEfymwiFA64KEfQSIshMa6ckuioy5+Rv03edaJMSlUiidSHdiBTruHj+lK5tqeuGqml4480vcvfuLW7fvs1iPqftHbv9wH6zpw4tw9Cy2Txl5lYMXcdu33G+DVR+h61nWLVHeQfO4XxAV7LRKuDJUPGNH/kJutmMUDd4ZfEejAo4U/NXPTQkvvXxKUbpzzKbz6mrisVyzuuvvyoq+AiS054XUJ0IlkYbw77dEGpbPK94/zVdyZqPMH3/i3BW+j6DEfXi5x9qmZIZ6ApwP3h/qakoGVcCPCGMDq7Z9yVqOvOI8/cxzHoWWMwEwFzuhPn5bsfm4Xd4b33Gaz/wo9x55S7WWqo799Bf+p959vX/zGuvGipT8dWv/hGPHj4G82d86Ye/xLye5f5dcbwv5zb1MY7p/tM1/+tX3uZPv/YNun1H09SE4EWDq4IwIKPpekdtxYStQmC/21NbjTKK5JaijYCIFByW3mVBzKQF0x6l7QhVosbGxz56Am0rocnL+UxoawQ7BNHAegUqCnJyVNW4QkoIiDHi95IZMgk8BLzrcF5R2xprK6Hpi4UIG0qDMpkWj9qf6UZMdDqygYO1HjUpIe+rQsOSj07Ie7Kcnn3bsr5cs16vaLd79vuOvu0IITBfzAriFgFHDI8vP1MJVKIyzSbS3CTg5Uj+UOzf2HxaoTyA+DO/Rh98JrRRG421Or4zCaXxpx953/faPtXAZej7QupLzCOMmzQTnXFvhKTJ0NBoTR1qcSbtetq2FUbuA5U1oBWDhyYovBMfA+8GtJacKDpJJHFTjMRNlr2QewoiGMa1RHK5uKCwhZovE84omYj0L86ZIX6vlMKYgPOO3aZnv9nR1Da/1WSkrPBBHMx8CLgQN2XwYoqJIXKEgB8GnDX4JG0EYZYu9sUFAS/KBFR0JvXBiA+Gk9wtaoh5aJTCWNlebnC4rmO/ugAknNVYxWJRMfRtHpf4f3h01NyYaJJxEbS1+46271ku5wyDl1lVmsEHbIjhsE4kqbSOFHsjEYwEDBMT0/HgexUjFJTGBdlfxhq6/R5bNVPTQgoNyFRL7h2c4+L8jOOjE7x3dG3HQs2pB8s8NPzQFz7Lye3bzGLIICrlswk457noWv7zestLSuH7js+4De1+y2az5nJ9Sdvu6C973P4J/+V5yzvHdyIgjRKsFcI7f/llQnWOKvalKonddTimPCjx+pfuvMTj8w37/Y561shaBR8BYRGumfZ58FxcXrJZb3jr1c+hzTNSZELZckQMhVamvEzFE6Wv6+iL2xXGXWgZph+MUuaEKanpPaUW6jrmlb8JI6PIrynemc0ZSkDkopHQ8Mud5LfBD/SrZzz81tfZbXa8+cXPU88aZrfu8fKX/meefe0/cfeVu/xw+BJ/+rU/4/EHH7CYH/HWZz+HiiadylZ5XM45ceKPq5/4jw6KZxcbvvrOGZtdz+nJCf7WKcPQs75cU1W1CHVaMTjHfFFjtME5H98jgEZMDxKhlLQuRmuCiWkUKklpYHKOkcRQdREhmQQhhTKawXnatkdrzZ2XbuF7cQ4OtcWr5LuR7hQztTibigYgqIDGY3UUwBA6lw6sUgGjoRsc/TDQGIOmom7qSFeT2T4uYDTFqSgcmZS/K2vnp5ul3Ocjq4/ahvTI6Q6KP1NKA0Vwns3qktVqw3a7ww0O7/wIDGJ/srOKIoY5x3XIP5MfkvibiUN0wHud94KJfmvJpzNpr9NZHvWQCa3I2qa9rsszHH2hjLUSkRUdsDMoikzvQ53uP0H7VAOXvpdkSBNhzvksCQVF9E8gSstMiZKRY62DxhhLVVV479nt93T9QKNFO+OSXwbEUGrYbHYipaCYzevC1yqM1oQMaCBZGkZ5o2xF1AYjY00OdGXUhnc+Os3G/APeUcVDL2dN5Q0i/QjZvhkfhjAYruyfEA9HknR9UhMfSLMqTqeoB8WumXOTRGJlq4ah79G1FYKGSKKDcwwDBDS2WaCriuFyLQwxqi+Tk2dS6abJ0ihc13PedtGJVcyCPhSHQY1jEZw4Wt/9NUg/IBFN4xhDnEOfo7batpNw+vz4jFwYT3pAG8PJyTHPnj7n7OwZL999JROrvuu4ffs2u+2W3XYLSJi/1pqmabhz5w4aOLU1/+fP3MlrcSeqkRyeP+tbHg4Dz4eel4Ln5N33Wfze7zMMvfQnSYbK0CxmWGun5yNNUbGeE0krMK1epqCuGz77xhucP3vMo0fP6OM+C96P0lPcE0Yh4dO64tbtU9588w2Meg/CMD4/P/rADHOwFw/NPR/WSufiF/rrhJEMly1/ds15GL+6et84b9eBmdFUFD9EQvOnWp66UrxkYd8rLrZyT3/5lJVSvK/hzS+8RT1rmN9+lZM3vsTqgz/l1Xuv43rHn/zJH/P2d76DUp6mqTk9ucOt01OsMXRdx/OLc5ZHS07mS7SS8+mDp3eK98/h5OU3+AtHL4sJ3HtWqwu+8rv/jc36Ukwo3tP3nsVxHbV9HrxnGCQM1/gY5TY4yWHpe4a+F1+VLGAFhuzcGaa0OK69cy5rfLebPR5Ynp6gtBEtuA90vWhzRzrmUYgw2Q+O2jsI0i8fNMPgok+jaJjlrRofHNt9y9BLbq26toCfRAKJk3DywxMTi5iugmjnXRJOi/UtxqeyumUqtuLBa6I/UFLCHGZelPPko8lHBRFm0noAYjZO/C2agPOUpuem/4PMgHMhmm3FfCvnTovgStRkMx6B8qSMZDF9khwPRKD0iPuCj4lSlTYoo8TcHsSUGkg50bzM7feOWz7dwOXZs2fcffkVjJFQ5UBUVxZTP91co1kAGBdDCVq2tYVAjAwSRlRXlrZtsUbRh3HTdK4n+EryC2SiF7dMVo1OxFfUeGHCNJJgCZU1RdnznUgEfTIRRZWrljj+EFS2XRLAKnEeTf1TWmcHvLppaBqL80WP8vlSeR6SqltlLVKcpiJfgUJlJzABRzHqQGtQkp1Ray1ZSPtOkm9pR9+NoXGKAdc7zp48YXnrFkent2j3G4Z9S7hmV/sgNtckJWjvp87R8TuRAsBlEBiyI21gZDYHEHHCTHQM/w5IcsPgnZh+Zs24xOMKkogNATCKys5pZjMuzs5ZXa4yI+2HgbbdM58v8kP2+x0A2+2Gs7Pn+bnNrCE5Xj5nTDp3enrC3XlDt5gxWMP/cu8Vjn74S3xrt2azXfPs2bMY5q2pDKPpQCX4fH17EXjQcW1PTk75iZ/6S9y7+5C+dxg8PjouSuh49CsyInHNG0kNcHuh4ZyRkh4KDiEC04N3Z3+jj9Emvgcf0g5BzaHD6gt/Zyp75ksOQMsUZKkc3Jefp5g6JMezrFEcWaENFxthBO3FEy6CJww9b/3Il6ibmtPP/RjV4ohnX/1PvP6ZN1ivN3z7W9/kO9/8Fi+/fJv5fEEIJwD0Q8/jx4+41d3i+PVlobVSfPPBltac0Bio65locgnMZjUnx0f07W5Mw6AU1oxJ5ZIIILQr+sFpiSQUGaI8a/mVJHCvtLris0aSxiPTr5saW0lW2qQZFHN29I8hagbSuY2gLFDsm5R9d5xthr7j8vICawynJ0eSuDQKPiG7Ex+stNix82Cuo03X+T+pg78DxLDmSvbh0E/2U7kvUzBEXdcMVc/gAkEn9wEmICsdp6RpSVstbbrM6sqw60gLtBYt15hJPh3QNBcF+EpHpaCryTyXnZOVzJ41cT0yeIx7Jj9q5DffS/tUA5fjxdFUG5A0CTCu6AFYSJ7r8oHKRDWB5GRKilmZqZsqT7retwwxXLqyhq7vqCp7QGQLBeLkBMd+FCaLdHUIZFVezoPBSNyCj9oDH9NixcR6o29NdFQzhsGL8j0doKHrGbxmvmioGjtGoaDQjOi3xHMJtySXkgSyIBKQ8g6VNm2AMErvRgvws9ZKdM4geXolUsEyDI6+a7l8+oT50RGzxQzXdjFyJ2QNFWGkfSZ2TGsVM7YG/NCjQoX3Js/ylYOhRrY9ZYpJWhknwRiT1bLWWNwAznV0/YB3HqOvHroEABXSt7ppMFWFttE1NniG9QVvf/05r7/yMgcb5kpTSlEf3xFpDzDNHG0bdtuNrL/vIAz8pdc+w//xB99iOFry5Ow5/9evfIU/ax0KxevaU0dm+cL3UBK6wzHJ5IehQ9c1t05vcXpyCoSYbyJpEMZ5LOcyhID2O5nxUqszPa55PUpgdQVUfMg8veja9PnEX2Uytnzhlc8z+wrjsyaK88n+OthDB98cAkZdRBEqJcAFBUcz8Qk4W8sZ7y6fcbZbc7Q84pU3P0tVVyzuvEH36g+yevgtPvu5z3G5uuTxowdcrrdstjvuvhTNFwHabcu+aYVREgge3n/4nFW3RFXjyiul0EEiH209Q2f/hOjQacQhdjzr4+CS/4N3PVpX+cBOpiILRQVTV2OAQNIO+whEtNL0bYeZicZw6PtRuApJuFIFEy4CK3Qcj1ZYrbPWWvzj4PhoGSNeVD6vab0Pt0MGZ0qN+Z0ON0zcC+X+PtwHShu0rTHWUteW/W5/ZZ+QwE2eGy15VyKwABtNtBxohw47HYXKYkypOz7E9BvpTETzkbEGfHR+JvlDMtJdCpkjRAdkEhaSdcnae62F7kXgLmQ0FOQ4/v4/OnCxs5RNN6q/go8pBqKPd7GH0n4HruUbqR7NZN/FqIiqlpTylTU4H+jbFpTkf7m6vFe2NhlxhvxXZLxkB6kQRNWGhuAi+Ii+GlkzonVm7EmnP749bopYNwPEWTl4T7vb8ej+TrJNzuvs0zGOkcnvKnm5RmCXCPAEg0WmpTJwSaBMZ9CmtJEU1Wo80OK3AM2sxg0DbnB02w2u74RYxlPg45jDFf+I6Pfg5PNhcFycr5jN+5hNcrIUoqIshYcw/hwPtSiMdMxLk4COJO8TIuKdxyuFKRhzlvpIh1oInbXiA2WNxrmB7bP3cbtLOmsYThqMvZoF+nDH7J7fT5ha1K/a5L+9ExPpxcN3sc2cxenLhOD4uR/4IU4Wxwy7Nf/T828y36tr93p6R/HPlSbaPseweoa6sxDNWtIYJGCb1p0RBJUAwXX7keir4rkveN+hmeejtCglMLnuOZPvwjXPy3vhw997ncYlfSOZgMuQ2IN7XtDH0ZE27jUFR41Go1ntPd0Q8H3H+1/9ffq25wd+9MdQxvLyD/xlFnc/y+Yr/0/eeusLrC4u2G82nD0/43NvvpnfoRGTSZqPP/7GBzx6ekFz+iq1acim5AK+9kM/AiolFRxU1N5O50dlWmYqSfvQtu2Yuj/OZ6qJk2a0dB52TvI+lY7Dcqlnt9nSzBeSTkJriP4tGomKCREcifZ3XAtxKPYcnxyLJmgYcpSp+F6M2XrTO2X9x+0Qohkqp5Dw4xmXMV+l9+Wzxn2h0dZKDqrKgtJsdmv63V58cJL2V43nJ9+tkfMWk8cBKC/hO4ne5vcUO3P66dgXmVZPMCOY0SgBm8qgop1ifMaUESbQkuZER78lpRXKj2dNHHNFUPWRtkxlBIVRYRS4v4f2qQYuUvjkgBAmZB+JQvwofyeHNaF2DnYMJJt9dg1QxU9jsFpq53gXMFYYb/Be1KvFe+R5atxaQUGMLIoySOyLpm4k2RAEgnP4IUb/xL6Ko2kRDRQBRRnClm3r3pOjcZRoAAxgCPTbLe1mi7IGU2ztkMYew69VAg3p+RMHydFWnQhH0gyhp8xHiJ/CozNBEwlGAFnVVPIe72XMdgQB/YDYoFVaOOS94SpbqVRg2G0T55TmJQKrzGRVRqBlJUsBqFBSNC+A2JcHhwohEliQ+k9jaD2UwkPIcFIrSc9tjCH4gX7XURnNreMFtxaKk+U01fZhC8B67xM2Yz9IEsS0TItKJMpd7xi2ay62KwCee8fxl36Kk81jfrLbTJMeUoILX2z7KfErW6Mcr7dv8/ZZxez2q5Rq+fLuDF5Ccvx2uP2G8Px9qGXOU1+y+v8aRFUyiHFGP1krtSbl38XgJyCmNDV9XLPTpM/oDFiy43Z+5VUao4s6ZzrenQMMFBzNNPNK8XTlaAfwfcuzd/6U09svc/fePbS21KevsD/9PKda8fpn3uBb3/omzy937PY91VFFXdcsTpYsT49RKFablkdPL3Deszt/SHv5lNmte9TL2/l8aaXRSOoDiQLS2d8s+a9lOpFMo3F+t7GMyqwyJFW1zzSCcXzI/ui6Hjc4FstZnh55tsLWNTbSh5y4LAqiIRLiTNu1Bp3oXeyrloy/q8tLTk+OiTHRcYzTPXdllZPqQImTueTy0eN1ceyhvL4AEdI9MZPrykpdNWCz3nJ+ccF2vWa5WHJ6PC9emZnSpEfaiOYoma01ipBLHkx34LT/ca7KZymwVTXSX6tFm2Oq8W7JCxHpRLmPS1gU6XBkYqPDudB/E8sLWK1R1qC2Y98yWQ5F2Pz30D7VwGVIcfq5mFVUG2o5aD5GWxQQm5SYTeUywSqfRVTGLZNktPFmJOEOhKAwVmFMTahHqQKKELnYrshuIeR9mvKEdF0f/VKEYZoYJiz5aWLYn1Y5/0EixtpopIL1WI/HRLQbkiYlEh0TM01678XRbuTcIyGKzyFJguOungxK6ZEYhMlgBSgk7Yw47urJMcp90hKSjic69QExwoogqdi9bpgvK/bbNQzDRIOW5jv5DVmtpdo1CZzIWyUL7qi1yuGUGUiRCWGWAOOUuL7PWYOTiTHlyElRAAmAgio0VgpjEksPvPryCT/21mtSo8VMpdcXtVvLUcPi/FRy0VES9j7QO9h1Qgo+25/ht5f88P6Co+CY7sTUCrKRl3UEDCNDl/9/rHrCxW7O03ZDtbxNYQgtGD357xA87eY5lW/56eo96kTo0jVZ4n2RFuMqgPmw9qJEc4fPe5HT7iHQyePI7PbqfRPnZtSYQ0WNP0sgVErVo5linIfJGgDWKF4+NjxdOboB+t2ad7/+h6wuPs+bb72Ft4HOzNi3sDxeYpuGP/xgy9G9p/yFN0+wtqaZNdw5PgECZ6sLejegRWeBdx275/exzRIVCxdKF0IE3pGkpr4W65ET88XzIwESgdraiUCV6KRPdb+QNdjvWwYPpydLkplnAoSVQikzbslExzKBjhGbClSK8ond6QfPZrMmuJ7lQjQ2k3WaLvy4/oVQlQ9aIfiqcgdfOTOR2WuNMlXMdGtBBTbbDWfPL9it1+y2ewYfmM3mL9iLGa3nedcpcVyQiC75XF+5Pu+7Ymwh78cIHCP/EH4g/LKpzKh1KyMwx9FNsVn8IvlvpX1hjGa2mHNydMyiqYVAeR+LQSZeqpBcUuETpWZ4UftUA5deJ5uZ/B2QwnlJ0naDp3cDlbUx9XFICVZzmwAbGCX0w72VNrpiZFSqRMAFcQohSweMlxJ5M+U2S1V20ZL/IiiDokfF5EjJJuj9KPmYQAYnRI1ABjqEUSCKRCSEeAii5kMpnwlCmXAzASpjlHiGu2iCy+UeS7k9jSMStij1jBs9ZDXzGDroY7IiMSHZqpJQ6aF4pBjDUQq6/Ya6PmZxfIuhFW3R9FCFTEMTGFJuunYJqKbVyHOaDqkP2Z+J1N8QA9pDkLwoqaZHsdkOVb2puQSc4sfWGL70xc8wq6eVql/UJkQ8/jQvCAmWyrbQxCxnJ6Hn+TfeQ6k1XKMATE8d6VAoPk17YcpGF6rnr9bv8vV+y9sXG3Lq+/hvKIgdyPH5kj3nXrXiVbOOmP4AAMSNVhLbkdEXxPMjAMl17bo1EeZ4dRauYyDJb+ZFUUjl/ePxHkFLqcHT8d90FtLeHSFt0UemZMgaxZ0jw8NzRwD2l89YL05559uBo7u3+fof/ynD/j6v0FNbwz19xvPv/Anfau9RNzP23cDn3nwTHwLtsOOtz76M6+D+47Nc0dvjxbweHG3fAWPW6MyggujnEjmzdRUTf8YEcVpjU1itn85YyvaTBJl23+F84NadU+qqotvvp0BBJeAyAruRjIaJk73kh4F6JtWhh2Hg8vyCurbMFkfia6EUJYCczHEW3Ebwms1ESQgN4cC/hausIdJkbSzNbEZQitVqzcX5GZvNlm7fkRxuX3v1JU5OTwlDxxVzyQQ0CUBMGqSQHJpT/rAETK5tKvMb0h6LYMXHiB5J8Kkl83D0BRrpmvDRJIYXCqVRJiQJw4ZqXnP60ks0lcUYKXdDkJpWw+BknEF4jiegJ06m3337VAMXFbURGTUiBRT3uz2zWYNzgfPzFUYr6llDU9dUlcEoYcyJ8KqCGF+Z1siJJ+antNljJc8kaaTmVQohlqcJYAlMVKx5DKJp8d6DNlTNDOoG13fQ9ZJ8LKRigjFXSRkdFJlr6mciyAmYJAlXEVWlkSrl0OAQsgzufKCKQOjOS7dZrzekCZbEzsSCWtNDk5xzx2CkBPJ0RNhpFlROIqdiojJjDbRx/jWoaKKrrKGuFJvLc0w9Yz6fSZKqOBcl6c89UuPPPNcqn/WxTtJIs2Rt4tqaXNQy3RsBX5D8QM55KpvSZE8BnFC0ghmlyuRcDzzKOw8/m8xtcc2HHffUoy+o5yx1d2UfX0cuSo3CIeMszSZLPfAX64f8OE8ma1/eX95b4WUhJ88t7yMT5/RB5g+pGvbHJG5XAMkBaLlW25KIcPpuOvAxY+4BsBovGZlsAizpXSXwG8+emgAVdfDzcO7TdZWBW0vN+cYTXM9+/RxsxebhjocPHxDcmtNbSzBLFvopbi+5P05PTlitNuzbPcfzI+bW8sqrd6lMRVUZvvPeE5lzAoPrOLs852tf/Tqry4sYvTcdQ9knrTTeD7m/1oxm4FRhPt2jIdcpSubkpppR103OIZKOmwohOyqnD8csB+XBjaxTaaqmQSvNvu2YNxUnx0eYqPk5FCinczv6o41HORGLYlViMrvS9OInT4pzE4R+rzYbzs+es1ltaPdSwHc2X3B6ekQfNLfvvoIhSETqBLUGSqKU510JkHSyWNHMmNqIJCZ7q9QkkwrjJgfiCIaigGbUuMNHJ+NiCvJII5yLayMOt9K/uqlpqipmy/a4vmfftux2G1zWgI98E/VxT/aHt081cEnahUwuQqDtB549P+el26eYqkarQN919O2erdbYqqJpGmZNLRFDuoggmKhiMnWLf5byYLrm4HJGAjyyAx09vePWP9gUxoik0rcd9D4zdG0bdNXghwG/byMjSI65Y9RNNsUEcXhL/SzNSBBNMMUmCkVf06BUBGTn5yuqumZ+dISKyfmyV0SZZCltwrIOU5w3lU12SsxHKoKlkPxAxJlOG03C+yGO0MTDVdc1tjJ0bcd+1TEMARc0zfGM0HcE50eSosge9fn9KtVRGdWbhydTxb6o6GGfvpG+ekIQtXXwjq5rqZsqg53UcnSNArzKPsJAjgZI83O4h8olSISmBCvld3zEZ0rBS2Y3GdtViDXu40DBdA8BQMFeFZKjRRe+MYcag0P24MtnqPHzyfMn56f8YwRFH0XkpmUKph3KmrVCsMh5gTTR2fGwj+P7r0V7qe+FKSXdPv5daAsm8Od6gMLBZ/kapVg2sNlD5wK7zTlPWkc/bGnbC45ObnO5OyOogYDkSFqtLzm6aICe/X6PHzz7zZ798R67tNw6XRDeE7rw5OwZ9++/z3vvvM1us5fM1bWZ1KZKI0hTOfQdRg4No6BQ8H3pdoIXtF2P94HFTExS2mqqmJgyXZMCklPAgo5Aopwr7xOTHt2Jt+2efrfnaLlEa03V1JPZDgdnXbpYaGBKAljQ93FFy2IpCcCFQrAJeRFd33J2dsnqcs1+J2kdbt+9w+tvfAYdAs/PL0WAyWnKC1BYaJ3CSMxkHopQZq11cSJCnr3JzgkCs2J5NXR8XtI6prW10Wk4xnNNzl9mhYnHpDwvpaARU23s9h2r1ZZ+cGgtdduGQXz6TNVkJXXSXqWQ9u+1faqBy5hJsWAi3tO1HbvNhuWJQZK4apQWqbnb7+nbjn7WcGpOqWoJWU3rXzrtHYY95gSIYSSsCUKO6H78LK1+GaA2AS8RfQyDFDVzbkff7qiahno2l9BcY5gdHUlhtt2WECRhkg7lxpd3mZTp30uiukxFQsyvoEKxI8cupJbi7q0K9Ps97W6PbSpKu2oGTCXBTlJrkPlXqcq1IhNyuU+hUjixIoad6zwhJcMeBkfXD1RWDtnQtgy9w2HxyjI7ntNut/i+jblu4hgyMAsZKOW9MW6cvExZhR9BYLpuPLieEERn1LUdHJfrPDLHEEj2uzgIAWRD19IHTxV01hS9iGGlz0vwcoAtr9zzcVoJXsaZLkHE9f0a9QfjvS9iwod3Ji+oq08Yz9ihVuPw6ut7deVV+b7ylJVeVSknRYr8upI7pgBK+Q413SOTTjGClDxH4z8ZxKRbrsKvqzq79IJDUKs0LGaKdhN4cr7i629/g+12Reu39H3PBxdPeX625tVKc7v2bFcrvrPeoJRns9owm8/ou57B9bz1hS/Qu55du+Xi/Jyv3f8a29Uu7lmJClFBtvFsPqOqJfpN/F1EypawY31l8Ucrh3zhQmC3axkGz/JIMkSLDBPLQqj44OBIGpY8YxlnqvEg5j0jtGG1WqGU4uT4SBxPi3crpSXCMJ7t6d696oc4+SuEnCNKZ43a4fLFPRai9iE+3RjDfNZIZfaojahjUlOldVLQj/v/ihmq7FnaRSl7r8p+LnkkEwHs4Exn2hbvUKXPoxLQEnnDleEV/CF3LZ4Q7wNt13G52rBe7ek6KetCIPrkKIzVLBaa2gz4EDBxxMH7GBX2vbdPNXBJaLokWNZalvMZHsna1+73uGGgqsTPpaorjJH02BIIo7iyf3zA+SEnfMubtwAu8voRgVKAmbTl0j6caAJLAqfETug92V9l6HqGfmC/2VLVNdVsJirR6OhK1Fw4rwhajYmfgs+gIihiHaAwHtw4lhAODoyabvgQiZg1Elbtuz7WFiKrLZIpKj8r7/1DYDQSEiFacaUSoEqmmNyHkXF5N7DfDLhGyrrHT8H3rM6eMT86Yr5c0uNxbUpup0bgoMadkdchDTl/Q/aT0dG3pZT0QtwLIrAH+k7KE1yXwj7d4UMYHXrDwNn5OX/033+Xu69+hs+++hlqLeaoKTke+1X277s54FeZ4fS5MJ2HkiyPv41M4kVA5cWgJT3h0NAy9mzU8kx7VmqDrhpWXtSugt78m4osIozgZbxCxbM55uEoTT6Hg5+Yh8oeqzSO6WjLn9fP7BRQlt9K5IXP76iqQHPrLu32OcMwYIBZtWS723O+85zcfhllHap9SPAe01hmTY13DtcP9H3Parfj8vKCb3/nHd5/9122mx37yyETs1RM0cVeV1aScXbDQLdvs2NnKbRMEqel3sdfun1P3zkWR3PquiY4N/pHKaEzKpqNUwRSUlvKufSxwnmivXFNgoRFL2YNVVVJiLMu1i3NY6lByOZ+f21eo3KHlcueTFihuEpl+nnAFBAwEHyNbftxnhRRIBqr20/RaZj+jGPNUVjB53lNgKOk2WOUXimYxY4mohdBI5D9KY2xwvsKp9yJ1UClvZ2EQin5st5uefbskt2mw7li/SOfGzpP3zm6/UDdGGazmP4/Khl08AyHDPe7aJ9q4CIMR+UwtxCgripsXbFeb/HEsDbI9jtRkZmYwn10XiKMZMYNgc1uh9WaqrLYykqUSN6vJUEa71VqJDYQ4iZPG7w85CH3VynJ+6GspL8eYni1aI5aXN/T7/bMFjMg4IkViwfDLsDRUUPwDtyAUj4yWyKDLRwMM3BKhbaUSFfOZ23kZFQ514vGBmi9ww9O1JVBGJOpDMrqSIR0JviRvmRQkA6dqCRH5pXWJe96JOLHKFDagIohyXEspqrAQXA9u8sVru8wxtANAdNY0AHl8uxH+hX/SsSgWI/MhGIyJp01LiETuwRmUOIDJJVqxzWegr7AsNsR6lnWUnX7lnffO+fJxQWb7Zof/sIPUWt7RTWbfn4Um/6o9iLQcrV92JuufvdhoOU6sHTd/S92KBxBzHdD0qYZjdJTSiYGqRKvRJoV2UezKfgARKoPX4lI24u3hYPvR/ByCBCnVx04kIbAxXrFwyePqJsZy9kMNTvm9K3P8Hqo2e23eD+wXW/Y7fZs1i3Bw6BmKNtAt8U5j9dWioUqcEPPk4f3+eCdt7m4WHO5ClzspA4ZJCfc6bjSGVidnWGUzrVnAoVfULLrlLw3HmdjFFVtJROutQzexfMX2Gw2bNYbZrWdRAqq8iGxxhrlu2JnlTLUsTbOuH4JPBYgKIx+fmMU4DhOrQrhLqRgAkllEHKZl+nOzKsamIJhRUyuadBaaiiVNDDnt0oCZHKWmQh600ACpRTWKIY+mrOVQhlxOk5AIE/8JNookKrBZ3obX6E0McGdzf0ogVruUnzG+IrAar3j6bNL9ruBg6LoUVgb//Y+sN8NuMGjrZEs7kFMV1ccnr+L9qkGLmUoXSlVd21P33foXZSmjcraCmsl9bLSMdNq8KRomxDGDdTuW7Z9jzHRL2bWiM+FHUNmYUqwQvYjKeXL6e9lSmilFNqoqFHQmMpQ+ZA9sp3zVJUo2sIghfhwnr53OK/xQVKvV7MZwTt83+J7ScSWx+M9BC1902nDk8d6SE6zBEoEhqIqwShwWcIQcmuMZTab44c+g8BSszQS/wMmXYIooyMBgCzRIeHEVQzXc90gxFApSS9f1VK7xDkpmNYr5ouK+dGS9eUK2paUrSlHDGSpThz70sFX8lHJ5qJfSkAVmYnTs/q2jQUX/TXMLTC0PcZWQIj1YQJDCHTtnre/8y2sVnzx8z9Ipe10aoJI2eYw7O1D2ncLcq5noR/93BeRm4/6fNSwXPemcO0d6a4PI3Hqmt/CwRX5GzUabK+uGpHQvwiEHTK9QwiWoEspnFwP/g6jXKa9Fz+Pi4sznj15wmq95+HFwKNtzWd/8Ak/8NYX+cEf/AEuzs94v32Pvnfcu3uXZ+eP6QbHe90R+4s9KM9reF6ZDVxenOP7nq7r2HWBByvP860ZfUaSWSSllaegDSqlUdA5HYCafK+yVgLKsy8zWVWWEGC1WjOrheF657g8v5TzaI2UE0m8O9FVJRFJyVFYQv8RIJLB0SFoIQtQic5OIszUdJ4VY+0ykVE02lgRjgh0+0HASAROoQC2I99N+zquqpJIHW0UIRYzTMJpQAL9RPngy4ekSctzqpKmKSahS+Y5rbSAUUa6ljT4h/sqW8Pj/CUtr46Cq7Ep+/qocSy6kYFZ+ny773j2fMXWW0Jj5YJ9+5E0qO8968s9VVVR1dFU9L3jlk85cEkhvRFsHH6ujcUHFxcvMsq4uVQxgdk5t4Ccxhq8H3BuoO8HdtsdVV1xenxEs5xNO5KpXSQGaUMr2Uw+Pj8FFuXTiZgoqsrGnDMSuYKC2mj6boiaDzITdSE63IaB4AL7zRqWS4y1mNkCU3tU14HroxZGSHXw0oGQtRvRJa7ctHn4oyZKE80feajJ/BS4ODtnvVpRN7X41IR0gAXEpbT8KYmSDwHti7DXLCWpaKIiv8dYTVXXAPjBZWahNFRVhesHWecgIXfryxVwzNHpCdvLS/pYyHAUtAqzQZI041hVzI6bpDRjDMp7+kKsSKnD+77H1s1oXjgEGW5AeUm7H4AhBB5uFa8rj64C3/jWtzBVzec+8yZaG6mNGDyDG+j6nsVsQWUOj+WLmOCLQUb5+XWg5Dra8VFE6JMCpUNGcd1TRqX42NK4rsavffg7yvsOPymvPZy3hMevAxJydKfSpLrGL2AcSxZRrowqM77i3/GNcU8qzd2XX+H46Jh3zlq+8g3P/HbFy7dPaOZCd3xQDMNAVVXcuX0bVVmG4On3e56erei6FrYK1bW47Zr1buDJDp7tNUoZtLsqXasgEXOeMWTRWs1+H7CxFlXOhsoUjDof6Lqeupaki+l+FRNaJq1ziHR1bmyMopxMyAiAEE1lpROUusZRe8Q7kcnHR4VAKpAK41pPDZfjGitAW0vVzNA6sNvsubi4oK4ss8USpWS+VezKZN5UsaqxE1kzkndhWtfYVxRTzh17E6tYl5GrcVLGucxZZ6dgo3xWmPRxFATlGVKOZLk8orbxecmcGvuczUTpzChF5wNPVcX61c/g5ossAKv1BgaHfvac0HcSAXtN61rH6nLHfN7gnGJ3XdmDT9g+3cAl/p9VnXEPHB0f04ZYf0GNqDP9byIjLeVASAxbchxst51EUWiNMsSsknos7gejli+enqCIoZRElJJ+H/ur8t9yFLUSJ679vqPvO7xzVNFxyrkQq/Cq6UHM7w3st1u6/Z5qNmc2n2EqOYSKmnazTtRm9HlJNlHFZPOPECKpgscDls05MqMEJA+MQeHajvVuH7MKj+af8aBPJV1J15+elJzmY6h2cei00lhrpuurFVpLFW/lPYMf0FpjrdQsWp+f0bczyWsTzTzJ/p37kIdSSGI61uwI0o/50RIInJ9djhIoouLtup75InroX9GMKLB6tNlHPPzeVvFsaHj92POKd3z7z/6Uy+fPeOOzn2MxW2ZzltEG5x1Gm4JRlqx9qoW4DpB82O+Hf7/o/j+PdtiHQ1J9/TunJ/KT9+mqLmR88otGfvj2qx+O/Yl76Rofp+vin9SHzsL4xhA8Lnjmp3cl6/J+xTZYvnbrp3jjr95h/e2vMrBjINB3A/fvf8BqvZaU8sYQ+oHVbgVefDhCCLz79vv8weNnnC4qLvcDCk3TzKiMmfDNYpuhl3Mqqvi3KojNeAYyaFGSAFGccPfiQxifnRPYaS3h0nHKlRJBzRqDc078XpieFR8Czjmcc4WgB8RM4j6Ekf5l9D41seTsoS/QXKZrkqOsNpaha7k4P+fyckXX9dx56Q7zMF3VQnkzrmgk6qKYltBlSfA2+saEyHcGF7PxEvM+HD6tNP+kr6JyRscorsENeG9jUNcUipeAJfc3Etlm1nB8eiIV6Y3FKMm10nY9OvhM7hOQTb3oqpoHJ3d4XzWsqhkhBJquZda24nbhBtztU9hu4eEjWG2pao0xiv1uEKAVAvstPH96RvAD+2177bp8kvapBi5GT5XQCZ3OT4/xuoO2R+9TveiCURUggKDQMdIlV2BHVJouMUajaeaN1LvQpjgx4yZroxNrbS3Gmpy7I29uQnaEygAmpPeGrFIUM4kkBrKDE2e5MEo7KIXJZq6Ad2Jaarcbut2OqqmYzRdUdSXjUOCcvKOuNDqWQk96kzHfAfmzkuQGQBf1KEqmoyKQsN7lmkCBKBRoRV0lx7nAiGSK6A2V/gHR/uixrpESoFCmmE+h1cYYqQCtpKaKtRpVKVzvJHy89xIKrsc8bFklHrVvGVygcr6JNN627WgWiwjsfJbilQLXd5KfIIhpZ+Lsl4GSz8QMH1D9gJpVvH3uqG7X2P3ABx88ppkf88Zn5mit6IcOP3iMMZhjLXWTSLQr5H6WoCVBmo8CLYdg5zoW+ufZUr8PAVbmM9dcX7YXA5vrr7vuL7m/iPwrvj90G37xfQVYif99tA5o+vypRukq3QDxWdubGW/++P9CXTWszx7y9f/wf2dla17+/Bfpnj9ie/lNvvPNb/LZL77Ffrdj6Fr2qxXBe+5/8IDzy4vIPQPKiJBV1TU9hmVTR6FAxb0rdEREkKgdSMwu9VQRzeQFEAcmoZUEul2L1oajoyOGoc95npLhLUUgpVVQgLGiYQ5uXBuPFGU10XdFK4medIOLU1agmACFCjgCkWJdCnN80ihn8UkbckX7EBiGjvXqkrPn52w3W/ph4Pj0mOViTjKvpBeV+VxetOplMEei8VJ0cGLIObiz+KTYrvIjCprRH2UYHNeeqHDwZwSd8pHGNA3z+UwiPp1nF3OthBBY1DbOjcpzHIxhe3TM4x/+Ee4P8Pxiz+Bkn7TzORcB7NBT9T13Ls5QR0v8W5+Hi0vso0fiIxS1XygJQGl3PZX16BfO4cdvn2rgMk1/PC7/4D0tAYxGD5I5NyHP6f1yb8IEScJQKZVqIBfZs3UsTphNBFMi7AbP6uICpTRVbZnPZlJ3w2iJ+vOIo6kubXxyt3M+ShJy0KW4lhKTVvAoD0bFdN0x/bPRUnnZO88wDBKSRsAPjnazQTkrzqTO0w+C8pvFHFsbXNcSuk7CiCPwT5KS9wGtwoi+lSIYSeGcelwyJq0VQRm0DuLsF8Wh3XZL7T3WzArin4hjImvib6KKw5cOu7w7lacfj7xSI7ALqOz1X1cVCh2rUJMHlYBjIlyeEEsnqJwxV+dU//Ke7WbL5WoTC7Qh6xGBjQ+ewXUoTGFbH4GdOA+GqBqOmqfeE7qB2tZ8sKu5d+8eP/G5u1SVpet70iJoBZWtJuMddQgH0Q3FDjr8/TqQckgq/v8BXtTBz/I914Go76V9ONy4+v4XvflFQCQ97fCJIwv8qDbVjpWrVhpbQlB0A7T7nWhOq4Z2t2amPG80W56sL7n/8AHvfv0r6O05777zLq+89DLWVvSXG3SM/nPeCy/3UiursjXHyyNc7wR8+5CzdidzhSJqA4DsY0FiklH6j86bpXYjz5qKPmrG4pFIJDf0IojFa3Q8ZILhZeTGaPou0UGflSPaiD+NtRZlNN2+Gxl3Ai4TBh1/CYFJjZbyXIZxBZQSDVWqZ9T3HYYgwk4s+KqVZrk8oZktGfo2z1Py9yjdU0Lx7CgGknJHOTWutWiww+iPEhmOyhuk2E3FdUKvUt9lrsV8LgER6RmjclwVj0q+QSHXn2rbjq7ds9tuGWJR2+VyEe9TRV8Czz77OS6/+AV6Y2gfPMfF6Mqm0XiRCzEzy76teFRVnOw2LDcb9O1bsGyo7r+PGwaGIfJo1+F8jfaBwV1vUvok7VMOXGCc9JHAeKNYzUD1mlmqiFn8f3h90gKIKpJx/xOLXUUtRyqkmDdL2ighyKGrLEPXs9v07DbRJ+b0mGbeAJIUqLYWhgGBGXIoUn0QSIW1lISr6T4X2nPRx8LEXAvaVhgd8MajrUgPfeciwwwMQ0zONniC8wRV0XUttl5i6jmmmaPbPd1+h++IGgSVcw3IFMnB9yEUByJMHL/kozAxCQXAe8d2vWG/2VA1dSxHUCxCoYbNET/ThSUdvrxcUSOlk/o5SopaG2xVEYKAwOLBuc9ZIgKCSmnNR6BYNq01Yegl3FwpqtkcbQ3DvpXIr66jqudx6CPIS75SKb+DjsRUCly2mEZ8jH7vnQtevXXEW595iaZuqKzFGksKGz/UERwySnXlX678Pq7W+PlV3cP31sr3Zdxf/FR8d+/8aFAwbeMYD3v0UU9+ca9e/M2hDmUEmdO7EuRM3xR+A8UTuiHwfO3Z9Y5vf/WP+YG/+FPsvOPZRcfmm/8v/lt1jr3/LndcS+cD+82G7tYtThZL7God/d1Euu26Pgo1WkzWXs5uZTQ++UqoxP+VOJ4CXo0BB+nMi5a3GFVm1uLTYo2kDzBKYWobsYMu4GMyp4rJtwTYyectPbxMVui9x7mBzWaLH5yAmKLPpPNR0IhQ0I9JYsjinakfw+C4WF+wXq9oZjNOjpeSK2s+Y+iHaOoJWVMcVPK/i9GYaWxJRss7T+izi/xIlZ0ox66isOdDRoOj32EgZXpJADI5I2ulODo55vbt2/S7lRSlTeQ39jnvtUB2A0j18DbnZxGsgNWGo3kj2t0YXZsEQGMUvPIyqx/6QYK1+LYVgVsprNVoE01eSACFtRqnKi5nt9nO5tx9/hRXL9nfvYfZvksg4B0k9wLvwxV6+920TzVwSQcrCeVp7aU4IewbzdyYnNHLq7Em8oh2IW0Ugmwsp9Izo9IzFrvKCpuITEvtpPeBoR/kVUbSKRtj5EAGSP4uE7wUYqKmvfi2GC3ZEbXWsTqonhz4FBljtKGe1UCg3e/zdd4impFoU5WomYBkgO3Zr1uGtmW2XGDrmqpuqKqazWrNsN+hw6gyTiR2rOMByXdd/hb/m2R7zYOLEoNWomkyeIZ9K3U2gkIKVNpYDVsViSQTQUgSVCQIKSdKPLza6JxfR4itjkTJRq2TKhNaTlSmWTJLqvIITHSqIBtvSpFkKTGX957gFScnx5w9f0bbCnDxfvShkvtVdFIe6AZHUzcCSxW03YCJBSRrHfgvf/aQz7/2MrOYtlwV0tKLGPfICnNaqvzdZGtyPVg4zGBxHah4Ecj5MJb/Ude86PnfS/soMPQi2PLx33sVnIxPOXxq+W84uCOzVEpDk2D3wDC0uG5Dv92w/mDDf3v/K7z37tu03Yx5e8kXd3/Arl9hKst+47g8P5NInLuvZBSilMH1A+2+pZk1+fkp9YGYRcrimmNfAuRSHenvru+xKeothFErAwTnpPKvIkYBCZ1LOVrKEF0FkgXcGEIu+qlGgcEYvHN5XzrvWa/WhBCwigjmM3Ue51aJH6JSWjRJB5E2h2scALzj8mLDxeVaQJH3vNQ0Qqu0CJ3WmkgaiqrqpdmJkS9ceYEiz2kW/Bi1c0YlQDiJQ81zlSZ/TJI48peUg8s0C2xlGfYGGJi26cny3rPe7ejaPYpAZQzzxUxArR41zDJ1Yz+rxvL4c5/HVxUheLpBfCyrymRNvIllbpQSZ2upqRjom4anL93l9dVz3PERej6j7lr6PjCECqUU8/mMP4/60J9q4DK2ePKSL4ZW+D7QKkfvHdrHyJzMjmWTTZkbee0TM/NFSvDEJOODrrTgHW7wSPSJol7ORFrQoyTjvY+MLfda/CYGj3Ogo5VAqZSGXu71PlZt1TG3gYrpn0OIqkBNVRlRGfc+byqNwmmNNiLWBO/p2z19u0dbSzNfUM8adEzB7YO8K1dJjv3zSV0cYAw9Ks5vFMlUrIOkkGRzDnHSUlHt7FUEP0Ec4tJDR+lEZbNOIkKjdW9csTH3C6AlAkkS9Jn8cerW4FIqr3h/zIWtEakqGLkyExOVCL7GuwEpEAaVMSwWC86fP6MfBql6G2t/FLsA/IDHsN/usMZiDFil8Crg+5Y2DPjBscHz/jsfcPLjxygz7ofiSRRdOoApU8bzIvDxIgA0YZ4vuOa66w8/u5ZBvODvdP10HN9buzov4+fj+0s28fGhy1UTUjmC8i3Tv6LHSPHNaCDNd0efCxc8f/bOA7759n3OL845qTxHd06hmqHtjKe7HbZ/Rnv2VMqWdD37rme13jDs9tx96S4BWC6X3P+gL0A0GZhXSop7al2geUrfn5jjOQ7PDZ71ds2to9M4udG3KtJXY8ecVkoOeqY3uepZFAxeNNO2qnn55SXnz57SOhfNHhB6h/IS3ZSj/FThxxW1QmPOFgS0hMkJJpVN8T4QfB/dY8SJeLfd0bc9VVNRRy2taEuE5htP1qImoSi8sNL6SANDOasq7YGofRZ0lK8rfybQIkEdU7Od5MwhCrKGurqqqbgu35BSSJQYnnpWj8lLs8Cmr9wrIFNjj4/YLI6AwOAgKI22Fb5vGbzPBX3NiGuzOcq5wDCfselnzHd7DFBpRV1JImNtFPW8Qb9oY3yC9qkGLmU+lUQMiAK78x6jFG5w9C6quko1S1rEYt2zZBRC9N0opfpRipGXZ34d+6IzetdKx6R1lpQAQCkYhh7vBgE0k3GQn5ntUFEKVyEdifFAKUQrMDiP0eLQZozFmBBDh3W+R8xLRnLFBJ3zwwTn6HdbXLfP1+ZDo634kPhBnEsTkEoHUo3zrOLgdDxkPoRcjCupl7SWPAzJNur6nvPnl9S1EjNSoYZK2YzdOCGjNFuohNOEpRXVWkdnbQFIaYK76AM03jFOuEKKOS4Wc4yIZfJEpdEagtNRsyR1OOqmieOSEg3GVmNq+LR0XgCRrWwGlrt9h8JjjcY5R+cD3RYCfrKfJnubKVMeZ0JNEq59XBDwca+7DgBd990nec51bQouXnz/h/X7w+79ENn7BT356HboDB0mnxf5mSjObHFNOjSeQNu3PHz8iOfP3sVtz1C6Zn38GT5Y9Ww2G+4sNI8fPWW9umS72eCdx1aWrhN/tm9frjg5PsVqhev7CE40zg2AOONqramriqFLficp5JZsgoB0TAuTbFHlWSFmX6J6X2kTK8e7UYZLGtCJNiHRveTLI3PhnKfrWp4/fUZwTgoAIsTVVBYTtb6T/CvpiPlJBSwxb5Q8IDrd2roWDbhry4gLqqpiPm/wPkQN7QCIhir5MrqUkS14cr6VqD2eLHr6M9GuK+c3RU2OCVIH53LyuMyGSGe92ClZaBTBr5kvOD4+Yd5UQt+zZrzszBTCK6Vi7aaSf8RaeAUYLE3xWivc0YLtfClrZyrqWqHVSgRwLz4zwxDoe09V6chDJaeY1mAt7BcLFmfnOSmd+FdHIVaryZp8t+1TDVzGdrCAAgPxSuOHlMwnpjsO000SyvVOpick8ZKPhyKUCP9gzsvCfpDMSgobvddTlWAUNFVF27VRUzYyHmM03rssMSUnz4TSVQRkaBUZe0CpEJF0NJ+k/1UZtaNQRkcnU4XWFcYanPO43kVba8z2Gw9DssHqOuaMGDpC3xFjmCkPSD4mxRxkBns4T/HisUJ1gMGx7/riouhnkw52Tig1AsaEiXQ5N9l0pGNUQ6Q3IWTAWR7UNAqdVKVZfMwCUHyyDKJ3jiqVlo/X9P2AtRUqFMUjtULZRHxTPRcBL37occbQ1BYXAtt9x8U2OhelvhWScIG9yll8IVy5/vrp94dkrnzSdaTkinR4zfffDSD6qPd91Gfjd1NtRpqDcoeGg/1aAprpLI9vKs9z+bTS2HM4f1fBzLTnSajq/cDZxTkPHtznwcNH+MEzu3WHS79Ez+Y8/vbbPHr/Mee3btHuWtabdSRpgRmKoe1xztEHKWcyKMm4rbTKjumJ3uTQYyXJK0ttjJzZqB/Ke390R5bjF9juW+q6GoN4YuZViXecihYBT0pOpwkxQjC+Lp7Ddrel2+9iGoOY8yX2Rys1JrpTozSfUkEkYcoHObeZLsfvbS2FHDfrDevVmtmspmliHaOQMttarNFZc5DpdmTASknxQO8lP9QIP4v9cLgpcz9k8pNDcvb18R7f95yv1lSzmoVJgO7qfkIxzoNSnNx5mfmswtqK4D3tbosf+sgapqd+Elqe6BE6m7t8mJoqy0SjALN5xcVsifeebnAoq6OLhGLo3ZVsuX3U7ocQqGvN4qimbhqsAdtU2NMT3KMnsj8VVFXS5H/vwOVq4YZPUStVhskxTCmNaXvUXhzVMJLgzVgD0SlMq5QuGrLpI0A+adnXJGpkRq6XzRTpvI3qy6iVUbFwoJb3ZQWKUtiqYrFYiqRejEMXaH5k8LLIAiuimjGaUmTUJkYf6ZiyXn4nAqd4AwpFU1c4F3BOGGpdV2ORraKGRiLnbhjY7/b0zuGUQc2W2OUx1WyWo3lESEvS1GjaCUTAMF6Vn6+TMZ00H3bM8xDvzpkidMqyIAMeU2czmorS72k/iBvNSGpCyhQp2pjKSObJSits/F/eMyVIgURYhLi4vufyYkVyotIK3NDlfqX9EQBdVwQTpQuEfGkjVLjbt7HWjMdh+JMne55fnE/3NKqYDzX5XBffl//ryZXXt++GVKR5vO45HwZmPs5z5ecBo7zy5vCh/0EqtivX+snTpBXeGUUP0srI5x8G3kq2zMHK6MlqTZnI2K/piJ0bUMDrn/0Cpz/8f+BdXuX9Tc3lkwsefPMdhk2HUVo0JF5ChlOET1nht5lVUjvLDaJRtZLUTY5YpInRRJH9wQr/EyhZ68H44/f9MFA1DfPloiySkOmiyue+8N6JQkwqfmKrilu3b4m/X6SfoiGO575Uece+q+Q3p8h+fSFx47KvyqCrhqqeEYDtdsejB/d58MF9Li4usw/kiCZHH0KJZizmQiXnW02723F+dkZZJmAcXwSw026POyB3PUTZLGq4vWe7kWCF4FNo0tW9k4XWOFeVFWF7v9lw8fw55xcXDDHZZ0k3MwEqNnHqc6K7ZToLUKNPaBAH3svtjm8Fy6On5zx+ek4ba8Bpo0W7ck3LJv0Ikrzzwj+NYVgeSRHGYaCyo8/mRxKrj9E+1RoXyVUS8mZK/OfO7VPuzHsuhg5jNG6QjLTa+nzQ8sJl9hSlZHysFIwAlIiAE7JPYWjjRgNClPijb0g6BOpgd0sqaHBhappxqWBhujCrP4VZ+YhocoBmTDIl1+rJ+1QQhXB2qMtgSCYnSTrBe4a+yAyb+hM38WZzgdKaqmmwzQxrDbOjYyrvaDfbMRtwzOjoYyHGEBRBJ+mNPEc+xLTdOi8TKkon3su8ZoCjyPWDUjRSGXo49jgQYrmG0pQV/AhCNLH2EaqYBykfoKMGKzkaj1odlZfBeyl3gE5mMo3SYn7yTvyBKPYeStToPjorinSosoTTdQ7noFGO3eqMJ4+f8fLtl4pxlcy2/Ot6rwuYVpO+7vuPC0DUNdd91D1Tdn71s8NVO7z/umeUwObjtGl/XjyKcM1vI/su31jO5vjZIaC8rn8v/iRIIrD5Eeb2G8xe+yJf/4//me3FSsJwjUXRo1Vg1lQ5+drEd4Poz2Us7X6H6weq+QytNU3dsI+ajHy9SswiSwv5O6ErxbynPRrvS2fKxiR3fQY+B2Cg7FwqCR+vSzRtu9ngXDS3WjOZzRTFOEECacYC5JwFqMleMqaintcoBftdi3eO3XrNerUhoJgvFhhblNXIQsxIp2UYKl8i1ZflWuf8uJNCISCN+Oy6LsvIInoZ+o7HDx6xOD7GEui7XrQpR/M0wnFco6oXQshRQ7vNmr7rcEOP0YqmrmOOsCjEqnF/KVXSydiboo8hviYoxCfTB/rBsW872rbl3A88/ewPExqHsSkHVwQ/SkUn3OvGHNOBXO5RCqzRVFia3hMcGFtjK10I1Nc/45O0TzVwUY1FeeGEZSSJwlBXNTOLLIBz2awiF0SnJ4LY23J5mFgYS40TrNJBjP+njV0AcNL5UgVIGFWMinRME1JX+W9h9LIZQr4ujyKaP3RMfa2iBBJ8zBOiUlRLLBWvi8OdNQZxM6vRjmusZeiHTORVmr8kfcQz5IeB/TCgdztMVVPPakxVo4wh+IHBB7pBsVg0aNVLKHIep0QQxQ4UpEdl0HUds00SQLvb0e53uZzAuOeTA1ySmMbClhkgCBpJOEJqHCnGKAjvCbp4f6rAmparNFEBqFgSIL8dUf8Gh87p35VkC0Xl+xNOkvVReV8559htd2w2DZs2kPICTQ1Bh2xyOkk+hFw5VhJcSSRbSdxLoHEdrThk8eV1HwViDkFRCT6uo+d5auNfUxB09e/xvhf3IkP5MDLcYocU4xjhyNVRTN+tDn4rR1T2v7wy3T3qZsLkeoWiufsmfnbERav5+p9+k/03/7/86R99la5t8d5T6xlGK+q6YYghoxNfjygkWGXp+wHvfY6CSUy2ijlKSDRGjdrXrLFIwk1+bsg/PYjjZAg5AaepmxjdM65uXvOQfo7+HHkuAwx9x7NHT7KAkLWlEPNZhUw3QzRdkUhGStaZaGqiIZHY6sqy2+64OL9gGDy3To9EuJrPAKmTlPoxasYldcIYlRjnKn5f+kyGKARpNU5Ror9MQEuxT4pDEwIE59nvO2bzebZtjOkTDk5oXDPnA23fCTB1Dquib85ilnPQqMyEyl2X+qgzPclXRV87NwjN7gdH24qz9+AEICmtqW7dglt3ck6b4djRqDr3u2kMbeunCQmLJj59MAwDXddjBifabZv40cF8fQ/tUw1cepUOjRaHsWSjDYH5rCFUDbbZYoIr6maEsUQ7iIDAVUI/Egyd51qrUUszXhh/Cakv48LopDcsQEmRDZ4UoiiJgkZCMDL6eK9K5i1hU2L8dQRjc+ZWUa8WYXw+iNkoMjnRGgsYMtGkRBp/SABGDq6xhpPTI/b7lq4TQOL3O/r9DqUNxppYXl2S/VE1mLpBOYfrWvADOVIgc8P4S4rE8QGXwVIB8JQsiFYaFRzddkfOdEk6mBTmooLBl4SHUdsS4sFMwEEbMxaJTswm1nLKXygiIfUx4kAl1ymIBNc7T4h2GhXHhrHoqoI+1VcKmfDKniCbl87OVmxWm7xWee1I7KHYa0UbvOfR+VN2MayzspaXbr/EyeLoWjCSANohuDgkP+XfPjPfF7H7q+3wHJXPTJ+XHmEvglMv/u7wfaF4psoAPX17eKa5ZkxXrzoc79TYVAKVF/V7hEPxN2PZze7w7Q8e8Y0/+hPef/8+Ac/24kISNdaNQLCg0KZCqYPidUKQAHDDIKkTrGFwjn5wORu0rauRy067JpXgI30ZK55fH10StKLdd5JkTJzq8kxPTBwF9hmLjipULDJr1NSP49C8O9FihDR3IyCcKiHGneO8Y/PkMc/PV/Rdz/LkWGhmrPvmPGMUTaLN8X25lpBS2Fj4MeTKjdEYmzWkqROHwHXy8XSiJ4smzfuAssncHwXQvBfHDD+yNh7f7am0YtE0MZ+Xys8uwd9Uu3IVQIUQGHyg7Tq6tmfftgyDw8dgFR2T/QUf2Ow2bIKj2+8xVjNraqy28VGKwQVM8DSNoe89wzDdZ1d3neSv0loyt1cVEFOKuKsT94nbpxq4PNtc8mYzGwFDVmdKzYiqMtTNDN9us2d3Rs8wHjSmBEkSwiXTggekjs24aWNtncn5nTw4fqIKF5ooVWsFbmSapjAdjtuz+ACiz4iE30rFYc961+JDS2VNLhqZDlzKbSR28oBNoCD6dAgTL2NTCvyuAK2pmxpTVzQxP0S77yT9dqwvompDQOH6lu3lJfVijrWWarEk9Hvcbl+APF+Yb0IGi8Q1GKUPkfp8JDhGayqjcV78F5xz+MFJOLLPGWUidozEp5B4PAGjJAvxAa0t1n8cu4+J43x0WA7Bx/UbU/sn+7TWmuB7oCKXf9dCzUzdoPodzoM1I6A6PK6D8+z8PBNAHzyb3ZbdfotSmqPFEfN6lqWx3P8Avh+4fXKKRmGNYdaMhT8/jCyEg58vatc/o2TN02dcBSxT+DFl+FfhU5hcET50DPm6gtllRlAUQMzg4eBh4aCnV787hGsJikzfNb3v6m/ee/Zdz6OnTzh7d8s795+w37c8efiAru/QiBRsl0dxP4v0a/TodzZ9VUzgZTTeex48uM8X3voCOmaSNkbjhzErafL5S48Z/UQSOwq5n6DQHoKR+2bzmTifq+TAXow7EioVIp0kQPC4IEEDhOjgXyIbrcGHrBVWMCkTMiqADj4o91rSygSPi2d0Np8zn0m0n2iYpEBqXsOQnHunu1WhsMmslkHIlY0SwXARyjz+M2npXQrR5Jd01XvhKlVlqZt6nBNVUvy4f5XkOpmcknjdJLleoSlLCewCQp8G52m7nn3b03edmLUjz1JaIkydc5J3zPdorZjVmqOXTlC3j9FVJb6HVcx7FgGd0MWeupLQ7K73UeAW/0nislkD1hrssyciYCsJbU8097oQ7k/aPtXARX/wlPD5uwSdnNfk8xAE7QWkjs1gdVbVRYE+131JoWWH4IXiO0gS9SgCCDours7mgJG5HJ6FkVkTN4ECbbM0n75MyZxUNi+oBJ9yn9vdgNLEiKFIbJNqOKpZk3lk6CUfCaQoJDEtRAyVe6YQzY/2Uidkv29BKZp42PbbfZZccjZd79ht1rS7rTjyLeaSRycE+kFCseu6wg8DDI4xhdo4IentMmfhyrzlxQmB/XZH3+5iFVoPQZN8fwqfPtEwxUlNmTWzujID3DTlKoaSJlOho+tE6tVaUqofH5+QQweVhIh2XUfdzMdORoJrTI3WHSlhNyr5x5A3RQgBawwbr2n7PmcTffjoEX/wB7+PNRU/+VN/gVfuvsLR7Cjz3xCft1wuub08vUIEwtibCfH7KKBytV3VNLzoWSOLGdl+hKvXXCVPyMCmOCfCsw6Kz30EjZvCoxGUqPLv/LXK57+8++orXgzJDgHWlTsLQeXR0wu++o0PGIKimw2cnZ9z/vwZ58+fMThJ3rg4OsYYI2U7Uti+Guc+ZXBVkvVLEpD1juD8mHohAQyt8apwQtBieihGn0enSBrq6Ujj6wsfPUUIOgOKlB4gT6uS5ygvoCX4ZKId108dnDd8WuVxV5X7RhzsQ/5d5lWEl7R+xlbMZg0oAyol6oyCnR7nrwQHWbhTShTXkwyuUbiIY0/vHIFqAYhDKHiDfJewVknHtYK6toBj6D11VcUCqoUQMvaODJuL9S/fWYI7WY7AMDi6fhCzj/f0/RC1Kj5mBZdUGcp7+bzbgxK6PGsq6rqiqiyLRQWv3GG9nBdpQARwEfmKGxTOg3YepcS/r7Lx3EYtdAgB1fWY1YZh24EXU9F0f31yanTYPtXAZVjtZMOmTIDxONSV4ehowUaHXNU5H0LUqHoLYULI5KCMx1skgtHzPh/A+MHk2GvxMzl0yE2/5ONZAixSaPPkYrIIkBMgSfZCrwqJJLq1JeKRHHQ1qfikQishEC5KKioSuiQLjQdGNA1lf43RdG1P3/YYq3MUkjDzBDIUVVPhncO7QHAD7XZLZU08QJrWwOxogWmAdg9DT/BuIlSpKMVkQpimKmGBBHYUVLGAnPc+AzwdCZ0PU8+xoJJtfQSGOlKnoBTKe3FkDiEn9ktSU1NZ0TDJ0WWxWIwzphQET7vbszxaYkwVtUTRryiBEwpHxDBlgQrJsvvk6SMePmxQleVkecTQ92zXWxSe+++/zWy2YDlbTu/VmtmrP8jLn/kB3H7N+XtfFWZS7KJw8POj2ouum36e3cOLxOQjeCjBQig+nz6tAERhvFaHcv8XZ+tjDCBH2xTrUwol02vzUEgbLRQc56o0GLIT6xS0XOnElc+OjmYSzmssT58+5YMH99mt17S7PYNzzBYLqbGlgOCj39II7cUka2Lm5tFJ3btBJNuqEvBi9ShMZI2FXLvfbNCR5qSCisKhRzpG0i6rkmkWgCKdIYJI78NAVUkaf20MVV0JUHUH2VyTNqacs8A43yExxwN4GMRZ3qsx+V0CMgmHJTOHR+X1RpE16/Lc8jQUQFilMxkOvlWj1KPiN9eAiDi0+LP8NgZ5GIutwUaH/iRcJh+Vw/tkGcI42aVZgFgRO61HCPT9wK7txZTf9gy9+KqEALa2VNZKIUvv6bsu8jlxjK5nc6qmik7XMXIWxWzREGYzUj0+IJY7mIw6B1hUOmCQxHxiDpLSMjoE6q7DPHwMfen+rfO8/g+vcZnXo3o8y05BomLOVxt2qwte2rQ0sxmVrcUfI0oLGI0uXaTDiO4hRsFM7LmFViYi8zC+GOWdRK+MTh3jj4Tc1XiMtR7TS4/MLr4tnZscYk3MtxITohWLn+BY+t2HkF01UAqjfCRaiTioHDJdCKKoMDqrCmbS2dFPgIzJieSSj4k2ChsMXmuCSX2I2i/vo73Ws98obNNg6hmqqmg3a2FY6ZCmQRf68TQfmqgVKjqrjcJg6AcnuSa2e3rvRcU+rhiJFqSoBRNEPe5HKJShRZabMpFUec19CHR9K+AtPtpoDb7H910EwqZgxMkDPzLqdGCJgCU6FCsCl08f83u/+5CuHzg5XXByclty5/jA/fcfcXrrFe7dvZt76oKjWtymfuULLO99gf3ZA5Q2GbikqZpGo1xPfD+qpee8GARNZVFfXHUIVwgj4MkA/Lp3lerwj0AtE2fYJEgocghtyQ0T4512Kv0e8vMOoUkaX67OXr7zQzunqW6/yezlPa1T+PN3WTQz1ucXaALWGppZQ1WJX4pznkDM0qqkqGqyZIgZKe7FWDcGJQkRtVbRl4SxYGrcv6nkR/KzSr4thYUk7ssRUKaznzWfqZhf/D9AdqxNT3GDw3snNW0owANkQpmdqKfoPZ9PcTELuAiO+t5R1xXKRqd4Xzi1hpgCQKtorhqXW0XAkceSmLAfz8FU46Gi30VyVpP/5SwrUtK2CVGBcSzFJhNQ0eNBzFCK0aGWgLZS7qT0RSyfmRZx1KwkUB7nOTr7Xlyus8YOrcRVwEvE7NCLOV0rsJVlMatFq2KNABVjsu+lyj+lYncw5mCs5I4oJWHRTaOpZzVNLQUxN6sN2hrMMNDuezyeo6fP0BeXYhYM4ns0LrwipdD8XtqnGri88tqrVPOZ2HWjdgQlB71RjoVtmM81zWKJ9gE7W9D3HcpT5EaI2obEODNOSXbNkKNUFIw5EYhHPTG6aGcuKWK5/ol45x2vmFw7uSEUdxWSXLJTBqUOyj0kTYiO/Q6T+9NhT/2WOkIpTFLGnpjp4D0mpBTYo2pVG9EoESsfJ2Lvo8kDI9Wvs7Nt1AAZq2i3W9rdjqqpaZpawvB6D6piPq9wbUugL5jBCBZD8a689xOTCkBUT/e7PW2s01TOqmIkcknCS9krvRYtFiERW52lVgF6kQWEwMX5GfP5YjLtCtCDAzpc8ARdUdVGVOsw7gcFpqrEFFBgWk3Aeyfhjr3j7GnHkyeXfO3Bjs4FvvD6nB/2LvvreDxDP6CD5/zpc76z/wbb9/6YhW6zpJz6Pe6gq1LldSCm5CeH4ONgR+WfI0CaQIjiZ7FWsaUw+sN2zZ3XXnfdPZPrSyQViI6Xo/AAL5b4AiH7yCSmTpiavJITatLyyGXT54YQsM2Ms2GOmR+j9vuYYylQVZYhnqWqqtBa0bZ7drsdXd9LdWRjmTUzNusNpH6k56ezCNjKZJOOMSbuOXPAvBXlhGSmKA/MLCQUy5J8XhJWU4UmWWlDVVu8Gwix0u9uu4pmkapIJx991WJ9riTohfiPyIRJ0yP9GIaB3b5FGcNLL9/CaM16sxuXtqR7So30Kz84PXMEH2kCcxHCNB8B2naH1bN4xUj7xwlJh3U0X2aFVpIo8wLJOySCSoNJdNPkPFICYgy6qNBG8QSKT0MQnzfnPP3g6Luetu/pe4eUNEBMP4OLeEujlcdomC9nNHWd82SZJICq2LcSuGWeoHJ9JJnOZJrzzGeWuj6RzMYxJ1VA4doOTOQlxmAbTbPZsug6mlqLRtx74SPB4V1an4842B+jfaqBy2K5oKobOrctpFqp5PySN7z76AnPn6559bV7LE9O0EBd13RtW6D/QooK417MeVHK3RxVn6KCjgnS4gFM4XPpukRDyfu7ADTxUOTkTQnhF6rLgACMLPGhRk1KSILMqCZVcfNm4hNldFH3ycHK10kvijmTPqT8cNn7vgjJTIncvBeVtvMB5cVpNRdMdI7kkKy1wnlNiCnwlYKh61BuwA2eYVBoG1C2oTIVx3XP0HcMbSvz8DFAuRwwhcJTGQNa0Q8u5/hVcaJSGLRCtDypOrQioH0QB7IIejK3SoQ1Pqtr+8LOP8rmed0GT7B+svYhOiNarak0YMShWQ19ZrDOh5jHJ9ANga8+6bjoDH3X454OfGkDX4ppyJ13tH3H7vwZz6hxFxewuWR+ZFBqNM9M4d8UyJHA2DWzGSZ/yb8yuwmcpN1YQszx7xIkHWpUrn1bmP6dTGq581M0dfUZhc01gYnU8giL54XCKe1wFkYwU4C2F7w7pw1gNJ3l333gcr2jsnd4/OhxrIYr5t5nj5+RkkQZa6lsRR+TG3ovuYFUVUn469GC6syi95KF2xOy0GTi81J+KWMMt27dYkBMA+mdMq4EYUZSF0IR3ZaYmBo1JUk7pQAXPNvdLofAhuAZuj4LLxoxzY+J3SaUrpizYo3iWczCW8YHoh0+PlniA7S7PcEHnB9AmSJLeQEe8vqOZ1yeNa51GSNXqrZ75yeFUktgL2+KACNpY/KYCsafvg8AOkZ/RroYgYoAv0jn/YDXyWR9gJXiPA3O0/U9bdvTdj1uGAiI9qapa6zV9G2HVormaEFV1xAcvh9wzlPPGqpKSsHkvD7XgJVypNncVmo8XY8LirqRInouatW8l7xdfpBkiqJw1tw+nnFrd8nsZM6tV47Zbff0LjCf1/E+H838/4MDl8snzziaLUUNmByyokTymeN7DOuBjZrR9z3ry0t2VUXdNKJdSBsWPc0xEOd0vpzHw+vFYzqESMJL6XKUJBRITRsTFaoh5JqME6ChBcA752OtDNm9hWlxIkEERBsSQlQdq1itOF8I08MUtRR+fEYhQ2agZUxhc0zjKbleBDOZoOuRDcqRlgul1IBUce3bsfvS1RA3KzgXMNFL3SPqau07dusLbN1gq4rayIFM/cjmpDiIUqLVFM5xSo9O0YU0PQpc8plXCu0DQY+mM5kmn9dQoiinzohJ1SPfq+jEmySyRPhkcl0/4PoWQ5gWSdCaCo/zAZ0rWcP5tuf3L3f44OgHWPdBqn/XMwKKVRfzXaAwukI1CmdmqE7Tb854aaFQ+lD3UIKLw/l4MYw59OFQV64s70+oYvq5Lwnfh4CXktmn2yfv/zjELQEQddUMdJ0pZzJOVc7QNXvmY/b/sD14fM7Xvnmf+taW6uil/PngJI28OOI6ZrM5xhr2u13cC6PDZUD8IapKnCcF1PgMhI0xuQBsMtnWTUXd1JKro+spo4muM41MxhiZlviIpTBiudsPTvJFxagg5UMOH1aRjoRiSyTzTQh5pkfhKvUhgicfktAWJtokNzi0EqY/4KPjegJVgeBVfo58BmX2bqG30okEwJI5XsGYWK3U3mgBblYrmtmcuqlG+s3o+H8V3JPLjKTgCKOlunzyT/R+YHCOrhcH2tPlTLRmQSWFFN472m5g33bs952kyUf8nJpGtCeNNVhrJBXDvAEtyQGV1gxdy2B73OCwEbSkCNKy5aUvNHGpNEo5LqUU1ijwge22px8c3g3UqzX1ckZXz7NrhfAjRd3Ukj9nsaC99yrVe+/jiMnsQsApFUGc43ttn2rgMlxc4l/p0HVN8h0I3tN3PVVn0WiOT09zXQs/CFPpUyy7VtTWxqRFcbMr2eTL2Zyj5RI/ONq+j2HAUwkicf0QKwiGKDHmpE9pV8rD443lRzEhnBFQopUeN1CQw2ISY8bn55VZZEs3SBGbgKg8CErFQmTj1xmgJaYf+2sT4laCUVJIeBpyNrdEdpOCqUUCVPGQRGIQD7DsT4WpDDpWxU4EzFrD8qhmcJ6+3dFud7Lp43kKHvYO8XZHIpLi9JGcpFOkl4DGkY2kIxmEGgvgjCnGg1birBgjG7QPOeGeimuWQjpD0V8AayuWiyWr1UXeA0nKxgVQUtvEDx1uCATdjNQtgEWhTIr0ENu9c47VzgnzCp7K1FSqIqAJvefp+Zrtds/xsTjo+uBZ3Ps8vHfBrIbKTBnwCHcZX5xBxvXgxZedLNqL2PZkzxVviHhAvk2mlMOHFEzuOtCSfDPG93x0O9SAXNdGn48DMffgGem9UzBz/fPLvDGyD+DscisOuRH0Ou9YrzdsLi9FWPEhphtosFUNe0H7w+Ajk5MCgMv5QqoVW4MO4umVGL0yCoKE16YjX66I+DuVGWqLVQ/Jt2wyeLkuhAwA0te2qqhnNZvVejKX460qaxPymUumIKJp+wCE9oOj7weappZ7Cq2PMMwq5hdxKPp45se3o8YcUV3X4fqOyp5EgCRzVQprZE3P5EF5ZXXUwBpruXV0RF3X4B1+6Ap67Mef+XcBfaNYE8dhDM57hr6l61qGWATTGs28aTBK4QMMbqDrBtq2k3F46b2tLE1dUVUGq2OtuciXVAyM0FphqioDIG8M2juUCeLzlCwGquBBaQYLCTnvmcklMpa8XyKtfX11yd0/+yphVnPx+hs8e+NzWKNYXW4wtqIymuHll9CbHc5aLIm2RvOmln4Hfc0B/ITtUw1cYKRBSdJTSkwWlw8ec/bB+6hKJBHbzLB1RWVrqkZMKmHwaH146AAVcK6nrmaYpkYbQ9t2hGGIGzlpIgqJLRBDdCODTZJ60s/6KOXFQ6y0zlqDuqrhWLOcVxIFVESEpqiXJC2l/WW0hKYdboFEMH2I7pyRcCRzUZqjVKRLRefdknWFWGI95IRMFGM5mHsloEX8YTQqqlfFjybEbKAVQy/ZGAUYibmmmc2okaRa5+db+q7Ph805L1jFVFTzObrvCf0enaTTYv5R0/UIqXQDEBQMgHKiWveMRDWZ3hJZT0m+9cR/IU9qlghD4U81dAPP9hsWTUNjywRWib3HcEIFScdgjEargAseo2uM2ktpCR2LqcVheee4fP/b/P4fDfzFn/wJjpZHBMA0C+CceR33WY7OSBEpU8B1HQT5eJBATZ5zHSiIUzmBRzm6K6TvwsEN48/yuxIYfBzQUkYNTUBEQQsm1yZBowQwgbHCtxqZ8jSZ3QvGUWxBEJ+DJ88u898+eLq+5Z23v8Pj99+j73u63jFbzGnqOj8kgbxEw6q6whoba/oYAUDOY5Qk80pmXWM0TV1JjqV+4OLZOV3XxsrkcS0IWSMAB/QiDTuhzvRZzM2R/G9cjEzJ65Qk7RDGciiktae4rgBISuGDY7/r8ChObp1IIVw3xOR4o9ldAJsW+qwYs/xCNu0EhG7stntm81S1PWnf4pEdN4Qw/fRfFMhMkdEXZK4rY2j3W9rtVqrG6wklkFQIeY+QaUxANA9d19O2LW4QsFIZw2JWx8zbct1qu2O/7+n7nuBjWHFlWTbC/LPJLe1jfQA0Iw8SNb3Jcy2h4El1r0baldbiOmCf+FOxuNm5OgrPdVNz5D0/tjzm6LU3cMOe1dkD2s99Djur2W7aWM7G0y8X2Lpi/uBcynDq8iyJtSBpm7+X9onde//jf/yP/PW//td5/fXXUUrxm7/5m5PvQwj86q/+Kq+99hrz+Zwvf/nLfOMb35hc8/z5c37hF36Bk5MTbt26xd//+3+f9XrNJ21JMhizr44/8I7Q9bj1ht2zM9YPH3F5/wFnD+6zfvKE/cU5Q7cnOB8PWwwTVgbQ7Nuep8+ec352TrtvcW6gd1JS3rtQyLayKMZICHY9n6G1+HwIMInSmHQ4n3o5YKOkYY3maLngaLlkMZ/FMvSQqGNWhaZaSaV+Ns5BCv1NIdGpZe/xeL1W6fsQpcMwZvT1MZV8iGHVJaVLKbJ1DL2OmhYd02enGUnmKrnOSB4BPYbeReFOpCtrRMVY27yOKdOvUY52u2K324E2KNvggmLwyfFODq+iMFFkBJoELNGwEIKEhY9UjRBk1XPYn/fg3LR21MG5Hg/26JfUdgPr/T76h4tmyUTAVyjaRpIRYjhnjDawtqa2DdZU48uCMJyH53s+ePddfv+P/pDL9QofHOdPn0Mk9j4yvVCMafr7wf9c/WwEGFc/D5P/rgE8xTU+ljmcfh3G54drvjv4Wxi4z2P6sP8n54I07vGZ1/m8TEyAxdjLsUzA1cE1o0YiTO89nI8QGPqBd995l+fPn7PrxQzgnM/RQN1+F4t1RuYfn+W9Z/Ap1FTHc6hIhVeNNtFEE3LBPdmTEt0jJQFEq5y1KMUw0pnPqv4wxjYQ96wKUNk6Agqfj0DeCRnkHTj8xnlNcMaHQO/EaT848Y1YHC2wRuezkivUR6FGp7Gm9PZxDK5gsgm0zmYNddMU6yz9SQLfZK/FgrS2MhwdHXF8ekryL3RuoOv2PH36mPNnT2XuGMFPVj6H4nnFJgnesduu6fdbKg3LecPRYkbdVHgU233H+WrL87M1q8sNwTlmdcWtkyW3T5ecHM1ZNDH6p0g3UfpZFoqSDFRS+YLUwaS1Ki6d3pj2cJ6w4tkFnRvBP+AG2l3Lzlbouual01NmzYyKwGe+/ae88bv/iTv/62/T/IffYvn//g/UX/sT+mcX9Ah/aIeetpfEoft9yz4Wb/xe2ifWuGw2G37yJ3+Sv/f3/h5/+2//7Svf/7N/9s/4F//iX/Bv/s2/4a233uKf/JN/ws/+7M/y1a9+ldlMTDK/8Au/wIMHD/gP/+E/0Pc9v/iLv8g/+Af/gH/37/7dJx5AliQS81FAGUmQJDLvcZ1H9QNutwcU2hq0Mdi6wjS11OWoakxlsXVNXVlcUPTDII6jTjK2VtZg7JxypbXVHDfHwkycY+g7hEOp3NGQPeyngKDrB1YXO4auYzZrMLVlKLK3apCwt6w9iQmcQrLbqsgMR6lgiBKaViFWsS0PWpI9QGzhLr5rCpZUPq2lliZ+G8smyEHRkiALUdVqRQ4/1LGEvDImaqzkdElEgqfKYmtx2OIcNbMarWFo9+y7DqMVbedlrk+WKD/g+57gh7zOopqUcSQ3H5+0JQk4pnTgQfK4mAJQBqLjoi+51WSpRQKMNnQV7dna6Jz11+1bgjZom2Yzgqu8EUDhY0kClRlpUuuOkiLsuoH9bseDd95B+4Ef+pEfp7aX9M4WTKnQJkSGGhj3/qRdQR7jRyqMTpl5Fj/kevk9jBJVyfjDtC+kvaVGRcUUWJTPDWQv9I9saXHCNcNL5iGiUmqUONNY002qWIcXviYcfnT4wfi8YXDs+guePn7Mer1hiGaiqrIYrdhtNhhrpVK7UazWe7q2paos3b6lbXejWRc9lg9RSspuaNiv13Dr5bzOVmtmdS0mUC0FSp0bihpCU+1Bqq1WdDufQm00y+Mjnp8/p66qSaoI0n2qYOwHkx+AoRczu7YWi1S6V8aIsBCEHmZn3cygQ0ySqQk+5g1REoEnDq3FG5XG2AqlxGQmir7Y/0RjS2ExAoHZfMlyMWfoeoIXR9j1ZosOnqausLPlqCGJdHVc/uK3jPTkFU1dUVuDCxIW3XZDBJGjkLaY13HNR0BattLnZ4yES+BQ5T1cAhJxdJ5GlCbN9WGemYnORck5SPxSxQFnAKpGV4CNUXhlYpHMgPKOowcPuHX/fXarNWq7x+53+MHjbUVnRj9BiNGnlSW4gBteUKnxE7RPDFx+7ud+jp/7uZ+79rsQAr/xG7/BP/7H/5i/8Tf+BgD/9t/+W+7du8dv/uZv8vM///N87Wtf47d+67f43d/9XX76p38agH/5L/8lf+2v/TX++T//57z++uufqD8ZqzAlXRMpjHFDjJMZ8H0QT+y2g9VGFspotLWYuhLtSTOjqmoplAW0fY+KeTbI5gkF3uNCT900BCslAlw/yKbQTDUNBydcIVLWZr1hvVoLfUpe+l4yIIYQGZ+gDSpjUUayHo7jVpkxEEBbIIwHIIxXiQo2aiBS1E8CVpLwKpAKBaa9n9WNETiFEHL2YKPSdHhcGBV5qtDK6DhfGuid4/JiTdNUscr3IT6Qd1XWYq2l73rCMEhGSDxdZ2maBm0t7WYTHRfjlGot9rax4zKuTCBHkCbaIem8rSqOTk7Yrtf0+z24lDODxGmlorUi3xNgTIAYAscnp8zu3uH99x9iCdGRsfQ5SdJNMhGUhL8gIMJHcUPgnec9X3hZcf+99+l7zxd+/Ii+uourHQaXGY84BppMmsZ1D5lof2i0z4iXij6P96d2xc8j/Syw8QS0UHyVtBXliQ3jeNXBcz+6pQOU5mBkxCnsMowHb9KHEb4fvm/cG4fjVdfMR8Y/abzasEfzwf0P6PoOYyWNu47f9e2ek1u3sEayNXuv6dqWPgou6ZyOWkSVQ+uVkiKd+AE9ayY5U5TSWBvdreJeHzwYq3LCwMB4LHRmknF6kgYv3m+0nIlx7FNTZOzalc9A6njtdy2zoznHJ0e0my1uEM1Q8utzSgzLubp5YrRZ0zue3zICMsSjnas9JyGC8XOBe5PlyXTXDz3Pn20JbuBoKdqf4+U8hzLL+UxRWYHrtqLK/ZKFH2LY8m7X0vZST0prcbC21lBXlsrG8PWrj7vSJqC4RJdxv5fgTX470GJcEVrG81am88jn0wea3Zbj1TmXp3fG65WiaSpmlWHeB5rKot0Au4Hbf/JV2q5HB0NtKozXdH2PD5qh64GAMRKIIKUqomPxi0pMf4L25+rj8p3vfIeHDx/y5S9/OX92enrKz/zMz/A7v/M7/PzP/zy/8zu/w61btzJoAfjyl7+M1pr/8l/+C3/rb/2tK89t25a2bfPfl5ejHTlJnfkERV+S58+eTZ7xoRECYaQ8wXt8PzDs9rSXazlMlcVUlmrWYGZzrDW0+y5X1rTxIG52K4L3VPVMmGiQejvKGrAxv4JO1aBTRsRQMHaNjpFLAMFJhlnnQgYbLgBBsjHW85rj4yXO+5guXJi995G0BpXNPqml7ZyiDiCqa5O0GYlBJnBRk5VKD6SHjPZrlT6I5iM9SgvRhJTUmunmRKSGfiB4xz7XNSrOJ5793uGGQTz8lSYohzFgLHTbDf1uRzOf0fce5xXL4xnGDPiuizkdY8RPCuUs5rRY/awn9z7QD4NIRnfu0HUt69Uqg7P0DO8FwIw26BQGqgjGcueV13j//jP6vsdYebZzPpZCGFciRR1MSWt8ZtrSxvL+xR5Uz1t3Ag/vf4Cvv0rz6o+y3K/w+wsBuwGOb93mtVdfi3kbIlCmCNUtwURmbgmTiRrfaBMj9MpIEFXsyum5mYAYroKXiRn3YN7LfRnC1c/SnFzfwvW/5uRzqhS2c3/HGxJg8RwS+aSlKcdcLFvq/XUjAqWoT1+mqY94/bXX8d6zfecd/DDkDM/NfMny6JjdZs3gBgZX+GZEwr5eremHPr9QUhFIlfvghmwWLrsuEW8lXtfUTYUBBjVkZ/3MsgpVywFOyIMdQ6TTBSHTi3SvyDvlnMYvtUIbS9+5MTM1RC2sRaluXIkELDNqz+jqsFNAyBqVpJUK/kDsSV+mZ6PY7jbsdx0ER1VVzJoqm9ym2gkZZwZ0EZzIORH6KuZkSbG/23dSjNaLH11dWarFjMpqrIkZhlNUpprO0USYUOM1I53myjhG0DSixsOkB1c2/4GwUb5XTI6Bxgeq5H8Sn6t94M75M1599D4vn7yC8eJa0bWOvqrE6UpHbZpWmKYREOlB51IU4m8pjsTE9BnfW/tzBS4PHz4E4N69e5PP7927l797+PAhr7zyyrQT1nLnzp18zWH79V//dX7t137tyufhKuUDhLF8rGjKAyp51ZkvEue2w7cd/WaH0pc5W6EDlJVcJxIZJKanvt2BUtlOOpvNcg0figNOtOVLsWZx0hIBPUriKvJU56WiZhBpwjnHdufZt+LwWjdVTKomG1hrAS2T8anyWMumzrQndimlpMvHIB0y4nHJh45caTZFFqJSvoLo0R/DIlO0UXlgxfdFiHFVG1w/iK0+qzdDTJA3EEKg6zrxlI9SIKRwbvBdK/d7Rd9XNLMZTVWz689Rqfp2MS5hSJK9FRANSjTLGa0xStFFPxdTVWQwkfaGDzn9eqklCMUEay1q4bbtBDQFz+V6x2LRxLIL+Y68bxN4yDSKCF7iYX/n2Z6ut3z2tmd4+5u4S8vD9j1oL+m6DqsNr3/+LW7dOmV9eU4zn3N8dFtyfsSwdCJTNNqw3u2Y1XUmqM47dvs9R4slla3GyDhC7tvhkZqeP0bNQwFYpmBmBL5XEEriiaH4/RqwdF3LCSSLx05ofZY0J72fCCwZwY3fAgm8TOnC2OFp/9ebHdgGOz/BOc/FxQXnz57JuVYymtl8xtHxEV3XsbpcMbgeryxNU7PfS32s4CV0ejx9iLNq5zMYhzHXVMmIvPe4ELWtSjJ0q1CaISdTkGSOyYhKMFGCmKwrUyPzA0nt0HVSb6uqhFmliuw2VpIf+i5jEommFFOJY9z7o9Zu7FDWxkW6WJ4XFTVRKq9v1LREZum9n+SZMArmswpjZhJGXAKFkj4VKE4hSSJdTLgXFOz2HdtdK7lJQgpAsFSVzVFAkjV2uudK/jJNFHp1Rwm9PdiXB/wJYPQrH+fg8Nrr2nhi5LD13QBqxuv336Hqu3zd6eNHzFcXHC8WHLd7EugdUDy/fZeud2wXe5zzaCPrXQVPtV3TLY5wRkzaif4EwHffBx+X70f7lV/5FX75l385/315ecmbb75JPzhWlxecvPSyML0QRtP4RyzcdW1icy8Q6SQPgveipEjpralRCoZtL8XDole4rqOvTGUhSHIpY0yUBOWQ9r0TDUEi8mF8V3IAVYBRgc6N/gce8IOnD9C1ZxnRayubxGqi2UemQWuNrWqaeYPzyfNfjUCBECuYChNPTMcUhDGPn5FAjCQ85OR16bk6mimyw3BCOEqhcCgjBeOaWc0+hKhKGnmaZO611I1FB8nQmR4RfBgrTiqhTTp4dqtL+n1NM6spTLdjDpoQCFplDQyIv4rPaxKzD2uLtTWD62NfYL5cSmr9UtXrA7iUojvEsOiYzl+NToayYQL7XYe1OkaNiKSny4lkKihpoyWfQzA47/jgsud85/mR12fMjnrW6y1mkMyibvA8e/SA/x4Gnj66z3zR8Lm3fpBX7r1OVdVcrlbYyohm5vgEcFxcnmGM4eL8PIYrGqlzYkwEwSXULfKuRFCRrrliFiq0LIppeLMw5vF56fPJ+8pnXaPZuNIO/GGyBJ72pErneXrb9C6pvi7Xv5h2jM+Ygkw3eN57eIaa3ZLkaV3LowcfEFxP0l0Za1ksl4Bis77E1g2+hb4fmC1mgBqTtObeyU9rpbhieQalP7JhqrpCmwrf9eJn5SThl3dBkjPGuVAq+Xwxyk9KhIxS4qfUsOZRjnOQQYv3bLet1L8pSmKkwGQdtclGJ2OGyoJMQE3NYWmtogpIK4VRIXngxblX8dxE+qgktYKO+WRStOF+t6WylsqM1dfrusk+gtlnaLK2Eaz6FJoO+27LdruVBJRovAv0bU9VW+bzhjr58OlSq5yHlFDeuKYlOkxrnAXEESzJVyW0GG9T+f8SyEyvy6854GnlT3lePGdeSjfMtxvefOebeOdpdz3tvmcdQHs4Xt6OCfWgXhi6uy/xbLVjX89wUfC8paCe17Snb9G1PfshYI0k8FRaYdoWfbHie21/rsDl1VdfBeDRo0e89tpr+fNHjx7xUz/1U/max48fT+4bhoHnz5/n+w9b0zQ0hed4aj0pt+HBhgGOT0/ZfReRSte1QwAzaVrRLBd45+nXG2H8g2MYdjgFQ4CdMZKPoampatEKiBQheWcCipQPQQM+5RxJ3v/EDRn/sVqhagWD5H5Jn7tBUob3DgJawoJDQBtNXVkWswa0YRh6Qg7qk+0uauwxdp8w3egCjmIGyeBHjRTpMCVCEHBepJtkz82SUSRKCoUKkriuqiztPjkmiKSmvYABbSTiKMRoLhQZ/FXWSH4EFesGaQ3BQRjoWw/O44AqnnRPImqQNKyZaGZgJkQkHWZrdMQ8iuViiVKK5dERfd+xWa0lH4FK85S0C35C2OVHiryK0ulmx3zeiBpZlV0oVLgKBufoO8maObMzBga2Q+Drj1p+4q7nbOu4YwO9E6Luzi5YrdYYrdhvWzarP+TRvQfcvfsaVSPv67oBbUQCPjt7zmw+4/mz5zTzGUdHR6xXK5qqQdnE6dIhGAFG6dSaNRNlgcswRoYRyr077hdI945nysd0+p+0jeBm9F8a+zf2f0LWVd5yEyk/7//crijhx/cWz7z/6JwnzzfM7t7De8fDRw9ZnT+nbmZyhpUAVmMsKIWpGoL36GGAro9Mb0xsKJpTy+D6ot9yRpUa95dc7iOAl2Rk+fyoaLqF6LMmz9CT+xNti/NXaB/SM3KocmFaGA+/nBkTNc9XmfT4vDJ9RwrplrXTGKY1yRSFyXq6OqNgoBWNnTFrLMF1ErGy2wtjrSxNU43YJI0zab2T0BadmFOEVt9LOPN+3zIMPpct8N5j7P+PvD+JtW3LznLRrycjmXOuZGcnidxhY2ODfB88nh9GQgi4CJBcQVChBCWQEC5AAZAokQnqlKggqECFMhJCgIQEGHTtd4ELAXbYDkfEyfbZ6VprJiPpySu01vsYc+19wkSEpfuO3lCcWGvPNeeYY/TRe+t/a+1vfzP0m5bLXY935z3mPutYgLC5h5QVsKxVuFf/v/qw/G81lxeMuZrAZvVJY+6trNXzvvd6WQQxwc2rY1lB8mjTcj3DMK1SS+D7hvn9d7lrbhlGafLonMNdbGiut5imYTqNHKbEppXu5857iIn5ePzeg/a/cPyWApevf/3rvP/++/zrf/2vK1C5vb3lP/2n/8Rf+At/AYDf9/t+H69fv+aXfumX+D2/5/cA8G/+zb8hpcTv/b2/9/v6vilDWA1uLXXE4Nqmdlr9fozhGYn33utvvle+uu17mm7Dqe8hJ6zzjKcDYZxJc8CEQJ4TcwjEI3AVabdbCmHS1T1CUyg6WRMZq16EdHpWzygX46Mcmlw4LblWECRdDpbMOEwcjzPTONH1bbUE8kMjPblqx1G3F1PqkdYk3sVolcqVuoBLSFbL89aem7FOjaAaRBXcK80biye4ACB5zXmn5bFyWGdFWbZrpMt0BmMzFkvTSNppURY2qrvAGyv2fkULUNV3xRsszdXEImx2O00BNdimqa+X3H4tq0wlLGpWZy8h7eVChtNE00ibgqzXc+YJJdmQjLM03tNvNnhnyCazvdiBMfzGi4mnaeDFYWaOmS88aPnKleNi0+CsZTjNfPKdj3jx9AXvf+mL7C4uiEmiXdNp5OnzT3BGm0M6Szqe6Pqd8i4CXdstkuEr4FKvsaKRtUldAZy8vHLPap8dBSwUnkc9Z/HCP+NYbZH3r6h6oxk1+kqSJ8q6qWBldV+FQP+bfuHZfUjV4Xc/ellBxBwiT58+ZZwTTWeq8FyvvYlubm6YhpGrB1dLaxHlg5V72O52jKdJJPyz8K9irHVpgJB0Q4qyaSD6L/PsmObS02w9n+uQnh3nY174VstTW7pVL++PMdHYZX1bnaPWoAUJy+YnQMjqZqpgRcc8paKlJA0mKdYmJaZpJMfCVJOrMeYeOdgaYpy4uTmw61tab/G7vvLsqmpsPo9ml8hazqIMPM0zp9PA8TQI706vpLQ3scbQdS05UxsWFmLz24439op1U8U14Li3LMzZm1Zrqq4jHddc6BCR0nftDKQsn1zGdL12V9dXnn+5rCXNuz7Hm6+XL0oxaR2EtIPJzpKdA9WncTax2fRapSXXH9z/DRyX/X7Pr/7qr9Z/f+tb3+I//+f/zKNHj/jqV7/KX/pLf4m/83f+Dj/+4z9ey6G/+MUv8if+xJ8A4Kd+6qf443/8j/Pn/tyf4x/8g3/APM/8/M//PH/6T//pH6CiSDfI8qhWiH+KmaMqERZg4FYL+W326W3poTeJW2cXUFMMKSV822FywnppNz+3s4RIxwnnpIFfnCaSSsbnnGvEBSOy/knLcHNGCabL0rXqpST9XknFLIhcOwKAsYTVZlrQ/TgMDMdjvSfnamaUZMAWY46Air7vmHYbpmGsgCUr4bekfopBRI3vMjaLh1fJufcWe6k4qt6PbnYpgzcGa71UyZil3NmaIlDlBFjlVPuktG3LGFNlrUtFQK7eGWtAagpRESLlWWQKafmwv8M17dJtWyMK1w8f8fr2ts4jiSwUA5mYx4FPn34s/UUyQCryN3V6ls/GmKTxGAvfZW1bigG1Kt2dcmKeAhcXEmW7urzk2x+8wntP13c8GyIvbk882Ix47/j6k56LzjKeBr77rd9gs9uRjeOd92cOIfHrr2acTYS2I1895GpzybvHmR+fPsU4w+NH79C3HYWIfUb0vR+bpi69s/euwUz513ol5YJwzk+loPsHPcxbfkMEVxeH+3seSynq+WtveSefvrjjNIy43UMSsD/uub2RAoIQAuMwQJI2Ffv9gVcvX7FRx0XOwLmNMeU6xRbElJmOp/qnYjuev3jJu+9+gd3FjjjPorTaSBVH10m6L8yRMIc611Nm6VO0AmqSfRV7EUKo91ojLuS6Ppc+buIUWGNwvhHgU+Tc9XwFZpShS1kiw7e3I/MwVYdtidxlxmEkzIHr651El9QupWSwpqRwTsQ54Jxl03iNpAhvptij5cGrY5ULXyUyh8Q4jAzjxDyHJbIdFawob6XfbNhsNjjnef365myDf9vx9n1CJ96ZM1Pg1/o6Wbynis6yKh1LJWcI2g/OZPIwsumXPmXUj+Qyhair6szhWIGbshiK87syVGdOxPr95eIUC8U54OaJvNlQKk/ldpWTWIRMrcHGhInhrWP3/RzfN3D5xV/8Rf7QH/pD9d+Fe/Jn/+yf5R//43/MX/2rf5XD4cCf//N/ntevX/P7f//v51/8i39RNVwA/sk/+Sf8/M//PP/7//6/Y63lT/2pP8Xf//t///u++LPBry8WtG9IRsBCKHuVuoCWhFMQUOSezwzcvTDq+vf7E7N4WSnOWCu9eMbjHmLEdlKBlI2j8dJYbZ5nTre3C3hQdcwq3K3IxBjRF0lmPYeTtC5IRWMlLyJNKRGUMSs9ghagJkSxomQLJOmjE2Ouhoiotfa6keScaBvPo8ePmOeZYRzIx0G9HgURFcXr2OQyHksOeU2YWwy0GCt53Wq/DQeaKjB14mtkqXBU9PnW6iUWjRasGO15UICk12P0uafysNY/yzNcPeOyqA+HEzHuxZPtWl6+fk3X9jWXXgiIxIRvHcVUxDjz7JNPas53KUleQsJ1XIwGAfLamJT/X3FAkoRh+7Yn9dJQ0hi43F3ircNkh8kW5+CYLYc7mY+vDpGf/MKG640nz4FvvLrhWbvhiRlIm54XTUfXtri25dobBgPffXFLGl+wzYnTaebrX/3KkiLU0aow4w3Qkuvv682oDrI5X2frZ3r/OK/wePtxP4mzBhrL58uYl38a7vMi3xZpOTP61TFa2YH6DpH1n0NgmCPc3jKcjqR5IsXIcDpChsZ7xmnidDjStR7vnfYusnSdqCW32u2ZnDkdT0zzVMc6xVRLootIpHEN28sdjXc1OjCME8M469pOjJNI5rfOLf256jRc5AzE85aH9PrmNY8evQNkxnkmhETbNvVa1mmHAmCds7VasmCivHJUShpVwFTgeDwJcVeBhpVHg7OGrvUimZ8WYbwlDau2yTts4xcpArkyStq2drQ2KNlZSP7H08DpNBLjIiOQkwAzaw1939L30sXeOy86Mb6hRARXE+x7zsxl3ilS1msqwKLOqbUtqhcEJUpUXhfbpMSInJhDJmZD08yyx+Rlvpv/RXSe32IPqwJ9+V5d50k5Y2vIZsPM7r/8Z9KLG7pnTxm/8GWuv/YeX/7CI6wxDMPAi0PkC+8+kgh5hs3piHv2jF/8nlf2mx/fN3D5g3/wD35miAxkAfytv/W3+Ft/62995nsePXr0A4nN3T9Kb6KFkb4gwTqr1uH3LIujtJaRWa2bOxmHAgZjRBiMN83m28hOGWiaVnvQZJq+Zz6e8NodtPHCe4ghMh9PJCXOZcC1HS6JZDKYeh9JF6EFPa9dUhh6W9V06j04Y9QDshjt51G1X/Ki5YEFlyFpw8eCrkvYMKXEy1c3mNs9bdfRdu0yeUv5qE5iFXnU9Igu0LJwjZbJmbJ+BVDZEilUcN54B5tGm6mJlHfTtsQsqTOpTHDkGKtHUCI1aDTHqPE05avL89JnVjvLGiNqu/raWk5cJoiMWyGoxnmmtY5N0ynZMXI83NUFXkCUhJTlu5qUSSEgtdtr+b/FoN2zgZRt2CLtGtZeojEQ54kRKbcchwljLbf7OzbNRqI+CTCW1rcEE8FZgmv4n88TjRtxjy95+eSKbAzH8YRLE8ZY5hBxk5T2393d4q3jv4WO320GdpuOEIKkx5aM0TJc1Zsrxnn1XCt4kXf+ZhGOzz6+h61529Zh7r1+9sVZ52gBIjpRinewOkedSGf7ygJaJOqUiDHx9NkrPnz6jA9vPha9ChO1S3Oi2Xby/iSRhO3FltNxIMTI7e2dOi6Gu9u72nU9Z0QOfgUqUMfVZEtG1JYvdltIEOco0amUOe2PpDmy2wnqDxmmmBCP5S1Du2Cyeq9lBaeQGE8Tm4sdziCOESwAKuflc0ZS3lMBKrmAGo2AaLmyMYau75imWb3xFcg1UmBgvat6KmVtgPLf9NE4t2xd53wy6n4gkZXAcBo4DWONrIBEjcnSzHKz7ej7IgznqyK4Keq91tUobqk6eut0XoGUOqpvmz/GaD+pYvPT8rqOp6QHC+drqRg7DtItepgDV5eX5NyvIkxmuY63LDh9Amf2uT5DVi5JdfQgY4kpMY+RKWT6tjhTGXs88fCD7xA+vSXFQH/4FR7aE4/THmcMd3d7hkPi4Xxk03eMx1H0fVbSJj/o8bmoKvqsI1XQorbSmLNmGUvUSiZUbS52P2oCxGykt4IuskKUdUak+4uAWln+sqfkmn/GOEKaMDnR9j0pBJz273FOIi3WSol0ytA0Ha7twThc27LZ9aRZhKVqRYye25AhBUJ0FGH9UvJdFV41ElMmo1ybTFJnpHrGKihLxlAkKdf5/qQekdEmcMYawjxxeziKVswca0g7I3t813p815BiyY8vi4/VghSOh4R6C7CI88zhdo/NidaKYQpzxDoBaZ03dRw3257T/lT1ZNbKmKVKwa7bz68BjBLwyjMrO0Klk9YNokSytNw6i0hh+Q7k60RcKaeqibFpGkKQDrB1LioAyZlK4q0XtrIry+a0XMr59DSy2I+nOr6b7YaUkpYwLoJbKWd635KcPFPbOLKDZDJTUK6BpgdDzJS+UiFExmHCWsvucsdA5tFwZPvhB5xOJ548eULTtKpX5M7Gd3EQln+fXf5q738jCnN2l6Vqbvn0/wrYKXPt3Bte/3H1+/3X89vevwYrK6enAk6xITlnTsPARx9/xLe/+wm3+yPjECuhfhxG2lb6DWUiMUUhkesmNI2jbpQNXdcR5kCdsBl5trquAaY50moUIWUI48ShRhfkPfMwMk+Bh33Ldet5stvwgT3ywf6k83L9JHSfRZ3znEuuWO5P16z1nqZpIEU0rymjYsr2pyAbiRFm1HbJIDGNI4f9oToK4jdIJQ4rdeoCzpxvpJqw12/Sx2FyFiVdw9Lsdf3I9ZnMMTAOI6dxYpxmiXzq3yQtL+rF237LppXu2845tTnFfpRxLxuIXFvOaYlsFJBSFA/X63u9EO5HVAzV2a72sgy7vpb1njNCmsUY5jly3B+5uzvUPnXXD67FFmdT13KZX4uLdB9kLenyAlmKtEVKkmafQyKGSIiBeZ5JMRJz4qtf+jKbViDDdBjpfuMDHj56gJkyc4h0fctV23O4nXQOJ9qYOb0+MNmhTC3C/x2S//+/dszzmnW/LPycxSBXu1rC82tVRl34JQWZV086ZxHCr+2gtD9RUYj1qKCOAaL0BbEIeAjDQBpHTNMiIUhHZsL6hu31FeOnzzje3uB8Q2pbnPM8fPgIgJQiYZ6Jc2Ce1EuIgaDNG42BWKInOlFtARO6mUepbdYbiQpwItkupChrLaiYUAnzF2BT1qz3IrzX97IphhAIk0hZpyBGYBwnVdEV73PBhoW0u6oMMFC7Lychdj3sO376a19ks91ySpH/8hsf8PHT5+x2AJ7sLPMUmUICa0QnwklKzjpH0jYCxiCRFGsWe1F+UTCy5rcsOghlERcv0WiY2WJs4R9B1/c4q2Wl1sl46uwyyLjJE0pEkor8L383ChIrmVc36tpP88zwlc+poVt7UsXeaYSncBBAf2fZBJpSfm+A40z/9Jbx/WuyhueLl5t1wpucOR2E8f+LAU6//gm/bX/H6bQH23Cx2/LowSOcczI3VKyurK+3pWzLvZcSXEOZINx7TmXOlDFYfnz2keu57r8sr+mzLfvKGmzV9VGud3nvAlI4vx5QTz4wzYE5zNweAofjieO4RH+HYaSxhovdhtZbUrB0XcvhNDEcTxigaRqJZrZ+Afa6PrOmNeq9ZEjzzH4Y6zjnnHh1c8OPff2r7DabOr7WCD8MY7DO4XSjLMZtPQ75bJzM2X1qD1YBGd4Rp1jX7/lQC3eHAvrzWvEXGmeZhqR8Ovmss4YHj64J08xxfyAvI642LdP1HWHSShZTqqzSMv/N8qxiEGn9kgZKMSqIymS1SU3T0O96uq5bwIopa6WkmNZISH+vHI2kjlFFGcv774PmewA4r2yM0c9WsFIEQMujzlKVGbPeV0iEeWY4irKysdKixoRUifPGLDWi63m6zgiUSy5tUKSKKi7tbEIkBgHYpTCgOMAGKRQpYqbZwH53CdHStC1N40TPxju5puIcrvBccUpklDM/7PG5By6vXr/mvc8oowZF2iwbFHHxzhYgs4CasiLyanLpm8kIkdNl4Ygk64WApnX/Vgli3ntiG3U5CirKCh7G0wmmmWkY66ZqvJdyQt9gfYNvG9rtht3lBRlDCDN3t3eMxyNJCRGlu/PiDazJsEjUKK+rC5aJXQSpylItEZ6ycEC669SupEa6PbdtK72UxonDzYGcYRxGjocjlPdDZfU737DpxDDHFKvBNQjAaNuG/8ePfImv/s7fAU1HAq4M/KvTxJxDRTvFII6TqIxa55imWYxkTFiNAlhTiIPl4ddJUDUWSsTFIlGoEtmSZ6gfKuOz4hTIos/SPNGaJVqTlqhS/c6sqTO3GEbh5Cwlw2tvqKoSG+6Zn9UzYvWBanBZuHy68S8y57mKQplscMbBcYant4yPd2T1nOp2olNpDgLCJ2P4v/C8c3ugsZ7dxZbD/pbT6SjKoE3D1dVDLnaXVIUhBZB1HEF2wLRac/X/7t3lCmhU4sW9TfKNw1R8dHYUIikszojuf7pJ5Dc/k++9UMd0eX8x5OM48I3/8cu8Ogx89OzI6/3IYQqUNsHey1qJIULX0faWcRwJIUon4yyCcm3jKY0Tq/ORFvBfxjGXiF80TKaB/oI83BGv3me8/BI9AyORcP0lzO3AHE7ElPj45o79GIiali6P5SzulVeb2yqVUQbAGDQtayEHfa+pytElOnBGxF4Baau2DQCtArTe07Yt07iQgFFQP04TQVt7xBhpGn8eGUJS5zlpZGUYmWa9x1RaFsim3jae7qKj7zxt02BdEclcp6HKVa8nU5l3Wgm1uA6ruVc+vO41sVrfq/lU9iD0Z+ES5SzCjyGyitxTCy5CiAzHQVKLmuYyNtFvO5rO6znKddwzelnWpAAhUQSf50CYAyGIvEQIkTgHoSLkXPvKYZYlWO/biiO/v7jio23PR/0Fzcef6Byx9b1rHt/Z4lxh42x+k3X9v3B8roFLVoll0MW0MppSNeMWtLv2OM7OoZup0bSQGl9r1H2pRgvIEnEpyLV47iHMxOmEdRKhaPse14rHYJ1453Va5SwtAKZUQ7RmDtrbQcJpoyrzusbLz7Zj03cYMqf9oSJ0q8a+rn0r+ciCtiuKT8vCe7O8Ma80AhZOgpzfkkwmx7z0gMks+iPqkQnfN2mOXtLpKUslRIqRrvOrTsbK5bAWa8QTTd0OyNgw0RhDFyYmY0g2Y0oUJyemYVqAjJH7cuSln8qZ51MAqPxactRePYZYjG+5b0GWOo6mziFxVmWO5JTBUjeapIihRBRyeRYl2gQVIHovoDZLSGyJNCNlrTEEBaAL8FpiVWtjKhygwreJczgTXVwcvkzIAd80NE2j3ACLOU64YSJc9MyXfV07eEvuPCYlSJGE4eQs/587+BlumKcBZx1hHLHesNldkZI8i02/XbV6uL/AVrdQ18DqcZnijbG6xzeBxVuPXD4v87j+Iy+A7ux7Czu12tLy9D/LkK66plc7kjiOE9/eW57etaKiOk3VPgC0TUvTeBpnAAm/748TTePp+w0hBDabXp/zUvUmU2PFNzOZ4LZkm8hP3sHunmC2j3DTkdl4RnfBN/0TWm85TTNsPyB/sePFB/+D0+0NxhiOU1g2ikrqNwtGVKcmZrO8r6yLEgErtiQvwL9EPMrzLHaFcu36Od94Hj95zHG/53g8kVPi5fOXCtCKUyLODCkxjZPYX62kqymVLFGoaRw5nQZJYaSSBlqch03X0PUtfdeKMJ21GCP1TdhFl6mS81hz8vRvq3lz35Eo9rYC4zIAWkpe9p+kiK4AlaxRlKQOkvSoyqo261WtGuZp5rA/cjwcGcdJicPLdVhjmKdZBAfX9r86ZizjauB4HNjf7plKnzcF7gKakjRFLOe3Is2PjtVZlA54dfea9NJwjNe0Y8ZGidIUQCzf/XYuVV2Pb4zpD3Z8voHLyr4ZCr0lL3PvLDy6npBrayY/Ull8JuOgVh251eJdQNLy3RnhZQy3e7x3OO/J0yTpoZSg7ShVNsbAxYMHwnB/9boazvtgAvUoJO8NM4cafegyBCM8Fe/ktZQShcdTNgDZU5N6+4UglyRHrF6E5DbNEtmoxhk1XmXxmcrJzcjGbhGejUN68DgcJknUKWWwORID7OcTx4MATO8X36VtPYbMd5++YPPFV9BvMCnxOnpO/TVzDFhvSdbi0kxmPivTLLoo7UpkauHfrJaGRpCyETXfdIb410JNZeGfSxoKYMsUka/lncuxNA0TV8UionhzFuPkrFSPSS8gsFbuPcaIiWLItpeXQFLtCipBkJxXBHT57r4Xo7zdbkjzJNUbZYrr4wwhcToOTNNEykml2K2mMxPu9RF/c1TAbzHekh/uOF54TJb5ZIzl403P/3Gc+YkcuWqhGSa6bcduG7jbvyQbw3vvdnR2EUJ8w0KtXloDmyWisfxeUHQFI78ZgCnn1u/Oq9fT2z781pfKvM/LZl2vcfU360i7h/zKhyee7ifGYcZ5T993kjItmyyGvpNU0KgbcddYXNfjvSeTabpWmoauvHSZR5noN8wX7xGaHcFvmLorjgHM9hJSIjpxFvxx4PWYaDKkaMjXX8YFyLZhP4WaVqpaH6Wnlo5BFZ3MqnytdmA9RFYbrZYodLGAWSMGmlfAQG0foQOmbeOElTdH5YQZo1ovhQC/8titNFXFLGCypJtDCDx/9lz6sOUMKSJNJZ0KlDa0Tasqtqtu2tynBpglD3b2oO+t6vWf8wJgiyZKyoUzp/ahpnw0zh6zdgRPVdspZ7nntm3o205sggKym5sbToeTzKOVo2kreCsBjEyYZnHKlbe37ErLPRRAVYoHnLFkm5cSRqjO1/lYLzpiRcehAOuLrmcXI197+hE3t0cOp0DQ1g1oUO7NYIqpOHF55X/FK/nex+cauBQ9gfVRc+1ZPNmlr8zq8ZgFGZZJXRYn2RCNNBcWb6j8lPcUGZ0E0rkZw6yLL2dEsfU4SCQFMMejeA4Y5slivCeHoKJy2lMjl3TE+QM9uze17hZE0t57WcRaBqmhAVlgzlQyHDkviNosGz5lM2QN8BbuTM5Sgrm+ohUdr07oUm5S7pecxQYYi/dZjaIlp6xNKWWcjocTqb/mF+Njvv2h4cFWxAQ/PFxze/0TNF2jOi+GZj6RT7eY9BH29lO6ruPqest4GojzovGycEI496xriFaXd7nfrDbMKrUwlzJKSREV3Ry5X+UfsFJ31c0xp8qEWr4kJ6kAUYNYyrdl6IVbZJ0HIoTEPM26qcic69qW3YVUDLy+2RPmaXkCakW/+KUv8rFJUDraruZMCEKkPukYpZi01YCjQSpTEksa1aWIvzuRJsvhUkQKUwhkDB+1nmGzo3Mt75nMF979Ig/6zJaZi+0F3rrqacr/ZzF+eTGnBZysBcjkzWe7R/0MecWV+B7HfcLvZ0dPPvs4W3d5dbayiecE1sM7P8G/+4//hf/6f/5X0jwLEKyl+WIVjDF0m4623xDDLNFWI9ysFCPOew3VCycmaqVcKP92Dacf+wOkZkvwXSVMxv0Rj6y+FJO0qkDnVV5sCFn6neUkU9YqOKienSn2T+dlDXstZbSmuM8ViK3GxhhiSLWCrzAgUko6n3IFOSkGnn/6jJyzAGckWpvNAhCLfS3AVdRylQ+2qt+OIZKMVA62jaPvt3RtQ9N41XFyCygr9sCs94e8vL5CJSXCmeuXrW7XSMWPNY4Sv46JyuUr7y/VYCklYpT0T4oLsGp13Vkl/MeUGAfh4xyPJ2knkBa74sy9OWzMCmvJ9SbtppnzMuYFQK4/bawoNmcDZjZEpA9WjYKUckEM1klbCmsVsLD0mbPest3s2G220F9y8+q72Bgq2C0VWGVUzvaNtUf1W3R8roHLZreRkGsN7VPTjM47msbX3GApxS0uWikXlvlnloVUz74QXqlreOmbAQbGGTR0Z63Deou3otdinaUpXZ+zEHdzjJjTQJyFVS2AY9lY7xMc3yi9Nsu1Wu8X/ZkaChZDKMJmcqUxJyWoKbGsbAgZ2bDjudlfxxvOeD4FEFQDY2smrRgcsOo1qnHUDzpnwZYGcKaGSoerL7O/+BpPxw3dBCE7JvsItpndxQajTGhHhGkitu9yNTyTfj/mwOTu4PalGh1JCxrrVlGXYqjNGVgpe2WyRvoWmXuARo17hXMZPvnkKV/7yleEkFomjqFWMqWcKhhMJtcy9HOhPk0L6H9JXDA2W2nOGVXiv+tamb9tLykq4DSEGpbot0bK7NuWtgjE3TN23kVOjSflnjDPhDkwTzM0Ge8bDAZXsANABJsMzasDbZyYHl6QYmYKCR8zwzbRXm14miMf377g+eY93t094Z1eOlzPCpy995DNWfugNfyV4S6JtOK7L9e+wj+/KQjJ1b89f608nvraWzals0/ke04Cq3mva3Non/CL/+k/83/94i8yjiNd20pD1XlmGEb1wA1d38vmrFVEwTpSDLIhF22flDkejsxhxmQI80y/6aXjfJsxzpPaba3iATDWMY4zQg7WCpIiQ61jlmIiTDNdGfco7UGKRJSxBt93Szi/2jx1boytchFA7focQ6zRWxmSXNMzGINrGsZhqBtXSdtLyfIS6SnI4v5zXZczV15d2egyTDp/rx9ec3V1gbMS0VwAmKnRngpTClhbP9f7/9Z7z+X7chHIC4yTSP873/DgwcMlKochZLHlSblvIQQhzXpH0zp611dHN+VSqROYjhPjMDGcRGCvVMUWm3A+JnX61Wi92J1FzbKOW64LpoJtszqRcQ6XCrHWYJJwqWyZNwUwNQ1N0y4Cg/ql1lhsa7XySsCe7InVM8R5SfuvuWwyz2IJeut74T7B+wc5PtfARTbw0iMDHRwZzN3FBU/ee5fT8VjJSDHElWptUl0SjXSUaEWup8ZYUydWWSCmdu7TSZ8kOhNNwMyZGZ0cpiiealtvLSV1TiYAyUqjRr10i/nNPczitq4gVkXbdTy8dIZdHTHqfStJL8VYIzTZgk3iScjmLd9RriuV+8+rDUiNoM25ds9VDKb006z4sCyikjO31dv21jD2VwzGwxwYV56uNYY5REw0IovvPKn1HLZP4MG7dI0jzbeEiwnTf4h/+ass9SurRWHNG0SwWs2oO6TkXheSoZSr57NzZSSUHlMWr9dw9rfMwh3IZTOoIOie7sOqHYCzBpthVsPpnIMGJXBmrRISQmHJ5xsDRr23RbyQc0tnIBuH8w0+ZpwxNF1DVCXGso2Xayq/pwgmO/yLA3lOTO9ck43hNE7EVzeknOlaIZC/uLtjAJ4+/jr99JoXz5/x4PpKe0lRDVuMQpx0zjFOM20j3qdcslxB7VGk43AfjHyv437EpQ7zmQMgzyGv0hJ5laIRcJprxCuvPhhj4le/+4pbExkOAxdXF4SXEuWb54lxipXcmHJmOJ0Ik6XvHmKtNEjFORKpkpSNNaRppPENbdNwcyPA5fb1LYSR7atvcvv+7zl7Ns5bBUiLvcpZIjVOAUMp/TVXT8i3T/X6I8bKM3fW0vUbKQQAphi1lD7jvMdgCPNMSrJxF698miaSpq3PdkVjsUaAVts2UhG5Qp7WmbrgFltQwOoy+QpuUJdHIgoo0GobLct2bDY9bdditeKlRtzvRyjKc15P8LcCV7G50p9oZhgG4c9MsypfZy6urmh8Q4yzgoVMCAnnPG1rlfBbvjZXvlpKiRhmpjkwjpJWDHM45wJxHzCzOKhItHd92cV25pCRKFeuNroUQ6/erecokX2Lcxp5NlBOXnXlAO88vlS5mfMMRYloLeeGymmzhta3XF/0bzgAbzv+11f3Zx+fa+AynUaccbIpuzX/u1TUCAei323EMzZIODZlcpSJNc9Sr560miKpZPw69J3WiIZlHZxVJ6Fia6gHk9EUglzRLG+sjoTXTcsLw/OtgnfrSbAue105I6tP3Ls+ytQ14gE6X3PUOReCWCAEkQTPKZQGzTVCVRbWchnn3JmCuKNyW6p0pn4uJpHnnjNgXN3kFz9SAUNcbyKAV4+tCFRV9G85BsMpwa27xmwMzS7QvfwmXntT1QEQd6fm1VcXJvcgNyJCfDpiQp5TMJnSGeix1moovnheKmmeMnNK9fnllDB58VjWUTSZUqWflJpvYwjTxDANOGu4urqQqFEu5Y4LcM7kpQquzLVyjfd/In2sfONrGHq2os+wnihn8w3xrnwymJe3pJQ4Xe8AGE8TN9yyu9jSby2H44kpwn/cPscz0IZJQV/CYuvYHYeB/f6OTd8zTDOPHz2qc+z+UUbpjUjj9zjeBC2raEk9x4LtzwFLuevyuQX85SwpvV/+9ae8ChvMRs7T9zvglsNxYJ4HhuNITAX0iBfbbneq92bIiBhkBbJQN5LNRqIf3kmqQ6pvLP3r38BPd+wvv6pOkWdqH4PJxGlecaoQrgdi25quZb58SH717WoOctKUC8sgGGOkqmSc8E0jgo+KHkzOxJA4HvegOlBt2zCWtLsBqymE4kSlFAHRclqPtdjEXPkNsu40upBFTsI1qiIc82rNIL3N7NKcVLx6r0DLVABYH38BvgXYlUiePZ8/ks6RtFoIgbu7PfvbPSHMNYJClnXWauQzBOGU7HZNjSzLd8heUSp1UtR2AnNgHGemcT5T6D2bbXkpVy52y6ujW7aeRJa+sQqK6+cAUwQFcwaziC9UXmKtFjMKuFQ5PSM8P418uWjV/mWst4siuaoNl2KPNCSpAuveXKcGQzbujbUqUXlNq33vZfx9H59r4BI1NbKK69a/pZS4uz0wnIRjUvrZWO9USEuMetOXRnKGFEWwKIUkjebmoFGaWMvtFvGgAmj0e1eRGgxLc7oSuluFdDPSS8kAo4QmlCMik9kbYXcbk6voXVwZnbMd5ywOt8CZskGX183q70abJ4pGQ6JpW8ZxJB1H9RyNCsoVDLA6b4FDZ2EEFcTTn9loYzm95pAM2vu14Anh5qgBuX8kRVCSY17xDEqEJ2raLyXyq6ekOTCbGZuThG3Ltv42aJ/Pt7qsYy+WIvPqxUsJiaqKby7kQ1PpPDVaExGDcjoNjOPMxcVWeQg6R4xZxq48/3peNUgpEkKqmiyz8kq61tXxstZinSFHMUBWAd3ZnZTvM8V8lUifFQE8RC05cs7HWUdti/KvtY3Mwxd7mikS339AiGK4MAPJGK6uLnl4fcXpxccczcxxOHF5eVU9azR1crHd0XcdMUYuL680OpDfMHK1Eu4e6ngbwHnr8cZ6kJ+fnSYq7zmbDSuQmXl5c+TFIeOuL4kxcHc4cHPzmnESUbVpHGvJudOqqt1uR68N+YzqjwjAXAC46LUYnIZGk6rKkmVupWGmiU+5fPWRRKyMZfryH2CzfcKmEydrUp7M/QFoTIYwnt+XWcBbpnCsMo1GSUR7ZiKFQNtKhd6LVy95cPWIbAxNJ1yb8TTo9S6tORKZeRiZVM3ZV4Xe4vGDWXGwmlZk9J33dS3OVSguV6dJSp7jEl3C8PDJQ/p+7dWbxUlZP8WcEKXxZRhyztJEMS7VPylG5nHSCiVZP03j6bc9u92Grutk/ZTrSpE5yprNmo4PWtk3zYFpnJk0qv9ZR3UKV/O/9FdKWXiF9ZrlA2+asZVzUs65RkcZ3U+0ArJE/ZO2u7BpqTgtEyNneY5xnqs+kzGLvSn0h+U+lu9f1tH5gzArh/y3JMyyOj7XwGXxxNfokvqwY4ii91HeLx+i6iaUPGnxeKzm8bSJX9M2ksJBIjQppSrUU9B1YbnnGqWRK0n3JtM6OlM3NFOvqkZHQNUSKQGaBdA4a+lcaSRWwNLaQOnkWc+fYshLnpulAkViVJZsUs2jSqZBcrLDzb42NHSFhKiIvIQJTblXVqFgBRgiUsdbJ20G0u2nsPnCW/6mgMbmGh1JKTOHmRwCzAP52bcwz3+dbbwlX10ynk7MJ/XusoGcauqqcIGMc8tzKdGn8jcWEBOVFxVTqgTl0hOlDHuWy5PonLFETE2TWWuJxkgVVxbhqpL3r8ANMZyn08gUooDrppE/WOm2izWYbGg0f0zKIm1nbR3tM1DMyiNDtbMKSNAXFyE4nQuZel1nXAPj8S7T3ZzwF1tuLlopzydrpCny4tNP6Y8HnnPk8eN38E1bn6DMAwENzlpCjEtomeUa5PsVbJ3hsPug4s1jvYHlUurL+lwFvCypz/LA655WwwOm/h5T4ma/55vf+pi5eUSOgZubl3zn17/F3d0dw2lQfoDwtgRYOvquod/0SymvRlyh0FEMTdtK9+PxVO2REC2pG21OmTBJKXRoPPPVO8SN9H8xTrgUHS2z6pdEbQxIBpsidveA7N2qMIHakkK+0mIlb4VvO6JT5WTvCTFJF/JSapwSk2rQWIOoQa98ApNzTVdWQU7ZEbUyzuG8FQkF5Z+FlBlOg9jRqr+StBWKdldfTQYBFbZGHmoK5Qx7rjZuXfQxZWIK1XbFmJjnUIXnjDEYZ2m7lqZp2Ox67XKtMhfzxDzpXEpCai17wDRLtD7OgaClzWvwXVItxkqaPZQiCp03OYse1RJNMfq9b5no96LG98nkaMrobLno3mLyUnYuWYdMMkrLT5LOMzkT4+I8lH5s8myk3DmO6Z7Y6/KMfeOJusGYs8VFVXr/rT4+18DFagVI2YtsDc+aql1iCqJExzLphmYMxPjGOU31EBakatdhS2tp2wZj22Uj09RLXYRaCVCiM+uqoXXEZrXTn4OCssmZMi8XYLbZbbHKF5hUpt1a7ZjsXBUvqrsRcn6zEpoyq3vN5zcujl/KQGKeItYa5tlUSW0w2ldJ0l1OOQspJdUFiNp8cWVZarBhlYsH/OsP4b3/bXVF54c8M3m4JbzMt36R5tkvc+Uz2+0W56WDrDOWtpHnHkNSnlHxSPS+4xm1+vx7yv5V/rMGaxyTooxaDp3L880kazFRxsh6V0+as5Q1J1NY/+eApX6vIsiua2uFWE6RTadaQL4BDJteDGoxTn3fLl76GhCzcHWW11CwTq2SKve5cA0UAOn8TlF5D86zsZbmFJgveqJztF0DBg7DyHA64jH82yP8yKNrYmj5nWEWUubZIzXgWmy7JU2izFs0dJYoyxqorF/77GMNTt7m8cl78uq99QG9qW2XF+NvjWUaM6chMoQjN6/v+OTD73L7+la0NTJc7DYYa7jsO9HCyJmmbfHKFREnymqEQ+6l63f0bcc8jaKMa2RDfvjkCSDkSKlUzJwe/ijDxRdIrmXaPSaHJYpHFtXTEFNVAjdqZybfSzogirRDLafV9T3udoSuoz0eiccTMQfIkbb1sql7J92ko86MlDje7nHe1TWyHmdjtKwZrcBUMOC8KLwWWYgQAmEYK8jKNS2fa9SnnNAZI5/30vX5NMzVZohTtFQ0lxkApQRZ7M90Gri72zPNgUePHrDbbsS1MNL/zOjGvt32krLTORC0cEIcGSlAyClxOql+zCRgUQT4lutZz6NSaVbBRgGQ9wCIYSHvr6qU698qb67sXyvgk9JqX1tNf8niLwToBduvnHxjNJ0N2VqmSZxxrCGNk+hlkXFNQ993nI4nxnlpn7BcqRRDdF3PrOXp1R4pdcB6v7jm5v6i+8GPzzVwWYItaw9afzdgnKDMbPKKeX2Pc3DvkM7LOtEqrtHJbAqgsJo6UM0At6SifOfr70V+nryEAQuvpHgbteGiCuFVJUuNCpUJW/K69e85M09T/VzZBMui8Y0Q5tq2EdKxevXFyzszPusBWBm50jMolchDWSizAAnXt6JQ2bU6rtQSzxACMckCKKmfTefBWg6HgZyhbXsJYd6LrC7e8UI+I0uH3euv/hibbcI7i5vuCONJGmTaInmfl9JsdEs2Zumnx5lDIO9RI1TVgzUWtcjAa/QoCpk5hkBJXdV5UeTai21RMS3fthhjGcaZeRrpGi+lpMji9t7RbbfM0yyNOcmQIofbG1zbEZOUwPddU7k4TeNwja2RM7O62/XDtM5hQlhF8zib/3WEckktLTofZUPa7i7JKXB1O7K/6PGaSjjc3eGMJZA4XHX8z9tnpE/h8UXmvUdP8LUJXpb899U7QCQPh3PAXN+1/J9EuyKncfyexq5vWgyZ28Mdu82GtunqvcmGDdM80TZttRN17yiRyLOLkNemOfBr33lOJvPs2TOevrzlcHeQVhxBSpo3u11NW+z3e8ZRxCYLRyDnwpUrAEzKpI2XdRxj4u72lsJPmOegIoQG07ZM7/wY8+ZxjZpkpGQ+pWXDJ0PXn5vwaQz05XYSZKOefddz/OpXmS4vJa11Fdi8eEa7vwWk3UDnXJXPd42c1zaNpFfUG1+0akQpNhlJPzgr4pu+afT+AvMUCPOwOHI51zLwtQNnVnbLNQ1t47WlhCXmxDjFs7S8BhmIylOZp4lxGBVUZh49ukZakERiSPWzxli8XXHYiseSZQOX9a5cyCx7QUiJGKSb9XCazsi15drNas712w7vPSmKjlLOS5uYOpdX0T1YqrhWq3iJ2BhxWM+gvTE4u6TVziP7qzOVv5Pr32rJgVki5EZtQBikP1ax+01nafteUoS1Eg3OCNdJ+D2LbsTijBjnpE3KysH6rQrAfK6BSxmp8nDuj0lR85SBy9UwGpWBzdWkL59927jWv+USgo41JL94vDopSt175dRoGspJyWvbdfRbVydy4c2kEET+WUFNaZ4YUyaFuOqxJBPVGUPTSnM/stFwq6THInIOa4RYlw3s706CgBWQFLDltO9PAXsFaRXJ/5rfXY+4OV8YZQFYC1jhDznvwFg22467mwOTeqpnKOXqvbJy6hiWNSgy5VLFk7LFKFl2evAl6C9wBprxDvvyO5i7j1aAa1n0iaJMo+fU96wNT1nWIUmjx5LX1dvT9+TVdWbJe0cJwwoukmx/qm68GIWqbIkh5szhMHAks912NOpNlpt31pAbT+tFd2M6DPTZgndapqgS/WpwQkh0ja33cBbc0t+7TU/TOAb1dKvw09q7M0tk0nsv1QMsXud2sxGATOA4R2Y3U0pNUzZ0bQPGcDjsuRnu+PTRjkdXD0X7QufJ6bTn9unHbHaXQOByc1HLV9cl9zknASzDicPxyEcffkzTfraJev+999n0Hd/+5jf52o/9GOzg7u5OBcl6DEJCTV56R62J5iVaUzbPEGamecI3HVLZnrGbKx71T9g9OPHJx59wGo6EaZI+Q60oEotW1NKE1RggRcI8afrFVb2mEtozBrquwftGNnrA2FGiD1lFErOmmUrEOGcBLrKjanUR+GBInSdjVE/k3AtIMRPCyOsv/STHr3+dNme2t3dsxomQDd3NoUa+0Ahc23jhqtTBShjjljmTZa1b63He4xsPuskPw7g4ZSnpWIpEQ6lubBon0Wunkg5aqGC8VMIZtUvWWVJYhO0MQMqcxoHDXpRlQwjKq4NWn4u1lgS0XYdrJFJ6HAZiXsjDgldkQ00pidaRXvM6/Z+SjLc8Y1H3rfajPJvVv5umEfkHb3F+S+kKzrQAiNUwKghbnOr1Udb6+nMV1Kzfqyda+yPn+5nucWaxbyVOVBwoYx0Z1XehpLkW7lZJO5eIc0yLjsw0jWTrl6BKvRBDiFGjkKsb+C04Pt/AxUiTxbu7Ox49enSehgEeXF9z3B+WN5tMznYx7iuMWzDButwZOJ+YwNpLqK9RFkKmluasyKgUr9gUbo02QLPKpynlrc7Tt52wyxVYDOPI7Ysbqrha+X4VFiq6LWUDtc4JQFHCcQYVohNQE3TVFqhnjXx/2zf1ZkqJnJRQ51pGXSbzsvLfDvPqCITA3a30bDLWMGlFS8mJn3aPqbtsOZ0COqPEUqOpsKw57tNsGJprAV39Q7pkaG4+kM/fD91wvk6qmuY6hGsM+IZsHaGOVV6AEJBT1k1dxtQ7z5zHOiY1N1w2QgVHpRswCNC01tbo1WEaRcHWWSlvNuCdkKajRsdSjphsdeNYobv6cwHjNfxSJqRR/YWmZedE9Oz2dk+NTFYHSX0uo72eykKQ3gY450RgcY7YYSJ4A8Yqd8cwByscHWM44ghTYp5GWt/Ua27bDuxMSrDtOh36Ze7knJjmkcNhz+3tHR989wPCNBHC9IYxXx8vnz3j8mLD7es7tp9+ymG349d/7VtcP3jAo4cXzDGTrePR1TUXFxdCOlx5jgL2JQJaAGlMEXDQ7Uhuw/MPPyAMIzlnNl2P6TrtAi7tNUIITPOs9iORYyAl6TGTU5KIW07V6BfnwfuGpm1XEa7CPssQJi6/+x84PfoJjtc/IhpQWTaPtf6HjJ0XHp4+z5L2qGswRl68ekn3wXfgt/8EU4bp4TV+GDBtK5HdFHUOWBF+BMgRZ6WQIc6zzN1i6KxlcyF6Kikm7XeTNFptRWyvgJUQ6/05Y/BdU9dSScebnDEhYBuP9YuTJ2J0sdrOMp9iTEzTRJhn5hCwVhzCi4stXku9jRFZgZQkfTSOU513MS4RoNLfqES+UxReWlbNL980XF5t2dod+1e37I+DpLIMi4BjnaPVNUAELjJhvXZh5WAtEZXCf1of1lm6vhMC8BzO1kuxOWvra9a/5bxa4GrDSmSo2FflKq2BkAClJSLD+m9Q7crxcGKetQno4u0uEaHVsSYbv+Vif+Djcw1cKg/F27OJXbgY0sNm8SQKQVI/vTyMMrKmvHM1tmZVU5PfrIYoIGBtLFZ/om7KLNGJHMGGSMAQs+gw9H3LqZTbqu7LstHyxgSxClzGccJYQRvWO8iJGCWPW75TjLIhhQVrGPUeqAawXqqg6kwV76uLrORty2eWm1yQ+jKosvmqvLcQnQFjKdhnaPSe7rkKtbfSveiIKeATKbWOIZLGmQep5IBZxvrs+a1iagpK1s9LQINwmTCQUiBFLZ1MYtyk8iHSth39dsPpeJAKoRxZHlMBhbk+N/FWMtapZ6PMRmON6ItF4UY03hIPR8jQdB1t3yEdud8EY633bLqOEEoKU+0hK2CLWSaxEVFErCOvUmAShpa3OSNpK1cVfhNkyzyNpBQZTyM8G4nbJziXaZwjqIcvU9PyLGW+exj5yvGgaUqJehgDjZtpvCdECUcbRGH0bn9HzpkPP/qEl59+IpFHjQ6ZcoGfcYzzHfNhT8zwG7/2axgrYpCn/S3711sBLmRuHzzix37bj2kk1NXqsNPphHOew+HE/nAg50y33ZGuvsZtsDz7+Lt88J3v0jUNbbcR/RnR1CKEiWk8sb/bczoe2V7syNFRur0YI1G2Atql50yuKqvOOyE1hrl4PTIRQybOGROPbJ/+V7qn/43QXnJ68v+i6bZ0fStCgsA0hWoXciHbei1V1gleyJYUpVWjmlHOYi8uefSFd2lC0PSAKCrf3dxiUmK329D2HdY7SfdhmIeBbAzDGGhtrvISKSXmmGhbx2a3JefEeDwyTBPeOprGKo9C1GQLAdaoPTDe4VTUT9LTJQ1i3uAjOefoulaixsHTda2KNnpyguMwqUMXSXFNstf1qfbCWHESJGq9shnFmBhpFHt5dSXpIneodqNwUs4uLSfGYSRYS9s1hHlmmuMZnKk2SBbpWS+s9d4i5ctGCbRqZ1g5XcuFLk7lCgQv51n4kkltoTFUvan6XcXRLida/Vc0cYoqyBIcMFgnui/c+06AGIQaUUdKf/wW4JbPN3CxztQmVf2mYw4RW9IXOhGMN0sH4BUkXDa2+n+c/3Z+mLVHu56IFY3m+u/lM+WBLQ/6/LMoI9yw2fZMIXI6DhCXjXstcHR2PUYIbNapOJlRhVosWTsrL+tPytmEdIVGfGzle4hnI9dRZPbPAcOSdisIPSMhzjlE5sORxjn1lqz2NxHiW+l6a3Sci4cSY4Tjd3nRvllVVJzT6mnpo4sxkELGTCfSJ7+Cvf0Ev/+I+OCKNX+9RptskuqO/NauNXKkXMuAU5wrKHSqp2CchLrneaJwE0rV0TIl1Bgs8FirjUqbAINhFXI14Kwj5kwRyS5jGmOEIB6sNK+EnNyZYXNOiItRgUvWC/lepcPGGLwztL4YL7mQej2aHigpA7IAuJfPX9J4bVaqnK+ovKqUMsYLYdeazON33me6uGAusgLKI8g5MWXL7e2R1598SNMYOt/gvOP5s+eEeeLu5m6pwskwJ0Rl+d59NKq3N0dovRUxspRJIVTyc86JVze3ONVGub15xf/4xn+X0L8xbBqLazqG44C1hW9yQ06ZU2z4lZffkPLgLFIBZfwwErUchoH9/sA4TIv0elHAzqvxbpYKlWkO9Fm69E7TSNs0wuGozkiu4EYiMzDZa2K74/TuT5DtFrJE0SRV5XF2IGYYxplspPLRZmgaj+sbrF6Mba5Jm5ZBzVECjhcX9K9es/c93emOPE7aCEL0Ui6vd2wvd2w2Gw7HI69uB7quxTct4xQ4HCeClUqTEGLVK7l+5MWeZCeaQMaQvERQCo/Ke19tmtUKuRQl6pMyS78u55QkL0T7ag+soel6XJNoNFIyDDMpjZW7klXJOiHjsdt2zDpHyvdaa4UkPWhhhT6DarILnrQO7FuiuWZt22UhTsNcK1JzVi2q4scYU+dIsa9W7cZbdY1ikkKDMq/ywj+RObPsJuXqsl70+Y62OO9o5GXZyUy9turgVV/ZKIB6c1+spPrq+Ob6+vKeGh54C8r74Y7PNXAp+ixOhYyMtWx3ohR1Op44HA6VVb+OmmS0kRTLhDhD2+ufxVdfDbqIwa2u4/z/lu8q4bbyPQbO3AeNE5aJU7wNTJF51vLssDqvzlZjDa5WO8k9Fia7SaX5VrkSWzulltJQ55TcST7r3FlWw7oP1MIVOr9nIeslpsPISeewdaKFsN1J2HYOsVZjlQqocu9W7/2zDlmESdNEOvZxov3mv+Iy3LHbbemu35dKopiUL1g0VzIYL9285/nMwCweity40xJToJZmkpFx1JRIGCfQHLnxnqjGxur8WTPqa4uVWgmxfFfxkMtzI0OKgewcCaGB50kUN71zGOeIKTGtejI567ThpJImFXiuo4mLISnzxtB6i+l8vY5aeWANbddJmlE/JOlBQ4wZZ4Ue6E1DzpJSQdMLpECYpO+SdQ2vbOC23fLYmlo+egqJb76G492Bi9tXnIYT3oqK63G/Jyh3w5I5Bvh4arixltf2HLSbmHjnODLvem7GxDunmascsY3j5SlzYRIPekPrwZtM1BLbnBLDSTheOcOdLu5C8Cwe/n40HObM8ZDqRmraFsjEMDGOkf3hyDSMkiIJUTfipaIMjer4rsU5RxgH4UeQORyOwkGLCdcsHKA3gv45Mz75UY6PfpzU7YiuJZ9GSj+TYi9842mtZRgnLIY5JJItILX014HetORpoP/Wr+GfP2f48Z8g9T3GWjZOScOY+n6ySPwfD3cMxyPjKADZOSvqx23L6Xjkbn8ixVAjO1RismxktmlpLpf0qLNW1KxlZMlGeDkmJflPnRycwzmJdqQYOeqaKScXJVrhbQXtelycVd82XGyF9B/Vlm23G7abjv3hqIB0TWxdLcu8fAcUU50x958Py+OW5Z+r40FZhwaNnHtyiLomU7Xfa1f2njtbz2yswTcisJq0C3P9rpVYnrxdDHC1+cVRLE1jS8BjNU/rj2qbWJ5lvTapSC3PNBsjhRHOi2hfDJKiX2m83L+HN9invwUA5vMNXHSA5ylwvDvRdp6q2qEbSa0qogAX1MifA5fyIGvuWLkdb6SG6nevx79wZ5bpWOeHllTXSEVeNvzSrGthepeU1wrxFjBS73e1IWnO3hqjxCsrlVRB0wEFTGUxOsa7mmN3tmiaoD1GStRgiSQ470grpdUSOckYrcTJNapUOTgpaymmSLnf3u7rovNO0lubbYe1juBYFvkaCBZRSMlWVC/KNy3Xj695YH8P3bNfoXGyQddqDMTTKnoNIQSMWQSkDBBRg6YGKWdDGGa2Rjr64iBnq00QDS4mQkikWM5nOB33NG0DzhHjEXUENQqlG5FuHrnMyOJ4rKxHqUiYxpHTKbFzDmeWkHaYZxrnGMaZu7tDHZ9N37O7vGarFSUlNbqUlMqPeR4xWcK5VqvfGqekYKezLmfhWVmLzZwpfRrAOEfb90zjWNVSpToEFbjTqrM0MU8nLr/0dY42MQx37O/u2J/2jHPio0+jAL9pj7WGcRSBxxQjczK8HjMvguFp03O62pDMfZlxuZ4P86X8soVvx4jZj0ytJ28M/jjhU+bq5o4v+cB7uxZr01lKrTQkXLsYBhijYT9Z7iYhHhrdwJKmCl+/fsk0TeSYcFrxgpWKHVcdDotxLcIdkwmRUNCuG27XSQRnHEYBNvOkCqV50WNpPeHyCfHysU6qBQDXeaMVjc5a+q7DOUOOEWeEW5WNI0Vp3Nl4Txxnrn7p/8DmyO7VM+7+8B9h1zgeNw14T+VRGXj94jmH/URjG8ZpZlaeirOWTd8xjIvKbM4ijth4Q5FAKOtw0TPRqKtTG6VDX5tUugRJ2lI465bxwzAnUWOuulVGCg7IWUFgEFE7a5jnQL/tuby6IKXMOE0ilmf12ehTL0CH1WZuslmiXfeiKMXhreZUN/D7O0OdU/eiDmewZw0gTNGFejOaU6UnjK1bWlHuFi7fYjRLOr8Ap/pD0+p1npvF/qzLFmokq3x6ZbQKHaN6tBm6vjsfJwPOLeOx5mE6twKd9yNUP8TxuQYuZNkknz9/zuXFJSlaYpy1NLUMnvIKCtCooQ8FLmYZaAnbyUYXcyRG8N7o98Rl466e0mojXwsLsJrEUA2lOCWq15LApEWwxxiDq1UtkK1dieStHniNDpUSQiOaNLmcwxItkLWjKIDJVfMGW0SGzEL85D4QgyojbXQh6nVh0JAyq1Vv6r2VcGZZlGUdmZyZZwnVeu9pWsvePcAg3AqvPKWcBKU3jSeTmWOUdI5zvPv+Yx4+fox79wHhVxoe+AObLC3hX718VSumvLW0bcscA/NpqguQLOH0hEQgdEKQppngLdEXQqACN6fA0EpvEmstc4gc90cV6Mp4HTyn6aXy2KuwVC46PPcsWBlm/UgMkeAsFt14snTULZau7frl2pwlxEDOotO77mi4NrJhzszTQAYp3c0yydepoqUbNmefX1+f847ObZlbBaRF2j1FpjnjrKHpWk77Pa9evOD5g4d8aZp59umnnPY3DBF27Vc5zYG741xWDiZnjsny3eh5vtkRrxpsSqL0q5NnTUo8v0ipEosb4bFlYNq2RGv4dOe5fXHDq9eBL20sRcHWOstkPc+OhmzVMw6Z97vEHB1PbydOQb7AOhFnPJ2OTNNMmOV5O6v6ImRyifaW1KouIlOeh1GbYiRAVTlQGVHdDZLSnUOk66VZbJ4lcujTtBRClvlbb137z2BqKgUrJG+zammZyZgMjW/xOcNlx363Yfqpn+SBl+qb2HiaWdJi1oqa7d3dkX1I3Jk9w2EADI1xxJQZx5F5jmpv1OYouT9pp2sQXoZPwrej2LDEWYVlKVQoqZ0Yo5Bup7CkoLTvT7VOui5Lw79mFl0h4y1+eRcUsFSBk1xwyosY36Jwa8RGIjyQ6n5mtRP57Z2AljVyjq4XrmWdBrVaOCPpo7P2LQqayq4ESnpWh0yAFvWcOWe0MHa5nvqG9UUu4GT9XqHOFKmNs0Gr16RGrO4DBT1l4HA4acRX7PLucicR79VeunzpqgqrABp++ONzDVzmcca6JIQ7FUG7fSWB4NLuvKDTJVix8C2KdyDIVP5lQPLFqucihtszp8WD0DfL5m9MVXsU3kHRzYBCjPPeVoBSJkQKa1KnwhyzdDy1mlu0ep76UaCaL7NsQGhYTnLGK4RLuecSybEVPFmbyWkRJSsRA7tKlxS0Us+kiz+XYuNMDZUbXWRGUyCUiFGK0gwzaZrBiFEd2iswpdKqhNtz9abarqFtO60qclxeP8A3DclcMX35f+NmfEm3/3WabuTu9gBk2q5ls+nBikiUdYZkTYmy4xTEZYx2/k64RozfOAV5phSgZ+r919ROSnjvyNokM4WZthHdEcMqVB4Txjut1EnLs14BwDKe5Wc1mArmypjGeeI0Tqv5anj8aCJvunWwEJbTnr2eoqifto2rHKbyPctkpW55C07OtX+KM45sg6T+lMRpjGwWISaYRg458Z3vfJu7D7/N177wiPF0Yhxn5pSZGDng+O/mQuY3yqtqHXHb0bQdLiXm06l6kCHGt2G9etQePPWeSwd4w+HRNd8aZn5j1hSEzdhsoOvJ2wK9DSYEvn0a6V8fYBBBLasq0zFHkUk3hrbxVepe+E8G62Q+29JmFxCRswJ41djn8pwLcBHCaLfZ0HYd0zTTNsJBSzFjUmb7/BtwumV4/NuIeCjqLCt7kY0hYpjGkdrINSPEb5KIlJFk89l0HL/2o0xXl+wfPsR/+oxTyry8fsD100+4ffGSd955B0NmuLjkdP2QQ99h3w3YnLGffMowiOS/d5ZkM2kWpnJOwu1IKdNvNGararfGGQylV1OuTk6MkTmK/EMI0tQwacQpTAWsgFcpgFhSSfqsJRVktPhNI8Z1M17SpjWyrlVCi5qw2CaXE1GMvrysTp9B9gBrlmaGawBZlvDZ/DTFThSbmXmDWcy9zR0FmObN981zrJWySxVZmWdrQLLKKBQHTdfQsgOow23qh5bLXtmVxc5zjjBWpqKeEEOcA8Mw4xt37w1oNDyRu+X73nKbP9DxuQYuKUtjKmlSVkCEhjytIyTD8XDScGoDpY+NkYeYjCJfa/G+WQx6XnlkWUhiBRiVKp3SP8bKTK9aDgGkIMMIPm3bhq7v9PqEVxJTqKJOqx1t8Q7KNCwKvvrv9aYEZbOz1WTKwjGy+u43kzOlVDrWsbJaFbN6y1KRYEBdkHuTVX4UhjnWaD+KZUMskQEL+Ea8QOuccALcsiK8kvaMpoNYTilefNPSqsjdGJJ+bxap7XZLfPQu+YMXNKc7jLGEaSK7yOtXt9rdVe5pt2n13AbjHP2mZ7PbSlVQFJdomkVkilm9c+skVVSjSG6JzKlYVcqJmBGv1hppE67zKSvrNaFl0mVQa0VPed7UZ2ZAUnAGSpO5khYIU1h1PDYKbkSoK55t8LnO8TLOaz/nfrU/iJELofSKWROZJZJSzhdaUU+NtTtvlvlOJsyGmGZSjHzRjnzwq89Ic+B2jLxKHnYj+eqSadNKia1OuFhkxadxiYYpuJfUyf3rXU1FY9YmW7YKTQEYIHYNphNv2xhDMitjrus4G4dteuLGYk93SwQsyTxICQXnljBn1T8SMGK9wymnpJanWieRzPpaXlb02YZhVDNnCdiX9ZUi2GGmG3+d7uWvE50nPvppjtsvAI4cA+MoG6pNBm8tbj7AuMf4Dn94zpREL8XgwFlO7zzm+de+qtHZzM2jh3S3d0w6jx4+fCDKqTlxfP9dbt55X+zXzS3b04D74nvsPvmwRktCjLyeBgySDvCN8MScch2MtaJzpOtFIoSZaRgwRnsjqVNptW9c0fs4pkwOiGaKFXXuNM2LfS7OnS0RQyOZ8car2rQ0allS66YOb0oiIGitrG2p0FKgUpankUhLZqlPLJGOqt9VZp0xVQUaY2hapzZO19U81cj3Z4Pwz9jNc64A7nt+JhdS99vOEZe3V2Cxhlzr/We1t6y/Q8fl5vaGL7zz6OxmrDGYOBNNXr7AmJXejdq+Oq5v4KYf6PhcAxeDGBTfeuFjpPpktFpCH2bOtV+N1Qecs4S4p5gIUer1UYb7EuLTyavdkN9+BbBsFiUCItdhvUQ2vBcPzDhJW5lUlD3VGzJ6hjVoUOBSJpSkm1S+e4W6rSrGyvTIkgowKwy+bjimk6pWDqWlyqfO45Qx1rLb7Wh7Ke+TjVp660TVvJBQtWwSKUFpjVABn57XOQvZq0HT1gb6d+8dTSNEl5KKK8BzPbdLK4EYRswk1S6bdODh828Sbz9RY+QI87JoQlh0dGIsOXM5a8wwRYSsiRie0nwtxAgxYV3CzICzGK38SjGRDYv6Z0j1eYlqb6qblVXQsjYwdVx0bIz1mFzqSoTQYxBujJTylz4ta0+yRGwMrmlFy+cU6vZ3Nif1ffXR6/w4n761romQdKPWixUMkKW0dJpJm+bM6CStyDLqADhjcRjc/sRvJMdttnzcbom950ceXHI3HgT0ROqGANQ8v0EAG1Y6ZucS9frMQ4USTSkrzbVpZ7X3Ogb6ZxYxNZkP3SngByG15m2Hm6KC3oVHYGpUUEC6cMrU3tdNQO8nASZrjxhRDa13qh6vM4YQVl2DyzNdzZW89mviTPtr/47kL+D6XXL3gO3td4jbR4SHX+MqH/lSfo053fDx6wPMA6bv6Hc7cpi529/w7J33mcuaMIZsLTdtg3v5Cj78kDwFsoFTDAy/83cSLi/IOXFwDf75M67mia5rSClrasxydbWpac15DkyTtnsozwJqevJ4c6r2wqnIom88OYpmUWlpkcuGVyIGRqPP5bXloQLqWIBGm53OhYTTjbQ4mgaJsLrGSx+wYnNXEVCTUb0TuXCrnJzyfFdP5w0bVa7KN154T8ZC24iOzRuz9vwzS4RobSsUbK1BsY6BOIV5Nc6LEOX91bIA+zVYyRRGZraG9RIrQZnz+5Jx3vabZTYbvZYQieOEX59kFe6t4nPfaxn/AMfnGrgAoKJew1EiK0bTAvMwQJqV1bwYDHImZhEEy8gApJX3W9IspVW8UavotGnZegKhE73kCYsMNxTMoWdUYqTscKhHJoQ9W5/qOieLRHqKR2bKAtKvprQm0Eoive7y3vWxzmEaayCW96ieyur9Wb39jKHfbGhZeTSmdHEdZPOLkIzlarcjaKjYWruMZfFolcRnncPEdbjX4F78Kvb6KxhXiKVC9pSQvzL/k4TV52nik6cv6E4vaD76L3TxxKdpIs5SuTKNk2KWRNe1jMWTUqDhG0cKQYnJwqERwJYUOAUJa4bIpm/xjRfJ8pgIKWJnqQZp2hZjnQhaxYgv+1XORGPkmWZqlYwAUFPnwqqoCmfFIUpI3j4bQNN9QQFV+exu29VnARnnYBxODMNQw8XlvGeej4J0snT9NrohG7dcSNkGlkoyUWXGSvNAAX+REB0528XQUwiNch5rEhHLL7oduXMkfZaGzEc3zximgeQsmUCJSOjwkFOmiYk+e04ZgknY1rMY2zePXHbG4glXr5iVnV4BGY3G5BwknZINY2cwg55m2xJdJN9MKkSnm6bXZnLe1/Lx4uAUzF/L41cVeOV9xSxYa9hst8Q58Pr1a42gJXJOFXiV65VbK24qtNbDeAfP72gwOJPJ+6d8pT1ydXktmkn+mtvbA8ckKYbT/kDK0oNm07ccnZVUbhYgHqO0ERiPA3meyQZe39xwOpyYp4BzhnbT0mx6zDySQhSOSCG3ZsPxOEhVWJJ7aNpWZ19JV2TSHGhTkOSyd7WJbLFbthB5raWwSZbyf4ns1Sdp1/MPyEpoTgbTSMdtsZWxevflfIB2PtYS7Lw679nOWuKjRudJmWur6JjalvNAhwqLqoMq6X7LG8KYOj8KLbLsRdX1qGtjBWRQhV39bFU0L/NG19mSJtLrr/ZA71LvQ8Z5AYLLvlEneF27IM6j936Bb1k/54yqr79ROyTjVZ5XuXRTb+GHOj7fwEWrhcjUEHiZqDEmcmG5lz+aAga1Cqfu6NUxo5jjisRZtA1iCJJa0GOxj3nZIPQ8i3ddzlVQsUyqIsJWeBSCm52i07LJraIXb8HS9S+riV90U3ResfohUYDiSRdQdnbeZaObphmrfUckOkAN1dZvN5am63BQu8eawoAvHpc12Gyq7Lm1ppL1uv2nDM++ifniT5GMcnQM1UsRACM5dJMCh2/9d6Zv/QI7kwjWciy5bfUaRN0zs+k6HrdeKjWCEkk1VJ0A17bkL32ZbjzRjKOMhXW8fnlDTonjMLLzlkePr2iaRgxPEpn2EAPDMBBm3XytwadEYwwulSYDrBR4EzkvZPHq86TFj0sx0SgHKBsYY6oROWelgsVpP6gyp6wC5RJhqMauPNOsXmZ5snUinQNV7e5U32PKsyug2giHyzpH23gOJpX9fzFCquqaUyZbCJ2QPOMcSwCMmxxEP8KuoiM6J3MGTgPt81vSbLjcXbLJgbhriF1Trzd0DWlVdhmieOfZgDeyGY2JKjCnNIsaQU0ZjSjqgtdI3pgmWrxUVbWLES4jpbZeAVYSIT9dJ7MCbKvXlZNqmuhMKE5GmBMhG+ZZVHVPp5F+O5JTYBonZj8zTbNsEPrshJaRqwdrfaeRzoTwRhKl47JtfG0D4kKDmYOq10aaTYttGk3LlnYWS2NX33UCNCw8fnzB4eEFm0cX0tagbdlOI/004L3l1atbidwUzh9UbkoJeIsDVDh08j632eCskUo570iNk7Ln1te5aa3V8vVcOS0+pYI639jIs13Zr+r0qUVe2eMS0Shzdm3EpBP1ctYynxY4s0Sy7x8FG6+jIhnDos5uNBL8FvCt41XiOax+lnMvewE1ZbS+p/PUY0lKcr4ZLnAIY7Le2yq9xdo2nP1Yfl9vE+tcUs7i3DRebcK9Mcro3muW+1sw1A91fK6BS85LtCMbg3Geom0RVb+hwAvrPO12A6jB150jDiPmnpwyyITbbDfLw7QWuoYwx/rw7IpMW6p1jAoOFX2HtQdWSViKRO8n8J1jQfXrVVYh65kTKRtOOR95WdemmL3VhCn3IOUNUo1EXs1S5XbUUxjtU7G6FrMExo1O3KRE3pwSxguvf71hWiukrVK+uY4IeeDyg1+E6VP2uy/TtC2beCS8+pTb5hHd5YaLw3cgzpxOA/Fbv8am7bFF2G0VYq2hVaRTc991jOPM3elW5Lk1WmaBaAynd95hfzxhp0kqQ/KnACqcZrh9feB0HLm+3vHg+oqrqwu2257TMPKF9x6Tsna8nSKmpNCMKQGAuvEYfWBrj6ZuhBiw0LiGftMy7I+QMq2TpncGS9Cx2+36FXCRKqHCcSkMfyhARp6V947NpieEuQJ6U1zEBDjqpriOhJU1klTBNsVZz9uJkU5LU89sl/srpMQcIzEuIB7AGQE+Q5zkb1nSvCCAJ/iW5BualHnyzjsc7u7IhxvMcazzZe4abp9cVfCSymah61zKZuXG1pUXhZxLUk8zK8gaA82HLwmNIT15yGY480Hr2llvFjFmMLpR65xyagdSiMR51HURGecgnaNTZgqZKcx8/MkzGgTkk2ScnLOEIGJ2xRFaNt4SsbGEkDAWAobOCsH59etXbHsBBXEOTMcT+XiUDtGIwzDf3nH37CXp/a7aB2dLBZthe7HBdiK3/5WvPuHDH/0qz997l5ylimiaZqabO07PXuEah9fquqjpXRlr0WWap5mbl69rtZCU16cq0GdSonlwqQ6ntE7IWRqtmgTTMIoIo87LGETaoE7N4pEpUC1rvrxc9sWKM/RZo2BcPpLrWq/zo9jPYhKzEriL0jUoEVscjfVaXADAAnQKoGm8J81B+qSVN+XV91ddm7cc+mIuKsIr+7scC+/m3NrXvy6/F8NTHOx71758BiGyl8+vcdBqhYjdVRtV5ms+P3EIEe8bMK5+7LcAt3y+gUs52raVDsWgTHo5RLKeMqMkgmCFs2CdVIjM81w38/UhIWIVgHOGnEVnICXpEmyQDSWTiXNgnmZJCXlLjhHfNLUyKKUkat4hYLNIZFcxqbXXcHYYfY/TCJG8dpYWEEh7Dxabs4mT66QqZXBoysG9XV9ET5FiVEOqE1Tepaml9ewr6aqSVqov1xOfcTP0KqUKwtPbhLn5mPT0V0kx85WvfZ3+quN//vK/Z7tpafqdLNgQCduLWoZ8b6QWAGlUDVY9ywSiIJpFcyZbS2oa5h//Uea7PebpM7p+g4kJ23wLE0SiOmUYx5kXz2+5uzvx+PFIf/WAeY7cHQceXOzouw6zk4jSFGaO40jQKpRgDDkm8jSRgnB4pBpJnvliZPSanSNiGDLk06B8qyXaYayr3cJlfhrZEDj3xFg9U4NoeDTeETOkMKu2h86nJB6TydIgMulmb52rcyhMo6iAmlR7WMnjNwoMkm4cRsdNow1ZUmXFd0g2McRJ7h81iKZ4qRmTIPsNZhx48eFHhJBJYYas3dP1g6O3xF1fn21MWdImmArcU1qidwnhOElUTTZXgM55fuTBE77zrWdM1jN76MT/qEcBuuWcszY/NdGAEn4tRnJ+xi6GGzidRuY50HjhcIUQyKqRYzrPxeUFm+1WQEqKmNkQXFqqZ3Kqab27uwnXNbjG1lYgJk7Cl0NUjztnCQhnJEwB+lYEHjGkHGn/xzc4PX4C1tJtOnaXO7ablqsw8yRPzPsDrvG895Uf4egs33z+nMPhxDwHrm/3bKaJhsz1w4cc76QbdtKChAJ8MzAPE0NaUgyzEtaz2gJnLe0wCPALAPJ8Y0zSRV4nTNsKV8Y6g3EW70xd9ucRgWLvsuo+5fWyWqWeyjMVp3YcJuaYaNxS3LAGHBkqUbeshSUNWd23N9ZedUzKtxX7WieVug8pE0kC2JytkfJyoRnIUTiQuSzqrPY3F7L//eM+JFjzcM7QRwV852+Xc69BTB1fWKJqWThcGW24GMseoHe+XkPrXkVvQ0k/4PG5Bi7l9h88fES/6zkdpFyvRDzaVjt15tXELXFjNOBhTZ245cjIgwkxkiZZeNaXkKaE8K1ukDFK6Hcap/rwcs74OYoOiDOMx5MYGO+l221p9a2ExPXCKndWN5+SVNeVtDzzZbktS67cRvnM+QQp56obfT33+fQ2WSo9pAPoPYSNntbIRjeehtocjVIGWKIfJQKVqGNXrrv2I0JIdZ3vySQ2XU/XtWw3OyzCW5BNaKXMuL7msuBXo+G9F0n9Wrmlw6JgZpwDN/s9OIf50vsM1uG8ofkvLeY0nuW+Y0ocTyP5+Q2P3znivOPly1viOPHuu0/ASg1D17RaNh8Zp0DyToBSDMQkG/lm0+lCFyE7bxzZKMcmZayWflqnJFDvyVi6xrHc4bL+5zlIBBA1trWS7PyZGqPS+GrJs8krEFSMTSKFCWcQjtA4Vz6HdxZUeRniMuYFTKsBC/PSK0cAe9kOykWr4UMbBoZcH2d0cGospvH4cUa6BnohMNtMTDOx84Rtv+SCckI53zWCKiRhTWEo2ThnFh6VEUfia1fvcpW8pDnSqiGq/laaSBrVvVGctVol6Nxc7q38l7MAf3IiJRHA7FpHCLDZbIAs/XFAgb1ck/MOk6SMurWZ+RB5PUkVnfOWmCFMEecM29ZAMmRt/8A8450le8+YEyZEfCNig3PTsT3c8OVv/Gfa/+fvYvNoK6DpJhDnE53zTMZwPBz5lf/5qxyOB+zuiuHLXyfmjLm7w378ifBbtNy8pM4Kh6dE0Uqkrf7/vZRGQgTMjvuTKP4qJzGqBkwl4qrOvNEqJu+b1Rgva6GYRrI03I050TW+cg/PN2ERK5Xy64h1voKQXC7u7Bt0TuQC1EX/KsxLxGVtHQEtLrA1EpVCYpqjOquLw7m+i6UtiqmFEGXPKmu68qY0Cl4AY15fXz5nmohTY+v4V9th6v+dzfmzTahO9rx+E2urUdZdScHXcxTbUECeqZ/gPrD5QY/PN3Cxy+BXhKvo3lrLdrujaRqmaZYw7zBo6iJrOaY+H0XTRQgo50QEYpCeK9LsUJFvlrB8nKU8tXhRzlDJu1IGJw2+5NmJt2/MTJg8vmtJIdXrLVydAkLKRClpsJquqehdIkCgioU6SWQ+lklj6udq9tWUxa7jtsJEdUz1/33b4ruOU0z1M2sNg/J/vmmw3jENE6ZxrC5SPSaHK+ChIHfN10b9WYpCXdPglBRa7rM0nExpYfLX+9QQKWfXJSt+moM29NPLKWHWJIq0r5+/JCAifc5JZO29rqVtXFUwDSWVV1ISK/B7exjYHY9cbnd1LBsjmj2NdTgSd8cTUynjTqm+zxjVuUH4NyllTqeR4jliLFmBV9PoxqTfK4801/lRolnFG8w51bYKORcZ9UVevsyNtQeYdVyYhbjp8jI3DBqByXkpZdfrNEhVWy2N13sp3cjFoJbrksCEBDqLSZW9IkXxTOfeEWKLjQk3R7L3S1rIN8zXnSq66dWnrBEL6rqxupHmuET6EgmiPZvrzhiysxKBS0uKVOadfDYWgUjdTCS9Kptpaf8gY5cwSa4rKdD2WprrG+nLM4dA2224fnDN/va12IjSO0fn6xikF1PHzHQzcDdnDhO0jaVx0ObMHBEwHIW4PEyB/XHgcrdhDpFpCkwp42Oi37V0jefxe1c8fv9L7C42dCbBs+e8fvbf+PTpC25f7Xk2B6x3xGnmww8/Ykoz8zCz+z//K957rpuOOM5EA/u7W6xGTpJJlHhbzlr9l0THqTh25RB9KRlD3zZYN9T9rFQZOW8xzjONI6UVijXQeMs4DGw11V+Oddo558xxf8B6z6ZtaJuyZqhz1hhRLC5EYF8I+qz4H6u5XGxZIrMGFtasRNWgrj9THDnv6buWeRyZpohEeRaCbt3C7UKIX1cp5bysy6RK56UIw6pYpzQLXV9FPkdx6H5SNhHOAWT5olxAaLmPNX0hL1yvwl1cUIycU2xAqaDkDCnWPeNtobIf8vhcA5c1ABeg51Zep2iIOOcwSK+aeZwwtZlXrkhRNjQFK3PQDd9oy/ZIBIyWLy5IU8Kkxlks0hM2ZalYMlrdRJbKBZlfQgSc5iCll7lwWYrBW8pXlxuSTeqcfaAbl07IN4lV5mxBr90OW9GvvtesJltZKMjeP44zxvnlGg33ziuATBruldJZU78SHY/SS6ShLIzlWpvGa7mvLODLywuurq4Jca7erJCabYF04mWceQarHVavK8RE4xy1nEMuBu2uQ+w3YnA1Tz5MMykmrucglU+w6FDo5ue9CBo23rPdbLm7u+OTp8951d/x5NED+qaldJc2BrZ9T9d1DNPE8ThwGiLzNOtGu4gm1keui3yMEyFIhGm329B2jUaAsoLVDDkRkoSZU0EFiNeaUqJrxeMThdA3jVapwKF6pfr3kMlBwLdRojMYbXUA0ihSyJJZ+QHJZmklgdEuwVqOqmWyORWAIqJ+kp0yCrSVZ0bCZIPbdWQbicaSQyA3XqoGnWG6EpFAtzx5spXuvjEvrrJByvTXW0vOmWSi9lzJGknL0DnyO9eYm1v9eBljynbMQliWyq62k5LwYZwIcyBoB+pSYhySVK5cPnxEzvDs2XOpxjGGFCei8jly9oRxqqT102lmnCKpc2xaQ+o75vffgWFm3O/Jhxu2XSubhGu42+xgHNgO0lhQUtjCO9n20ncqxQwejofI8Ve/Q0yJtvF8+ctf5dWnr7n59BkhwTBH+k0nTliAFMAlQxcCG+tJ2kuq2Mmi0kuUeWCdFUmBoJVWWXoGOWuJwyjjrRu3zUY62mPqpi1dsgV0OS8gOpFF6C4mQnEeV4cp/602RnEYQ+0/VV5TBE1GNGOMtbRdS+OdkuzV31l+qcakLC+jm3blva6uYRWbqLa27BNB9aTKB4zhXGLLKFcrpcrFsVopi95fVVtXO7lwBUuCtvys1ORlPuslJU1RVzJ/uaS6BZjl/s9HuP57zV0sd22dpetaEqu36vuXqiQ9zz3c9MMcn2vgUiIJKcPpeKoicEUmvPzMiMftuq5uVnGaZVGppxpCBCMky+KBSwgXyAmb1TCrt5GBSZuPrZ+YLEYJJVpnCdoczxhpemaMYR6F1OaVUS+h9lgn6Hp3N+p2LP0iqPe0zkcajCoj1i1e/6CTuQhPlMlnylS0dSTLHwxCnHTOMlMMxBmYRoi8sokWAFcWplm+ui6ls/VQvjEVIbPS4DCRCLIp1jebeq6yuZd7X/62pJ0ApnGSBmAK/nIZRzVwyYihNY2o38aQpLw7GOYgSrdt10g6y0mjwRiCPL+Vp5YSHE8jr17fcrXd1N5EJQ1gNVV5ebGh61pu9wdOh0GIvE7E11KMOCPVXs5amtaz6Xc0jafrOvbthv2HH0q5asUomabd0rQtHz99IQJ3CsS7rqF7/AhjLcNpZBxHrq92OLva8q3qAoWM8WKwrLXErmEOQUrMjYTVC/j0TUOIIiA4TJEY5EFbk2ltBruqNiqPpxp5ManF6ZQUUpa+USmVinTZRFoLnaP1ltxISXVszD3vUs+zAm018qTz2BT+jF6HlMGKGq/JmW/fPOMnn3wJHmzhdGDxSpZfS6rTOqvl8xCmmXEOktLIQu6fUqZ/1GOA8XSi22w4Xl4RD3sON3eklGg3W1KWTs5N08iaj5lkEh4jqdkQGXLmhW85/vRPw/5E3kXCg2vMp56wvyN3LcNXvsKkzGP35S+yHY60RtqSpAxTSHhjsDESk4isjacR6z1cbEQ+Yg4MUQjYZR0WANY3LabrK3lalGOXJogSSTbqVCTpg4bY0BxLkYIX4rYxGm1e7Jn3DcZH5rbFIC0unKpMp5ykhUAjawlV4c5qt9+YBcZULopvGnxTml4uqaKURacpZWi7VkGVW80dkAj1KtGymrsL8GGJ6N+7jApeFkMqjuy69luRgnVCnG+6popMhnGUasqMFk3IWDfOYpxdIiNGxl0qLvWUmaU/pBq8Eis5K9vPy/OoNrGOI2+Obb0hU+fHGpyVW5Ig8b19R0+a12NY4dIPj2A+18CloHCDdGpFox0leoBqiIB4AWYONb20pHVkGNMc1RAm7cUi6DSVioW4pKHEIy3ngfWDiKkgUaP5W/me0vOoLL2km1ZhWxsjQKHrmtqfo2z8C7F1YZUXXK8dS2RyqFdkDKv2NTqB1xt/1jMpwVAAkAIPnWbzNGNWarFmBXxQsJd0HCUyoSS8VYQHUOE5V+k2C6gp+ghLmqxscKLgKXooa49gwf4VYy3hyHpykd8vPafWgL/oJcRXL2oHbZylsVveefouj++eMcc9s/2YmPaUnkkpScowzIFuQxXwK89tnCOHcVIj44TUHKIoNWv1hjGGy22HTZn9nRCAyaY2q4zZYLxsCjc3e6yzvPPOQ7bjgef7UxX+w6BVKBFjA8PxWEPfxTsr+XiA4STl3l3XCkDKSMdrZ8GbOkcysuGFKMa2Xre1tF2nnI1MShtS+BLTeC2XYw3Wf4xvnqFTFGdkUyjwM6GCV0rkFV5EVk2QKORLb+laiS6NF7pZNU6rlt5uVE0WMcHFHMr3lGqjsl6cK93RS6rKcIwTL063uNOITZFYNiaoZHNZUhZyg8UxzTPzJHpBzomoYucsyWTZhIwlxMTd4cD0+oY4h7rBOwu992RtE5J1/U/jADnLcwLGU+Tu3UfcPX7CsB3p93uuX91ghhN9Zxnef8jL3/7jhGfP6aeJTZg53NyK9o1GxuZ5lrUdIl6jGgklxCtXKcTENEmJOt4R47LBYQyucVxdXXE6DYQYcA20jVcV57k2ljTWcP34AdYYXjx9TkzamkK5X7pIah8va6RJ4jBNeC9tFJyBi9YRjZdojRdB0TkmZrXFKYYKHNZRjaJijc5xa4xUQY0Tcwhqw0cO+yOZvDgdcaUlxBpxr4xMsbKZmqIs/LciqVHeUF0sU6yZUaHK803aGEO/6em6Rp09CYd40xFPAyZnTkkoXlZBmdH7zllUq2OUiFUpNV+Ph1lHjAxLlJaV3WT5O2V/uXf75d2pagy9fQ3mlIkxSAsUMQh1fn/mZ3J+y6vf3/G5Bi7OLkxz6Uu0TKr7qC5n4SzYbJRIGHSgZc+V3h5aoZHWpNlcN2o5t363syRrK0/jjaO6e/KhECWi4gAMdSMSfpikDLx1PHp4LdcXA7OGPeEeORWNeBjDdtNizU5CqmkhakpXbMr+KCW/3pNiUL4I2lFaL6gi6+JpOnl/Smr+VzlY/ZmQdFqKgRgTwzDKRmTN0h03CghLoWxYQl6z1koIPRUNiMQ4TuwPRxW6i1jrF6hWIk9JvQqzgM57WAmDYXexZTgNkh7Uay3MmT5nmmefEh4+whrL+996j/d+4wacJacW0pdxccLsPsZ7kcMvxqOUauYsIXOrxm+YIzFLytBbxzAeCYhSp5gxmV+1D4sCyJwkgleeTzWGxpISeMRDEz002XhiELKfy8UIiPETLoapr0n7eau8niD3l1NtEkHMtRxzGANzlIGsrQbU23NWvn+zn3h98RPE/WPMpx7rG/pNh+12ZP+anCfxHol1ltRUS20lIJGWpGvMWkdO0hNpd7HjdDxB40hk+n5L23Wfub6OhzupblnB3qTrbUkZ57p2hBBuaVsHU5Sy+q4FJxLwhoRF0oEWiMFh5se48JB5NszxFbZ7Tb8RoG4bj726JM9B0jIO+s1Goik3d6rTIRWMcZqZp0C3ESCTpiPzJBHfGIKCwkTOE8ODKwKGGUibDVe//i3s/o746BpzOkGYOV5dYm/vaL79bVLXLTwkW8ZbxnycpmonrbG1WWgKoi5tkNcDATK4pqHrRfbh5vYWZywxRnZXl1xdXXD7+qY2KSxTdZ4D1ix2QUipMt/0hdr/2Kpn7pzDRdFrCdlwebGj33aLc2QkgnO8OzDNi7RFzjCcBk6nYbEBJY0lVpHTaRJ7q+Ff7xtZo8cR40VYL8XEZtuvPquWoyKQAgCKc3weoRCbU6p8VtMyJYlWapPI+4exhrb1woFqGuIcQRvMurYhTnONoBpjcGqfY4wsPnIG695oh2HKhalJWEdA6xvWn1k84NULyxurbVkb17pXyCEihgHb+GqM71dZnX/VPSrDD3h8roFLjAnrU/U2M+p5gm5WcpTn5dpGWgNksEkiK6Kwe6+RVUq17Gx9FG9E3iRVQjkXAmgW4LQKC5iSj9QFEXXxlaBa6XIqKS4lALrSHsBjbGSYBi09K3e0Kgu0hqZpqucyTzNTmKvQ3Pr6jYHtpqfrN8QYmOaZGGaNwkjuuaJu9eCFg7FgcXP2U27Vek/bb9jvTwyHgc2m0eoDKZcTAAKH/ZGLiw7rYZ6lE2wIAWfguD+Qs3ZFTonxNAgAalx9LimnOvHXHkR9LkDRYTdGSuRLmm5RsZWR99PE43/3b6HvaMwX8C9/FrYnooWcvHCDY888ZTCJZtOSplg3dQEKiAqyLYQ9BVNliRog5RpVIkXG/bHaFauXCwIqs9VeWFoubKyv3vr11RX7uz1Y2Xxto+WTWYQRSxrDWvFUx2nCeU/bdTx58oQ5BRnPtFITzUu0DQxBVVRzzrjGaysJIUrHKN/jcsZ9d0f8zhNshM1uSz92JLb0v/PXOJxe1B5Rcl9mla83YNQB0EGQRp+yuV1cXmCsI5fKs5SEhDrfD8ovRyUiJwEt5bs0cCrnKZu2LBidL5amMVxutrzYbXBdR7Kueu65a/BzxoYvE0MvofqYMekhZrgm2Q9I5kDbNDx854ms1TKeGsrfXV4T5omXz54zjSO+8ZAy1mRcHglhIkfhvHlnafuWYZi5fPw+6SDqt9YaLvYn+sMek+HpR09xHuJ+4HK75dFppJ0GzNe+Lvdm1hUtMj7zHMleoiPOOwEuzkqfLY1mkDLOGbqNVMYZIMwihZC1M3IMcxVrc1o9aTCEObC/28tnonaNdsIJM85izLxSlFoFMnKW9g8Y+m3P5nLHOvKbc6ZtLFPbMGo0vMydaRi5vT2QkrQL6PpOo0HSNsBqX6mUM732OhumwBwMhJmmKVGBfC7gWGwIch0lvp5TJteiyWUjlkK2843aWYhTkP/im8DFOenpVDhzc55pnJMmrb2AdDPO2mYk6zPISxRRvTSbE5R2IWaNP5Y9SOEHCwir76hvqHtJ3TUX8FLn87LgVu7r+fkqQX91jeKYLFhrOdH/nwOXEBNNNtze3bHd7BYGtreLLLUeOWXCMK48MoTgWHKQeUG51bhyH2wu6DomqShyXvOzzhLnWHPxMcqizFnTRpTUikxIAS0lpGaYw8yr1zfqASwzsRgOaVwom6ZUPCT2+xPeT3XR5ZSqGJmxppIRxfBExuOBpvGixmrQMCwUVF3TLqZ0vF5xX+wKsxkLRhelqnOGWSI5p0HAQtsWkTDDOMykmLm7G4Uv4L1GYwTAzLOkC0zOeAOOwtlAlXOpbdPLwpSI6L2FVMcMjPG6eJRSpgspZcjW0jcdfb/ji+9/iQ+Pr2jS+9y96jhNM832jm53oglfYuY3ME4qHvaHPZdXFzIOpRqA1bjpJWRjiKb0bZLWCtY1iJRarkBWrsycTS0xHwaRUpFXdhdb+k1LCDNziKSY6PqWnGF3uZNKDfWkjXPYUgpuDBhL23SY1hDDzDCcANlgikNFzqrSnET7w8jmXr1Ja/E5YiP4u4YwBlKCad6zdweaO0fzI4/ZXRy5fS2cDuusbKJYUhYeT2k3WQyb0/c4jfqUHkE2GfIcOYUD2Z4+2wCsWI4l3O2sJWbtAJ6h8aJym4xTbZCE856rBw+h73m3eUxqG6YH1+SPXjHeHcDMEB9i80NiGqQqyZbKLcMYIqbJeGCaZoyRUt5CNo8pkpWU3216Yow458k2MRwOzCFKelWry4wxdH3LPEea3rO9u+UyTOxxXN3dYXST65uGaDK7Dz/kwXaL9Q30XZWwL+DZnI2tE+CuILLtGlLMHPZ7Abw5YyyiuOskFSQl4knF8cSGDccT1thahZcx5CiRNe/KNjLX+SQRHp3vRjgdMSqxFxHrK1ow4yzjtt8f6DY9nXfMIWrTRqd2ZAEIRtNN8yS9cFKMmK7D+Ua4gq5lg9yHcxq9GRry2JD9DdllrLcy3zSVv2ysWQ1dWQdLMYBVDZ24up4zYbiUiHNWYbsFFK2PRvvqOa8cnpwoSrshRKIxZ3Ys5rzYw7pcNc1aNMtqhGWpXCxYpcaTivGrC4bz6Mt6o8uwbgarHtlyUfdPYCy1Lu9++BuqvaNe+5vj8v0en2vgYpWwOo2jonWJcPTbDcNpIM6B3XbDOA6SkiDVcS9KhiWHCCyDvkan69+LRsFKM8Imzgi95QNFft4YK9yCIpGtC9d5h1dDJ0A+n5VTdyX8S2YOgWkY9dSF3Z8ZhqHyfFJZfQWZ61GiO9M4MR2O9JsOnGecQ73WnITYV+hXJssiNEY4CFkCD9q/pbqzgBgo7xzbbUeMTbFb0kVXDZaUly9VBBQDqxLfsskZ5lnSY73ee0qppuKWct987z/q5+8fxXsramoImQABAABJREFUz1l+qmtgvZAETYbxCjZSvuqSZR48pCs2Dz7Fxy8yTB8wm7ES7VKS8L43HuOpLQcKqDTGYpuGNAfVaJC0pjVGqs7UczMKGKt3k8u5jIb3lf+SsupYWOY0kdKsFeMFZCaikfRiRwvekZJEPqKGzI2xi8LxKuqXa0BDmjuKApusKxHHMtgkLQiss3StdIvOKRHyzDRlhhHihxuuvrxopRRfT3OSlDYPBgl/GODhgyvavud0PNH2PcYYTsNIPo10n94Qdx3jg4s3nuv5QxZp+TIjm65l4xvmaSKmRL/dyPwLia71eDPinOiXHKbIEGbsFNnv9zivG/hDgx++is2/jdPwKd32gLVHrJUUUchw1fZshonT6w9IKTP0PRfX10w5cToeAHC+Ybfb4L1nHmGa4LCPZEasgU3f0jSqU+Isjx5ecrnxuC+/Q/7aV3gwBfrbG5of/REeftJASCQjRH5vLKdpwjSGTS8gXRwnLTvWeRqyOFNCXPU8efhY163YG4yh326xTUNICRuCOCFRnAJnJQKcUiSESKMd3fd3B+msbFBOnkYmdMOcphmX7Fm6QqZFrnMjBAHQIQjwu7zcVefRkGsEsCoK6xq2TjS6Yog0XUvOUSI0bcs4jnjvuNxeSSQgRYbhhPOBkH3d5K21WtJtIESxv8WBozgV50ex4ZXrqNE9W0jIUEHfWeXQssREp8kKqCxie8Y54jQxzlJNef+jQsRNq+KN5RqWgS2/LCmeAnLqsJ89hxpc0i1v5eTrINX9RvXD1nZ38XyWaFU2LLIT6xhQXvGn1pf7Qxyfa+CygAUx+M55Uk4c98dKDtrudrx89aqGpW3OZNXpAAj5Db9d9ATMermt8n1IFYxvPNktBmAewwJ8ivdtxXMuUbRaLsviITZe9SVSYgoj1mo4Vw1EKbOchnGJuWmpaWWTm1JyvYLasCww9cZs22DcFtckElqqp+HOhaClRmMcOO7hdBwUvJQZvngYANMcOJ1OWDVwNfRoxHA6Z3GmJTUrBK+bdts20Pg69t57cjZ0XSMVOkm6ErddQyKLR1Ll7cv3ZFLQPkje1DGoBNoandEIhoFaSZUS8+RIbJg0QtG2jnHMxGCIs8WkKxq+RnDfEe9dFc3qaFlL48QIrmXMhFuyeMBVBwJDNIUkrXwEY+j7HlerVwQYxJQJMXB7c8s8jQtBPMP0cKZpPafbO3nWCgxTJ6kHnCPMM7c3e/q+wTtJ/Xm9HjLkosK9AsRYV8nhMWkvnJzEwBvL1fXHeP+QcZwlGoaA2tNvXGGv3qHtbjUjo+R2dO5oFDADbeMIc2I6jXSbjURBjKFxDV/sLzHPD7zYDxAy7bCE28PlhrBt67/LJonypaymhWQzyzgSlkDnZ2xrmIfX0gR0zsynFzh/yRRmxo8/5fDoIXZq6C639MfI5aYnjJ7WX+PzE3L+Ltg7jDVcdo4HhzvhM0wz202PNwazv2PqPPmdR0TviCHR+Ibx8A6vXznmyRDjiG9/Be8PtG3DO194n8fvPCYl0XQxBoKJ+E8/Yb+9kg32cGQ6HKuomjcwplnMzJywMdD3PVOGbeM5WaN8N5nnqaQdjGGYR3btFmeFA5VVYbgaKcQ+SqWerNWi0hzDjNeOyRKRiTSNtFkpsgblwSyC4AqCYyKq7S3z3hb1PgUEISQF7QISDvtj7ZK+BjwyfctmKTws1GFom0bsi5JprXVs+i3TMIsycb7E5AmThZ+Y9NptUTJEgHacOkwDxs8aJVxdBm/+XvYLScNl8ook6xqn6UyqJlNpiUAWonfyDTZIo9cUl20/rya6pJyXopL1UavCFFjUoS/hl/tHAREVTKw9eDRIc6+KKy/Xcz4OIu+wUJTl6SwVTss1/pagFj7nwKWkZYyhGmYQsliBGSWHLu8TJnhW4yWCSdq+XFdE+Uz9Tztfls07p1ISqw3LEoQoWiWlFr944KmQIsu5dTYZYzT/6ZjnVFUzG99IAzKKt104LWs0zEppUXF1Pa/+ZLkXNOrhfIOZHhJP13S7p2y2iWmeOR5PTOOkaYPlHNZ5WlW4lEoV9ajkxiqGctbQdh2ncKyLZUnzJFmgavzQMcnqPehTUYl+I5yJ3Y4wS/or5UyYJn22dglOFgCFRlX0WnJK0vW4Ov1CxsykxdgVbIlhnCY+ff6MYf4qYZiF/7Qq2T2+fsD2wTOM3dHlr9F4QxwGTAh0ra+VFSghWVCkWKPS5NMWL66G8ZdqgcZb5qRVE/PIPCbsdiPjnTPJGmI0qjdhtHlfltRZyriUqzqwVPd0OAWCAiokZdN0Ha12g85K4E5kIecqv6o6UUqmHsaZcRSPt843axjDNxmGH1sidFHSKOGZZ/rOe7Q//h2smfCNZ7vd4HyLbTqmcaRrhJQ5jSOZEdd6UTGNiXB75GFwNAmOWLxtyUMknYrkALjTxPyVxyUHUSMG8qhznUsxBI6nIzZHWn9kspbtbkshV4v2kjQqtESaLWxsIPSiGRMHw3x4BCkKII2RbEQJF3fEjTegHIi+7+n7jmGcmIdByq0/fUnoWw5Nx2n+CsfTFfM0SvVFbsnha+zaX+byMHCxH7DpOcebGyGcDie6eeRr733It3/v7+PicOTJd7+DdSr3X2wLUrViH1xxefkAnCfYEZyl3fQwBZKRaCo5Cym8T5qukYkYUklZO4zJxGo1M401JGPVpskcm4OkgUt10sb1AtybBmvgcDhR+jcZa9htrziEO3xrmIZJCxNkS/Ntw2anz9VCVBsqqSGnvaAs45BEHbpEwvU5J9WOijGSJ4naziHgjACgU54qeBn3jnBswMzk2TMfPMEAdsRvIkVbzWBIyZOmDd70DHcjtAN9HyRSovuyMaaWFGcW0KLQhaax0j1ejxRkzpVeR+VzOWWmKdBuJV2X5lj7Mq3bexT8sf73Ak7WkY0lmpKKD7uKctRdZOVc5uUbinFdzlehi5FChJIiRATnij0loy1DyvNZwivCL1wduf7fD3V8NvPtLcff+3t/j5/5mZ/h8vKSd999lz/xJ/4Ev/zLv3z2nmEY+It/8S/y+PFjLi4u+FN/6k/x9OnTs/d85zvf4ed+7ufYbre8++67/JW/8lcWCezv58jUvF6MiRyCbKSNZ7vbiG5BydGVG5ado26cMtb5bAII72KuJcnWSoOzeZyl0icE6fC6P0mZXkpSvWJkQafS0wTxToTAqf8ZUyNFZZM0xTvVSgVMESUSbkptaldhP0v+V8FA6S0k5Wm5cmxAgNxpHzi82jIOmbuXDcfjCYPh8uKCpl068JqzaIYY52mUJnsi6LeKRhlYQpEivlfG8ozsnAtJVTebBYJrgEqeUYqJaRgJU9A8ukQ0cpYy1/LekhJ0zrHdbNh2D+jbB3gnvaiyMewPR6Y5ioHcbtldXrK9uGB7ecFmt6O/2LHZbvBNR8hS9RVCUsCRSCEQJsfp5gE5epy5ZNM8pulaUfP1nu3Flpwi4yz/zTqHcwWe1OjSurO2herldl3D5bbjwaPHfPlrX+fJu++xu7zg8mJL3wkno/HSiO50PDEcB8ZxEI2VlBmHiWGYmEbR8Gh8aUApxsRaQ9u2NF2PdZ7jMKoirHy/qLfq/LKGRktl46oiImUB+d5ZDndOHIOcKz+sgMfpoy1xfIz3nqZp6FtP3zu8N/Sdx3vpOXN50bPtHNY1vH594NWzG17/jw8Yb/YM+xPTca4VVY2xuJwxOeKGkebuWFYt4oFLJKH1wpXpWi2pPU288+JDHj79gIfPPuHJy095+OnHvPv6OU9ePuNBY7juDY82lh9pJ663nvfMnndf3dEfInHsiGFmDoFxGAha6RbyC8w0y1NWIuw8jJI2cY5+s2Gz6bmynofzjsxXMEq8dto2JKZLcuzZGUM7zUzPXxJe3WKPI63xPDSOrzz9lJ/+d/+Od371mzTTjBsmzPEExxPmMOCGiS5E3hsCj+4OXB9O7LY7ut2Opu/R3USBulynbxzXV9diI5LF5B3WNvJ3EN5NithgCKP8l6JEBJu2kXReKWu2cq+N35BTy3zakVODyQ027kinSw4vWpgfkuNGUt/WKNiXiGDTeLWFHmMsIUYmjajOU2DYN8TjNWm8IqeGKQSNkoh+kAFIEUNW8UXVa0lRgFAKzFNmOFhCKM4E1S6TetJwSY4bDB2kC0y4xrsdQUuZc2jr5l76haF2qdh1VwpCiiSBE+0fq6rmxorz0ahuTUqonY7kGJiniXEY8Y2MiSjj2lpCLmusVJYuWkVowUIBMAuuK+mue5Eb/aWunnwvcmPqiVc2JNP0HQ8ePWS72xESjDFzGmcOw8yppPPCzP5wkOeH2J4YI8OsgB/WyYgf+vi+Ii7/9t/+W/7iX/yL/MzP/AwhBP76X//r/NE/+kf5xje+wW4n8Pkv/+W/zD//5/+cf/bP/hnX19f8/M//PH/yT/5J/v2///eAgIKf+7mf4/333+c//If/wMcff8yf+TN/hqZp+Lt/9+9+XxdfKyP095iAKGV+Nqzq3Mv75Y2YtDQza510WyWX3JxGDBKMaWIcpntwFbJV8ahq4IvOi2gY5Jyw2UkHVmvZXGzIWeSg0cliFB47pxUhXhavAI7McDiu71Q5JyVBUfgeSUWLSvTBSNxexyUifU6G44Cd38OGkRgSbt+QbiI0L7m62tH0HcNxOB9bdOJrFCbMkRQiTd/hG6MgCU3BqdR/zkJngCqGtxr4+msppSyPRlJZkm5pGscYoxgJ28t/QocT765t6Lu2Vn016UuY+ZF4pJtbmsvXtG2Lb1sa70Vvw5cmbSV7WwKZmbuXW15/2zGPiTlOkDW0rqAqzFtOty3Noxu8vaB1N5JfB9quxxgPqce1kUzEeSl1zEkauVURM2vxXSvVAs5y9eAh0VjiPLLbdMIzcCKcZedRw74JqwJfQjI0FWRa/Xch+TlnlX+w9DqRSjXL8Xika1u8gSYZvHX4fkvbNpX4uRknpmkkzRHTT7TvWKLb1PTqpx9/JFVrw49KqlVTA4W8aDCkkyEetqRLBaunia1r2F02zGPmeHdLanvu5pHN5oJ+9xB/+IT5Vz9mc5xoRgFH+5QI44zvGtrGgbPEPJFzpnlxyzxOTFcbYsxMIdJuNvQmcxxHxiHy7hC4vrvDpxd4Z3AhQhjoplnaSlh4QKLrJdI4Ybk83pCevuBkGxp+BzlbAXlzJEwzjekJpx3G/g82w6fkBw9wfYftPcRICgHbtDRti7OGHhhufwf54neT59/A2EPdxHKGbCxt30sKcJpEvM0I8fOu7Xnv6oo0TrhxlOhYMprOgDmqPgwZN0/MMWLiQDONWAzzHJnmVNduhto4M8fE4TawaZ4whoFwmsg7ICXS0JBnxzja2nvGpIT1Fuca0nwi2wGMph25JsyGcZBnk6ZL0UdS55ACMuYLaBqMnSm9bZx1SuAXG5MSHO+OWO/Ybnra1rO9hHiymNyQRsdwZ9jbkZSCigI6XNNgUmSYRSAy54ztOjatZR6nhXNRHDuNQkhkXQjjhAtAOXUhkfMABGx3wviJxl1Xp6k4ZKILJEUMEnlX0VHVRlqiY6aq5/qi1OtlH4yzpPumcRBNoL7Fh8DxMIKJwncpEeJVBKYUeBSHIut1hRAwWdrPlLRsaWBZiMKpppu0NMC5t6aEIgkTI/OUOb52jCd4tYWujRxPiZcfCzg07QFjIc4z8zjhjMHveowV9fXhNLDpe7zLNfqS3koA+v6O7wu4/It/8S/O/v2P//E/5t133+WXfumX+AN/4A9wc3PDP/yH/5B/+k//KX/4D/9hAP7RP/pH/NRP/RT/8T/+R372Z3+Wf/kv/yXf+MY3+Ff/6l/x3nvv8bt+1+/ib//tv81f+2t/jb/xN/4Gbdu+8b3jKAqg5bi9FYlu03iMFWPvWyGGzpOEloPuiq6USueFkChdnCHNgVDSH1CR6v2Q2lsjWyVEtlJGTHGFVrUSIaXIcDxVXoEo765CbEr0bJLB2MQ4z3R9t3jsq9wuyIJLOZPDUuq7ivDKe3NmGiamosYYW/p8zXG/YzpuuXj8ApveJY09r6eXPHwivB4mKnInJeYi6ldSSFlKEb339Lut6q1I7nshbKkqqzGa/86kGChqj+T81uEsiC6oeiTjFzGjF2/OTfirD2i7nrZvZHF4jzMb0v59TNsIh6fz9LuMSTNmmICJaI30/VFAWaILhenuQsPDx9c8CzM5SNPCQpK2qk4a54bDqwfMhyvyRWZ38R4X7chms2H/4orTTYuzgebqBc5L35embemGmYcPr+j6TgGqwVpPzlJlMsbA3e0dNkXsOJLDQGwlMhILf6RECJ3HWolklCqV4lc5Z6vCa8YyTbGOd9N10u4gZZrW8+D99+g2vRLzMikKsNruesAQnRgkN1tsDAxxVh6VZRwTbXNXFYnrmtHwP9EwP91iv+gwU+ByPmFubpidwzcdlykSfaRzht/+hS/yc7/7/813f+m/8p9+7ROG/FoUWw2E1y+ZnONEJkzyReM8ME0iH8+n8vWbtuXRYeBxApsjwzzx8dU1t5sN/eWGy4uHtG7k5uaOMUeuLrbMKYFraNqe6wdfJYSRTz75APOq5eXhAaa1NDdfYDwcZdyiRADCdMWcnjO1LzmcjjxKife/+C5xuOPVGInW0zpHnGe2MXIRIx8dDEfb8+r5Iywf0zQnmf9ZiKe3857GO/mcbvh2kvYAMUNSiYQcxUlZZ0sKABiHmXnWjt8Z+rYjaLTY+4XE5L3l5nnkKZmu3dE1WzADRE+YTlKuf7oUAKoFzMZATp4wwjQEnGmwtpVUQcpEL9VRURV7YYmIpix8D6ep5Tg58CLxIGs9EecZ37QapbBsL3pKXy3rHE03kyYhHOcI4x5MbHE+QSeRwzRNWGOJk2O8bWg3gdTDxYNrDi9vmYI4OHMsDT+E9+KsamkZEXWrpNqcaXtHdxnEKTECaMbTyKg8wwpgFBSUEnybqXZQKiaX96YUmIaJ6AztzjEOk0TxsnQqbxqJ5njncWYS8c+46CEJ522xlsYa5mni7mYvcyQtUVLvNapltBFriJKZyLmCnGJy+01f99zCacpZmnmmHBluPPMpcLqLzCeDx5KDJQdPigbrGjATRA9xwxwTp2EGZsYxYE3DMA7c3e2JMbLZdKJb9EMePxTH5ebmBoBHjx4B8Eu/9EvM88wf+SN/pL7nJ3/yJ/nqV7/KL/zCL/CzP/uz/MIv/AI//dM/zXvvvVff88f+2B/jL/yFv8B//+//nd/9u3/3G9/z9/7e3+Nv/s2/+cbrxjVklTIXPorXBmuxiqztLqTRYkoSmYghquBZXlRuCwJfP9Q3Ymzf31EQMZSqo0WTJMwBax2pgaI8nXKGEHXzWZ+l8BDM+uQSpVCWeYxRtBisk/x3TNICITg87+J5TAod42FLzpbpuKW/vMNyTR43HPcf4roldQZUOfq111aiWzFIuqzfymZnkMWSYjGoMoAhFBEoU8ezVgKlEtOhVjFl5RH9f9n7k5jbsu2uF/zNahW7+KpTRZwTcePWpY1tjMFX5JN5LxH0Uko5WykhkGghYwm5h0QLiQ4dWoYmPbokkkU+iSSFnH48amxwdX3rqCNO8RW7WMWssjHmWnt/J074Om7cCw7wvLoRX+xi7VXMOeYY/zHG/6+UIoeGHAoLqrJYbTm7s2S5WLAo1z72S7bbBuWlGDMNAddfYdihyyKeK/Hn+3Z0G1Ni7B13z045vbhg2G1458132W32sqmXFBUkxl5z+SRzdv4aeW/Bv0POHWG3hDFInUvVoWxkGD137pwzrGuiH+kL+VpKCT2MaF1xerYm7/a4d94leU8uujX5ZE19/y7PNhuCH5k0lnzKSGAXi6GcOhJUQT60QPdVjUUcdulEMKW2IzCEwHB9Tdv1GGVJfmD0kpZrmwY7eOxui+17VEiE4KlS4lopNqFhHD5FSuu5/itNPBVKzWsn+DOGneFOuGEdwfc91mjaZSL4kX1lOduPvPrmju0bz9j5mht7wepElJ59iFjniDzE+sWMytVZmJT36Q2SvkLnzKPOc5GlFiz6gDGOL93csL+8ZvuF1wj1I4y6ZrEsBctKkUfPft8zDO/TNA/p9p7+DU/oA/eeXbKvP89OWWIKwuQbc6kXyOi8YowLvl/XtF3He2+8RdNUuJi5e3ZBiCMmRqrg6bLhSq/p+oFxCMT0iHAzyCYfI7H9P3kY32VhDa6uUFk2/FpJCmqz21JVjgpBSXJSaANjVRMzoqtmDKaui89fVJpJ9P14WK9K6n5MWtKqU6x2TArlUqcka3XiuEFptNXY0mIt/CFCrKi1LikYWePRe2bKh8LBhFLz31KzorFakbIWrSqdCSmhYknHIky5yhqqpj3YnxCJ0WOqHvZOag0LV1VOFaEfyHYUlCUsyHHJmMAPFh3gqb2GMdDfiA6S1gbMQSbC1h5bK3zn8H3AmFKzlTM+baEP8z001kOGoRvm10I4TqceEO8cJ5LKD+4JwyhkmMoI8mKdKYFlZEyRdtFAVqxPlozDwDgqYpK0ZIkc52MZK8SNwzigKAR1pTzAlk7CPL1egltV9pPjMWvkMYXHU1HtIY0/1WTmI16qed5kqY/LoYZsCUPP3kfCCGPnICt6nQlR0t29AJQfe/zQjktKib/1t/4Wf/7P/3l+4id+AoB3332Xqqo4Ozu79dkHDx7w7rvvzp85dlqm96f3XjT+9t/+2/zKr/zK/N83Nze8+uqr6CxMl2QKTXlC24qkEpWB6EdUnHdMqUDXujwQjY4RndJBBfhF47k0kbw25TnVLQRBSjUO3TmTBs20GRujsQXqHwc/13bkrCSFoyzWlW8rQQiCz4Qx0SztfNxMlutODX6nS2pjh2oVRmeUslTmFB0eopB20HEvcKhSMHYrlEnUix2KirC7S1bvyqJSB0PUti39vpeCxjw5eYqspeCs2+6p21YcxtQzcxqowk+TBO2Y8sJaS247Tq3h04ZHSXuVNvPJQUrRkFKN0ZFl8zJ3TgPmyTPoeomQhgtO9hrnJRUX60tQG1BpNjA55xK53H6Yk0NYqTewuzcIL3+NZdvw7jtPZ4Mv06YgTkbz5P3Aw1dH2HSMu4H16TV3siEGGPwWG54AiipnVDfQtjWjL2pPWQjVkg8YpclXK1zKGGDvPT4K46a+vsGVDbPrRiH9MpqqqgmVleK9Cb2aNoksbZbOe6rNFpWOjNHUuVTug/fCndHUNSlFTKbUHwgJ4L7biTTCFFkOIz6u6eMXyTiG8Q7tssUPfmYAllSmXKZ/XOF35zT+HR6+c0XoB5yzrFY7gg9c+pEqw+tNw+88u2TLOVu/QqkN1hhiyvSmQo3nWF3N6RGApoaVcOfT9APN6OmUQOeMI4vrSxZtTWUt9zQYXTFcfIGcPkWOI3n/fVA7+v6asY88ffwGZjyDXaDedaj9Q4b8FXoVQGuqSgjZUpaOwZwspv9TPNGXvK8HPm0sTdvSj4HTyuL7PTElxhh5NrzCG/oVou5QRhN9I23jRVX+qflJhvg9tFfonGe24mSECC/FBH6EXJNDIoaM9xWm2mF0JOnI2NTYBw9K6kDuv0hT+FIUL8XzghpmtDcYe0TSl0vKMbkiP3Ko/ZsEOrVWRzQABzoJpUqXJFJwqo3Grpb4caDf94d1U9Idgsi1oLeMYyAM0kGZY0IRiNYIei6mGlc5tFGEQbPjsKmGwrYNDUoFUtIQF7PzHrwlPF1i1B6lFZvLluB7lBmwTtKe2iiqhdiE7qbh5lnEVonFKoOKhLyHsQRrxqC1K9c/oeAftlkUAr0PfVvW7H67hwzW1KK6EQLRB7oQqOqK5dmK5aLi+npX6sk+eKhDPHjEI6UmBW5TtIMk0JngsPyCczk+uPrAvxXKTDw8dq7pmesMAWlNlPs2RaHRG3xnIU22XCOlm8Wu50P25IcdP7Tj8ku/9Ev89m//Nr/xG7/xsU/iB426rqlfQP2dUTN/Sc4lVWMUVVNhjGbImTyGUrxUohKtSjTgSwHt4UHN47kHevyByQuFPOerZ5Kio1U9bZHHPe/GOinQUhBDKgW7hogmdhXKNOKN2rFAqpbYWVRSpN6itEeZQM6KMFaQpLbEaM0wQj8mtBEko8r30PqclCN+tKTuETYbMgOZkWELcWyoFhucHcWRK5wkwUudTQhRctnWzlT3oKjritwous1+vj85T5v85EgqVGzxwaCrEWMTxpbNVmn8IOmNuinpPG1QyszEZb67i9/XaFVL6iW8Tnrj2xB3s6FemPe5aN5AVYI+DEpxrRZk9IwUxRTnBTMZPzUluRVoHTgJv8mz7jPoxRI3waZKoYwihTTj8/tt5K1/95iz+nexiw0qN3zmdAN2w9Wm4/2kSFoQM+9HFk6TvCemJPBoiXCjsQzDiB8HqccxtsC5Eq2ZZ5c0SrE3lhhERiGO+8N8SlLwlkskZbSmHQL17tnslk0O5NTVpJUQNqpRYOimaUq9x6GF1HuPH4ujCgxdzzbAZX4FlJyncQtcNiQTCYHiuKtDp9ke/Bv3Obv5/xIcJO/pQsBaS/Ce3A10TUOvK1SG6yRFzRFP89IdTsaBfnxE7FqcyUfikGVt6SXatTTDOLc/Q6YNnsoZtsby7qMH6NM1d+uKShl0dULOCuySunqH+6t7KKVomhPie4m8aFmT2arPkeyCsBEeln2Wdn5yLgiuolGvkvg0l803+IyCZtFycuoYR9EacsaQkuYN9fNkU+EHKZ6WAEAkPLRShHCft+2S87CVAlMFTV2jsmKzjeRYA44UFdepIaE4iR3sp25HixkHusfv05RAMaMKl0qZ44UMT6nMJNRqCr+UcVZqLmJi2NQllS0OysxAjLTvxjBIKj7DkERPS+lI8BEfgGRoluco5Rn6jXRqzhscBwcmGciK7c2WnDLtQsjzktLoxmGtxg+BlKcUycHwxhCllTiEQ3Djl/PHFBCjZr81aJu5fKcmRSmoTh72+0y7DDQt0Hj23RbXOrAOrS19l7EuUrVRanPKQaeA7dC9eYQ+vyiofcH2cdhGShotJbGrdQPGo1Ki0goVE42Tujys4uRcinV311tUTM/9WAl6p9WRFXkWv2AWnpxa4lVOt7SVpn/PXUdzhuFgG8kJ13rGnRF+I2tnB3v6Ug4OXWmwHoIFErYZMFUgBU3yDm0CymSSt0DGf/xM0Q/nuPzNv/k3+bVf+zV+/dd/nVdeeWV+/aWXXmIcR66urm6hLu+99x4vvfTS/Jl/9+/+3a3jTV1H02f+6EM2omEcub655vT0jIkDTqKJqYX2qMvjqJhVcp+yqKfPTK9/EGX54K/Pgls5H+ZwSQeh9UwpLb39QsoUvIPQoK0hDo4QNDlpckyEGElRk3tHTmbeqKzVhDGjdIVWTeGuEedCl/oCpSBHCHFqE2+JwRD6u6TxgrZxAu+GFm0U49gTuz2DX1O5S8K2I9trYvJCRd1BaC061cRkhPfBCv+GCktSAqcXEskWRCPGjEmGONSEoIuDoKF3JBXJzY6UNbFvSVEXg7PFOC8dVa0uKTVFThUglPMr16Ke7cENZCVkYypnbEqoFGeSOgPoJPUddclvHeTh9eF+6bK9p4z1gbZ6A//u7/K4fki32xXkXL6vjZ67xHLSNOG/crd5k21sGAZFdzWwcBXWKsJ4SELHEBjG8dBeXdqWxcuT5yrOykBTNzQ5k1OgK3loc7PlzChumoabcST4gKssi0VDSlK7orQQcdlh5CzEQxQ0OWpHkK4qzr3Wk7L5wNK5WVMlRD+n6mwYSf1A2vdcN18mqbtUriKlM0I8ATMhl2pul53tpFLo/ZoHZ+csck/KNSJALGmr09MVuaroK4v3keHmS3QpY1dvsHztVVJVEX/nPo41ftfTjSO2ucZUe3LWhLGm225B7/mq0Zxbx4BhnRu4OKP73KtcOIt1ThxsdOEecWS3QtvXAIPSGe0s8d23ONOK2lS8Gx6inaAUMzKrDTGGg+K31iyrL9Ho7+FvtlxfXlE7y27XoZ1DGct+rHmnu8ONuSGlzDiMM19IAVmJ4SVu3DmbuMFue8AybCs0DVd6Ta8Ml4t7hBDw2qKVxiWPGjpeDtechD1sK9KgIEixblaKHAxLuyAqSWvEFEl4bNL4PghpW2XpdpndRpFChXZVafXtqFtTyC89wQ94H0hZ0fcOGww3m44QMspaamvY9wENbDdPycgcX63BNEJAOaXhbeUYR0jjGRmProZ5ToBwVaUUQEeUrshBWMBDUKRoZrs6IcK5BINTiJiBGA3j6LFZE5MUVacsKFeMsLk27LYZU+1ZXFxyp7mLMsJZs1xC3VAQEwPqwKg+7TVT+PNh+4Esb3V4/0XOSynk1dYKOWKsiMMA/SDBhjUlNa/mlGxmZgC4/VsvGEdN2uU0cjE5E0/N0Tnmw+em2hcfJZ01jp5sNNXSMPaR3bY+PAMtMiMhDHNpAglMPcyomdIR7RKmOlCTmErqT71/wc37iOMjOS45Z375l3+Zf/pP/yn/6l/9Kz7zmc/cev9nf/Zncc7xL//lv+QXf/EXAfjGN77B66+/zte//nUAvv71r/P3/t7f4/333+f+/fsA/It/8S84OTnhq1/96kc6eakA1xg945HzhEpRSOGOyivmyHmaU9JWJ88xHqV8PmxSHE/EY6RmfnlytWfo7nAu2imsWhN7SWskr8vnoKoF1ZAWvEJjpg+bkDaGum1KsW0gRTl2KvUPk7yBVmpmXh3je2z3DWG/pdYd2hqCjxjWuHQqRXZRQ4D9VcZefJM8VihVE5W0LfbXlpyXjL1Av15LWsprX9CimjxWXD0ZIC3ISXhHJicxpoRWmVyuZdwtinM33RtF6GvQO0mTWS2FhihyljqllVXc6V6nXX+bjohKmbYw+C5imPWfShjEydBhtS4U84cNXFC5A2Q6kUqNYyRZxaL/j/T7Bb4UgedJfGNKZaVJT2pEac1i7NE5cbP3jFqziwpLnltejTHc3AzSfUMGpWmahipFWgONjlRA3e8Zr69wRE7OzhlcxbV1hMZjQ8D0A4NS6MpS1xXWaJQDZ/QskrkYvKQjihruVA812VFnHePoS65fYUNg7DvUbouxlrppScEz3txgdjvSMJC859J+jrfGX8CYkRQN2lwgyHMkzJICZZZO0LPSqP6U/pUvczZ8E1Qu91LNDqFCU5+f48eeO9znalhRvdQTw0gfR3adpm1fQilDThaykY20uwdmR30yABWXJyfUd+6SleJGgXJWdJaUoW0qYvRlPYJWYea2STljsmEYA+qlc6puw3A98njI3PidQOzRU1U11mpSkjkdU5KuGR2hEpK17AObrpcgxgfGlOnjml0YGY2Z03SK29wcOcOz+FN49QY1LXv7iEt3wr5aEmzNEBNRa6yROpcYE7tkMIszvq/OeLR5k4vxmtRXEAxki1eOWi9YNO9xvd8xhLGwhScc0N0M7DvPSeV48t5Iv9es2oqQNTFlus7Q7zPaeJTOhDETwghKUVeBRWtZlNSYtoa2XdAPlxijRAk7Z8IIew1VnWf7psjSQUMmR0XOFTFagu5xTmr+xv3AYmHF1jUGsmEcPLsr4dESdFuCtRQEabd2Qj2KQ1O6PLWRotlxKESKZd4rNDEA+RRl9hJUJMP6LKK1oIwJA9RA/4GNYA4CJs2tDxni0H/wA8eviJkX/hxtDFkJS/n22Z4U1rhmzzh6rq42jBMX2O0fmf44HL0sQfF0CuryIg/rgydMzpn90NH7EY2i2+1pjaI6WdIy8PRdzePHWx4+PGG/jew2Hm3FjgrbbygK8GYGDnKWGqf5DIuj9GHtGR9lfCTH5Zd+6Zf4J//kn/DP/tk/Y71ezzUpp6entG3L6ekpf/2v/3V+5Vd+hYuLC05OTvjlX/5lvv71r/PzP//zAPylv/SX+OpXv8pf+St/hb//9/8+7777Ln/n7/wdfumXfumF6aA/fCRIAWsXkrOPEackch0HT46FvKpAZrpymKaSKvQYsYVBN+aMnnOnB+l3xaGYa+IbmHgj6qae0Q7vhSa7KvUrExzYd4PAIEo6VLSxwtRbFto0++d6BSWkT4IUZWwlejR+HAvlvzgoqVTxT3M3lmg7KlXacQ3bXtN3W7Tr8eYJSmvG6HG2wecGmx4Cp+Sg6fK3WHOg1tda2p27/X6y+2XhFx6cnAvjrhCc6bikqmuUKiRUMdxyEEWQUM0OSz5O1yRH2p/QrKBysviyytB+n7r/Ci/nd7nX/BvGOKCypokRVyDRqbslZ8VEwqlLlX9ian0+LBhdwt3JKYwpkZMnRcvCvEHav0dmMS9kSsuv1JEkdEqcWCG0yymy8COj9zze7YTgC1B1zcOXXwIFw+MnIq6HEJV9/rVXqZ2lLqKI3/iD7zD2Pa2zuKrGh8zddc1Z1fAt79nuIsqP3EmZm/YBrlrg2l64WZqKsffUMVEFjw8Kvd+hd7uZHTeX52aU1FFMBsUZeb7JGLS1dIUeQIrXA6DIWbMdPkWnGjIt0uASCDEetVcekCvxSwTZ0ablvZOvYl8SuYdq35HWZ+gpmszQnK3Z7fbwWysWZkGlPgV8i5jh3mf2dN9XGCNcOxDJ2qLcHRaPfhe7/nSZq4rBChHgBJKrkhqJ0RFDkvSjToSkhYk55pKKEFmFZDWMmWfNz7B3S2lrnpzcsgHleJDiyCkTxxGbBnwIdEm6XmwRMhx2Pe/1X2BrDK6pWBQHqtt3+LHw38ybWku6d0bfPuJp91C4irKwny6sofORqKAviuJaAT4QtOK71V1ySiyUY6vWeG3pdQVKYeqGNCp0VhhTMewHrq56si/K4kXgVBtLLMXbZHE+h7604pdoP0Y1X5vVCj9KYb6PiTt3W549eUqIQh7ZtjVXTy7x4zgLm2YlxcdxGAlR+Hkkla4J3YLRjhjj6fcD7773Pv1+x6PXHtIqzRu/mxj7huW59DplYOgN3U4cZldllutSiJoVXa8Ksj0W9l8wOtMsYil0LfM1wvVbLWnfsqod2vSUbBoxQQ41SnUz8jHFRWLbs9gbdWTfjkYBel88SuBcFo2kZYOUMihrUSqRx/tsHteo5btSr1Ta5KeUzq2DKZgZjpkSR4dGhNuR9YvgH/nATDAJpSi7ELpqqV+pW0u9uqHvRHfr8smW3SawWGdyDnTDDYMfaRctyiqquoLZ/grXTCSTs2bYVFy+98FT+ajjIzku/+gf/SMA/sJf+Au3Xv/H//gf89f+2l8D4B/8g3+A1ppf/MVfZBgG/vJf/sv8w3/4D+fPGmP4tV/7Nf7G3/gbfP3rX2e5XPJX/+pf5e/+3b/70c++PBxT+D3IkeTHuUXtOOWTUZi6IqZMs2xRCnxIpCgtsH7XSZ6FomNhZUEbps1co2wpJpsQFQBU2Zw4wIO5dKRoISMCcWRGfwPqjGO2V+kKmlSjKZGFPPR+3836H7KBFoI7pCsnZ0QfyGhUHoEkJFx1w9PHQlBGjJi6mtMMPkTCuKcPv0c2lpAiOg7EoEp9zKHFe5rM0/WKGnYu0KUqxHwCP4cgLc8TJf/BaSnkZc5gmwFsTxwtaVwcRCATxTkst1Fp7rxyw3L8XU797zLst/KbKeMVJGMKNCzFginGUkCcGH08uueRSZuxrooiqzFY6zBazSibUhq1MKReQSebk9SUHVa+1pqmiSzdO9JNkGWe9PteuH4K+7FCnvnQ9bTOULcV/b6jcY7ztTh4KSUur29IoTijKdHtOtzCcvX0CTEG/PWG0CxR2tAYDWmNNwajh7mmyjpN2w+kELHbDWa3p6qsaA4phR+lWyZw4DuS6E4kFbQxjP0gNTiTJhUZ4gKdlzj7gPX6DsZFtttO5B+SkJTd5kc6RHuucpycOU7uvYV30uYZT1eAJWZxGlII5KFj0ZyjtIjjtXVFbS3oTLx+mRSEpVMpYVJV+X7xoEGVYkkNVMlSDQ4qGK2k9LSFEEY0FoUwqeZcUrESZqOVpm7X+GHkMX+Gp+bTZJ6K2Z9BMlm3KaeSYjzUfkjgIKhpGkbiKB6ZThmFpdEGVbpYrDM0jSPGTGUNKUb6URzE3YM7nLRrVteace/E8S4aZcZFBq0IcUufZFPRuRTJYvhufR+9vIOrT+RBlLVWhYgdegbrUAjJWUUmO8uzpzu6PlK5mpRGvPfUdSUSAQURiz7ijMEZIw0GxQaOhT+kQJB0+46mbVDOQhRlamstPngpBlYZn8Ksl6WVljTtkf0cbipMlamXiTqd0fUNN+9Ztn7NMHiUMexuPMsVdJ3CD+IMpxhJQUHWrE4SfjCkrMRJChG3aAv47WmbyOYadltVxEQhhzWxU6jWk0IW8sDlgnCzhewgLslmdwt1mU0++YXVBMdr4g8b4rYl9jcbccBcTbNa09SO/qZi3BpCEnZktCaOXhiq1WGLed6PUYqZs+a5s5oSxS84kckmiON9cf+MFEswPvSYtsUoDTpRrxaMT8TpbhdOmkZ84voqMtobXFMxhpExekwp2E1KzY5f6C03767otpkw9h88l484PnKq6AeNpmn41V/9VX71V3/1Qz/z2muv8c//+T//KD/9wpGibIhTPlAdMCqZtFkWWlPX+LBHZeFQmdoAY9G+CYWdtoTvBO8Joz886kxJ/UgawTrD2Pdzzrppa7JS7DYdlbWYyjGW4sFUKGOlASOi8h6dl3ObsELYKcdBE7zBVZGqzmidISu6vSFFhXEZ50RgTSDPiq5TDH1AqViKfTN1M3JzmRk6YVFtFg3tcompKqpaRMiGfiRvtySVQGWsMVgn3SqzqvaUAihQ76H8Z6KIF+GvFKXIWOQAUrlmWVh+kHxmVU/SBQmVI1knclyUyI45tbRanJRHkDCP38O8/2+4KciH0ofNQhfeA6UVlRUqbtdUaKVoS9yvSjdKSqkgRlL0O7VrZzJGa6ySiHJUJ+xDLSzEt8j+yjAa6zTLZY2mQlvhUfDec+fuBSlJ+iTFiB96Lp9dSoTvhZQwDB1Pnz6lqWueXV/jrOXi4oK333qbEEcpGM8brnY7+mHAjyNV1cOdc4KrMHVHMm4mn6qtxVrL1lmGvkPfXJOAoQ8M5dzn7A0cqesKaZu2lhR7KmeoK0dGWIeJDdf+lBu9ItgzUr9kGJ6x3Yzy7ObwU57nfHuspW1rTs5PqaqM3z2hsZbk1qiUiUHI3mL2kASltKeWk1fe5vJ7r6L1DfVlC00mt56dK9wYQJMjnSpoZzjBmitZh1GzvFlhogataLWkr8bTkVgHCk0Xk5bOXGOCRimD9z27dz/FNr5MjP1cDzU5tCFEMNPcUahYaPC1YR0EaYk54UG0ipRGVZrP3n2X2N7B3H/A9dOeROD66ikwUDuDayv8tdRSnawWvPTqBfbt93n2+Iy+a7EhkIzBNTX1csnYj/S+I2sj5F2JgihqxsJjNa1VTREhVLBNsaQkgJRQKXB92bPZRpSxLFrDft8JOZ2XDzprixDsUXCWKezgAzYLNGGdZdd10uXTdbiqIrU1rnbsuwE/BinGhzl4EFXkQrhZeEZSSqSg8TvNuLXQnbAZNRpFSrLlxgDPnmrIiqpSZDSLRYPWGldVaJ3IRYHcOE2uKqndGj1NE9AalivhLMpJBCNNVQHjzPulSYRhKOtFi31SI8pMQgjFXVBT+StzAHFr/IAtckIzclmTBgvdK+STG6q6xbcDRu3Q1ITgS5fXJBFDSdHrEiRx8GLmAH1CQvMUCjOJ2k0EfUceGFNnq7aO++cXtIuGrA1WZbJykBLX/UjtDNed6GmdnS9pl4aqUtx7OXLTrUg6o7TBKDPjP2QIg2H7tGZ/JYzylbOoyvBxxydaq8i1TgiM9MQhETBZ2EJnz1Rr1idrtvu95LS1OqiOTgRCMUpH0py64QMTcIJTAUmTpFw8f9jvuvn1IXnU6EUCvbSPQUEolCJmT79RWCef9yHPHTbGasI+M3THm4Im+IgaNbsSFUNGG6G6ntCR4AUaFan3TNVUNE1F5RzrkyUxazabHcEPOGs4v3dH6kNSZr+5IkSL1uKspVJDogrKE4tDpzVkDLtNJmVF5TTaHgoZY4hkNDE4+i7R70Wvp98b6lqzvgc5Rbou0z0zaKNYrQO6zMJmUTEKeS0ni5XovkBpiVU4qzk9O6NtWxGiNFoIOsuiJEvXmGS9Jgd2qv8p8gj5oCc1daxoY7h5nEmjQ1j4mJGlOWVcpAp0+Z6rHCEIydc4CuoxjB5rLZvNjn4YsWYCSjP7fc93v/1tMfApsVgsubnZEcZRCOaA/bBju7lBoYgp0QJL33OZQd/ZoauW6FOhNo+0dU1tLXG7pa4rKQQdA01bMSmna3UQIt3v9rSLRTGCitX5KVXlylqQCHa7XfOWucNTvcS6N8C/jB8aFL5QfUhnQfSHlkatNecXZ5yen2CNQYX/wpt/cEOtgPMN5/cd52enoKSAe1pIKXrcyWOWn32LFRXNZkHsE3F5w+LRf0XXe2yC06s1Q+3pFh3KBEgZHTXLzRKTDLIHKjQWssJeW7yLJOfnDSKlhKo81Ek6coxQEIT3K6rrLfvKldRhmh3pcRgJWkj9KBKaZBjUuyyHgaANxii0q7B1hTaG09UKxYrF5Xu841+i6zSjV8SwJvvATexk3abMiep56fV3wEggtDwdCf4Oo68hROxyDcaijBSwplzQo6ngXCvGEBm9aGVpBc4MoHv60UNdz5tVzpkcAvV6VYrve3HGtSKOI5pEVeqmjLPklLBJAhGPoF+xmMCUMuOuwwA2i66RdRY/BlByT/Y7kTSp6oytZA3rwj0itlGXa9ByrUZT1UI0l6d0Rel2i7ES9LCox1vnsNbRtjUZRdft8UPAViIRQY5klVEG6lquwbmEs9LtSC5O5hHyMzHNiiRDaQE2C0zdz+nNCRWfqOxeNNTzG8etkY/+Kc5gVJHBX0uaUGuMDaS8lTZspUkqCWt2oZUwxkjqbuJRmlJTR1CMdBgxo+Xzvvb82ZR54YeBrhvwfqRdLzBNRdu2NJUUpvd9z36nILeCvDvD2UWFD4F6mdDVidR/GUNlHBZLCgq/czx9x+J7aTBRJIbBYyvPxx2faMfFmEN71uSIEAs3QRkzcVsWDQtCno1TLNH1vLB/kLtchlKU9IwiqnSYM2ZaCAVJgLn9EGD0I5vNhrQ7I+dDV4a2GjN58VngtZREvdWXNMychy7O0ER+NBlZNdViFO98HENJC2ieXV7PLLdjN2C1QukbqbgvZH3WCbJT1cLdolBYIxtoLqkuZxNoix+FiXGxbCFnFutAypboFcFbtHGFcXQsVeeZcchsbjK58vjNunT0ZvpOYdZSF4GqyKXWJtQNsW2x/VBANGntfHyzYdntuXtxAUrSDxMKAaCOTIeQDgra44wipoi1mqp2LJdLFssFMQbGMXL5NM2U4NN9nR72hL446+jHkcZZdNKzyOLQe6Ypp5Si7wcpVowKW010/eKknpw07HdbttsNm6sbnLNUtaQ+5Pwc7aLh+npDjJ5hr9Da86RfSPdBFibPe8OI0lb4S6yibRdkFMPgqSo7d3NM54SS3PMU8TKl+krH2xATgzvlu3c/z7OrgbOzE5RWNO1v8uzqZ8HWsxhnziLJMBVa1XVNpU9wpiL6EX/5BB8aOmeJTzLDteLkZzRGJ1TMgGYRKhpn2MUd1kEaRLIjo7C9oz7foAy02xZjFItY0W4Pmlpkin6V8J5Mrwm8pLCDhqGa504G8r5B34PFw4Zhv2e366jP3qN7+krhB5kK3YvtUGIjhLX2QIvu9XuyzooCsx89495jmrvsT7/AYn3Con6P+Oz79F2DDxU5aYhr0alRW1CZE/Ob2H6gfvNdWqsZHj0kVY6YKpTSmLbm8uoG17bY3pNixDqLKzUn9aJlcbJENxXJR1IKOOsxbY0+PYGurB01rYdcnJ6MjoE0RAyCTCtdnJicGbOgkcZ7tLNkY+j3nSDcRc+qzlmI5RTouhYl87FjsV5zdnHGzdWGoU8YW9Mag7YdIU6ChhNygQREJtOe96wdwjZeUs0JBQG6bUN/XdPvG/a7jqatZ3ZY5yxDuiGPjpRMIfecOsI0MWisFXK2OHqUbSSVqoUjRq8LepWlplAYb4V7KXiNqhJG6zl9OO0Vx8Schzk58elMKMcHNw5VCrYnTpyUPD6/jh/uovISqX0Z0dYK79Lope5MKXLRiYtp0rc/rPHJsWL6d3lntozHNPt5spWQQ6QbEt1OSzuzN2StGU82vHPVMe4TfR/YXTqIg0jPWMNiWXN9I4SpxmqSzxAbYl+RR/CdhmRwpZlgAg2cM0Ka+THHJ9px2W93WOuwJ0fQU+ZWXnLiNcg5QwzgD4WjlgkWFo2QlJ+faR8cShdnqMxaU/LRUm9RlIgBsipMhswLcRgg7F9CpdsstZP6cU5pFoHMIaEqJ4Z+8ppL2sYWpVHX1HgfGAeRaVfGFIZDJcjGrmPsR+q2LtcmdSqoLHIHMQoVvBNhOq01Q+exRqZFLimuiQslxAzRy6anJGqKwbC/KUqz1hUoMnIo8hWF6BAzeXOCUkumZK1Sijgaur10TYUobd7TdWpEg2eK1J8uW95eL7k3jqyGAV0K247jiYxhwjkm4FShCHmUaMVUXNy5IOdQHF/D08t3uQyfK3Uet+fA9N/aWeq2oXYVRkchEouBdtEy9APee6xzaK0Y/VQAmcTBVYYYEyYpdt2+CHVO4olprnFKGRbrtRiqfGj1tCrjXMWJuxCUSGWqpmaxWkqUfH42Q/tt2wAQnWVmQ5ULwQZJnyRjyUaxOz9jf/eCPYY3/yDh0ikpQfA7vI+cnKxoW0ViYGEecn11yc1VJxC+Am2lVoawJgw1Tf0uMX2H5mzLPfWAGlOMvcF+X/h8GqtxVpiQQx9IS0NSRTKi3OtQB9CFuVMfyPTUBysUKZXfTND4hIROjqwcckoDK3ahZ/94DzmWQtGAHj3rEMmrlsthZCzkerJBCQfGXLBdplpUmhRDKWw8Y1fd4/rkFUJac6IWxOoS5/4ly9bRD59h332xOFtLsh0JoSfGkc3NDt2PVEbxTq65uV4TSazv3mHoe26utyxWC07vnBEGaZkNIeCcE14TrW9RIriVwqgldttAPxZHXrqGyKX4uqRNlUoQojQnpIwymuZkjRVYhRg8ow8MY0Bnqc8x1mA5IAtaG1Rd4zvhqdlvbqiso2qk1sRoR04VOSlU3sjanjsmZX25JlIvisaWEloD6SzMZJtxTUezSDx7Y03fm0JRL00VadijzCVumUj9I5Q62C6ArCNYz/6ZJkSFtWJThDG2FB+7IykQo8GrmcZgOg9BuQ/kpRMp3y1bMVmhP2QbmezSzfaGVbvC6JpG3UeNPeMocy+GiB8DSokG3lSjIsKMaUZXjvWLDj9w+zUhj5M02+RLzWgMkLwjDQt0zvRbRb/17DaQsy6/YVB6SQ5+dsZsqf8Mg2dHT1KBnDQq1Pj+aC1GGIZEirJnZSV1iSn80QCCP2x8oh2X4AMKPYs25WMXlLLxThFUidBu5fe0KM+GlOZ0yAF7e26UrxlrsZUr6s7iEMURVKxRyZHxZOXBjLP3rVMNWVHR0Cc9F7tNBHhT0W3wEVtXVLWjU4r9rhPoXSmMc1hnCMOIVnB+fsrF/bt0w8jTp8/YXG6onCXFRCgG1TiBFOu6ohs85FgmcSYbXbzxwupboN5MgTDLvZucLpAoLMZU0jOSmprRgl5af7UqDlvKAh8TCkKUqKuIqzLeK8axEO5oix8VwUvdQ9GExo6jtBe3otu0GT3P7l+wMjA+2dN1YrwnDSCp9s/kHMuCm/K3pXuoPMSqaeiHochVXNIuGh77xNbfnaPz58cUYTWLBetmDYg6+OWzqzJXUoG+RdRy6Ia5tiaFSCrQd/ADN5dhRskqI7UZSmWctaQ4Muy27Mv3Qwh471merPnpzWt8xv4CSmm8Gfmvj/8zT8JjFgZ0UzNvBUqxvXPO7vxUqOpLHZVOicXmBpJiOFmRmoqcLQpDvl6xbkU/pXKwWi/YbbaiH7Nc0NZvsLv+FGfnZ2hluHx2LevJGGp9Qs4Wp/8jYfsO2gSsNaxMQxg8Smsa64hbDZVCrSOutnJ9faKOFWkVceOhY88Gi8VCFPztEB8+vyTLhl3mp9DeZyYa3zy/Ps0HUDnMbKRGKyr7hFX1Jv14l0p/lvqle/TDiA9Cib/bdYTRH+gWAJLlzarmZEhs832u20dsmhXtck3fD1x+V7TUYpT15exv4cyGnp+hcjX16pTr64GNXnAzBgiGm+aCJ48vRLiuNlR1xeXjJxgNdVPhjOHZZjPr5XQIW21TZ/ywhJQlVbJq6Z6+w25XCkvLGkhKyAhDiEI0aTQqaXIO8xohZ7KPNOsF+21HdXaG8h7nvQRVWgImFSPZB3wWQcMYJUhZrdegNDc3W6xzGJMKWuxIoSaEgK0GoY5HFdkI4SQyZpyfayodh5OMRMqZahWwVSzpD3n6Q9cR48CyuaYNPTepwg8vlbSPItGj3Jtse8MYXkaXbjpbVaTRE1NmGCy2EkLHvu8FEVKq1BJpordoXTpDjUHa69KcTlI6z0CHKvUvL/SvmQJBqZ9ratFlcuk1VF6gxve5unzGOHjRmip2d0r1qCLnMpcdHaEmk0ORYSbMm+aqBNnCun7gdSrnmg1p34qsxeTwZxiHiB8KKqYPytfWWVxdQSnLCCFCMCSj0Th0VmgNMWi2Gxj7wlJcOUnzjZIlMPZ/8hoXGceRVXklH7oobnsh+fYHy38rjh74H/4z5Jxp2xZQdH3p+vELdG5QRjgKck7kkG+Z2pzBObAu03diTHWpzen2Pa6S4sjgA3VTzyhLStJ6m3MiFbg6hMh+t8e/8z6DH/HDKIRnOYn66ASNp0xIUXL1Y4As5Gym0IGL0pjAkSEEkU1AUCitDo6e1mqGlEWu3dC4gzqqKBQrUgjEDK7Is0+QqKBSUZgpm4SpEuPoDrBrzuQ0oKjJFG6dkmITA5MkAhq9aJ0Yw8Zo1qOwaU4pNdmQJrRl4tJRswObcmRzo7i+uiRlSX9tb274fn6A3y3mefMi5yWGwO7mhq2/QSH3dHOznRmFJR8vabG5xXFOU8r2Oj3f6bVoGqzO1FXFft/TdSN1bcXYpzzD3suUuIgXVK4GBTZa/tTjP833d9/lO/evCPcvgEkGYDJgCdmqpJU/WUd37w4ZzbhXXH5Ps72E5BOLpdQBhHFk5wPrkzVVXXN1tSXGhLWaOCZScKzWS7Y3GyEmC5ZuiNy/+zuo9G36riZrRRvAL4oIZM703YC1hppG7nPaoW1AoXC+orpyKA7okPWG1dUKHZ8HxG+PuVuiICw5H+718bqfahkyUp+QsxSHxpRhGakv3sHurtlfP8LacxZWWthzyhhtefb0kskxUkpRh6+wqd7hDxYVu/0jGrOkWSwZhpH9tit6aFNBupxN5d5k0X4ZpReo1GKsZRt/ir36NpqavfsMjVtiao27OCOMI05pXnrpnKfPrhm1EVbVUfhQEsLsXFmZx5XWNK2s/WEIjIN0LemCXmZEeNZlGEqdTG2UCNUWheAwBvbbndTHkKnrlWxISjHu94WIsaTGlYKScmkXLXcuHvL08WOunl0TY6RpGobRM449KUaatkbjGPpMDJashPROq0y7vpl24HKP50bD+ennlMp6EtTBWUPlLFRaOvV2PWbRk0cRKsw5o1ymXgsKalNm3Ney/pJ0X4aQicEwdIa6KRpSJRid9onka3K1P5pOMgeqypKyufXZaX/QOZP1Ye6KKS8t1CVF1rganc8weUnWEoSPqZPzLgH1oQZg4sMpKEuesOSMGPIDc7vEUZlEmjm95v0gHxwcYkUcKsI4pQ8nmgiFq+1MMjcOhYoDzf2XheDVF84eGRodT8WhVZr9Fro9KAxVrYkhCvFqEc9drBqM/m+sDv3HbkwPt3AcyFzJt2DdgwPDB5CU24RkH/KhF4z1+oSqqnjrrbfm46QYUUlmV56KQ5Wa594UZVsHqi9t0vnwuqAVmb4TyDCVomFjNEYXZt0gjgdAt+/ZdcOc3sgpyWIpC0Mb4WEIMbK52c7nqZU68njV3EmRQhQm1tqJ4rMPoMA5h6sMMYh4mwKWTY1xEqGnEHG1E+chlRqRUhAaZuIk8bqNU5imR+WRandHGINRKJ1w6w1wWs5KDFUYQ4kwMjZm7sXM8otfoeu3dL/3DdTNhhBaESvz4kzMSsWzEdSlMEzRLhoqZ9jtvaRxcmYEHg/3b/mzSimcc+ScRBsIcQJvrm54vHkiyEgvDuO0YRrn5tSOsVKH0tTVLEqWYsRYw9D3s65Pu1rQ7fZcPrkmhChkcNViLrh2zmKdpa2WrKtPzXBxSgkXHJ8bvsjb+k0u62fFKFKevSlFuUoq/UuhOMrw9P2Ot7+RycHS1A3Oafw4st/3jMNI0zY4J5vVehW5vr7B6C3r1W9xc/NztGdCc++vNqjYsGh+C/IbhCAdK8Y67t+5S9u2txxAcdD3jN5he1jfkQLpoq7C7GhSosowFRh+eD48c3BY5hq1DIeQIU/7IWRFdBFvA1OiVqtMXrQ8+8oXYZPpvnNG1oqjPAF1WwkaOnUZZjDpDiqvuIw7GltRLZbstnvhL0IiSp0UFLZmSZsOtO2W65s1rZX1MIyaP2hqmuouJ2aBA5SzuMWC62dXNCcnXF5eE4cBXTmquiLuO0IQYq875ws+85m7oiadZK4Ou3GuiZi2NxDAKJEZvRfNNqVo2wqmQtkYSS6TB0+/33N6doIxwkTLvOHlmSYio9B1TVU1vPbqK7z+3e+x3+8lYEEkBVy0WKMYfWC33c/cWHqhwQir6vJsS4ojk0wHSh14gZRwEGWtS2ehomlrvPc4a6XI2kK7bOh8V5TZAxcPpS4lpB6fioTHxZ40LohhsgulGNYIwaB0msmMUlqRY7lzSaRIlJIUTc7SEEDOc13iZMOP590c6N5yoMukypkxjFS0GFUaBJwjGTs/N4rG2IFe//B9xdR/cEBXtFZS8wZzV5hWR+hRcepTAN/VkOu5IWViwZ7+L3QRDkqgWjU1dV3R1qYojx9EJCX41uw2MPSgssYa6X4bR2H7rp0hjJGuG4Rz7EfgdXyiHZd5kzpCcXPZKIsfSmk5OHyHw2eniO2Y5HBON32I/2KMYb1eY61hsViw2dwc5k/Ocw2U1mrOpU7pKqXg9FyKyPxYoLaja0nFCUmR+W/IInGOHA+AlBgLzbcpqEdK0jWglbQCW2OwpYbChxItlsr5lBJGSSGemdk9S7Gp1jglolrNoiV4KQ6rm7pQ7YO2sqGmmMjmoC/knCUrJbUeSgqTc32401pH0IGkOszyhjgsUIBZXHM67CG+XK51ehCHKFpbyyuf+yLcecBZOOGd//BfCqmXVKhP6qjPP2htNMvVAqUNPkjR8rSIY4psTcM+P5jRHyjQvLNS31OKl1PO7Hd7no2XqBxukRVSHEcK74d1lqGfWiszfoykJPwy0sUmsHy33ZVce2FmDYHRR87vnEHOMwoXbYuKK2IKTMKUk1MstUaSThSKcGFaNkYXY2ZKuzq88+3Au9/NLJdLmpOFOGhlrVTK0CmDJ/H0yVOWqyXtsiUB15fX6P5b1O4RoXtIu2jZXnmMGrD6+wydtIJVznFWNZzXLSNSN2ARLSRrDN5L+2k/JmxlWJ6WDao8L1Wc/bIvPBdQvGgcNo6pq2x+fQZq1NEny39n2aDkviTQmlDXmPtPiVcPiKNlOoDWZnZcpmMH9RifnmL1ipP1KbvrnhQitdF49OFaUOK8K8XqZMV28y20fogfoFkvAUtztqQ2iv31CElxfnJC3/Vz4fyw68hRFLMzCp+LUniKKCe8MqL3A72PWBskiIkJ7UrXnZb0dADp4KkMq5MFUoAvSIw2RlKvMVO1Au3vdx3j6HFWnN8cs5ChRam/w1gefuoVnj1+TIiR1XJBCIFBixJ0u1iiVKL2gaEXJfILtWalVrTLyOreDUav0EVheGduBG61HOZFFrQCC4sTz7K5w/X1hq4bilBoorq4oLp7Rnz8BGXexbVnuMqR91lSHmR0NaCtL3V8PTEmmkWDtaXbMDm0SXNgF7IvThTkpDHVDIKTEbbYabNIisIeW7q9jtzt471mmn4+jlhboccaTXFc1DlUW259UR3sGBQnpvzW9Lk5+P7AQjl8dmp5Jiu6bcWwA5Q4v8ZOzptI1MSsSFGRkvCAZTJNK91pw+CPAm35XAyKmytpWa8ah84ZH0T52mlDVVmij9S1ZRw84xAI/n9yxGWxbPC+iEcVJOIWpDYnDWRMIlOT8qnA6kfkPJPRfAFd8zRUztgYsUrx6O5d3vaey73kkMkT6Zw4AcJzIs1zeuKcSzWLVcP2akOkUFFrIW6zRpM4bG76iJwOit7L4QKZCsdSllziDImnTFSinK21wlWuCOdNbX4Gq8CXSW2dZSyqtSZnXO1wrmJ1esLoPZvLazKK1XopnzGSnsnOFX4QSaXIwsoMXS+RVfHktfWgI0kFvNrjg6e92KLVHq1gse+4vxkxMZIKidsEzU+rV2vF0hhu/IgJiXNbsc15dlyYNu6CNBljcIXjRxWoNYbAdjs5h9I9sA9rUl7P99gaQ1NZQswYZzCjEQ0VoM/wLMNpOLRpT8XZotlDSa0YaVkOiaEfCOVZuloLl07ZmPpuoGkr6qZiSslZK2k21CHV9fjegvd5zMvjwznqF0dFUJmqcnKvtaQBlTFUSZxHlTUkxdO3E+99b+Tk9JRV06KBlbIslJVy5qah1y3v65Hd0HN9ecPJ2Zr1egkpcXOzo138Bkr9RUxVYVVFbf8DcKht+tzZXVaLlu9vLtGtRLouwz294lRV4ihVFUM/0G2gXcn5yhpVh4iUDCqX1P2HIy7zzSjBhzp+afq3nqy/DK0KcqDUBIqSSeiqp33wHez6HTbf/RnI4pBO6NuoBubupBKdpBi5fPIEp1ocGVJmGKS2beI60lqzPlkSfCAGX/iODE27IFNJ2jbWoAzaaZrVguvLa9rlku31RnTAYhIF4WCwTV3YVOHey2eUSERQvvky1Xwzsip3qDi6KEXbVKI9FaXTUmWJ0n0K1G1T6jBEfiPFyBAjTktxpypSBMZa2uWS2hre3m5xzqJLwIOa5qFFI+lcVzniPvK/jl/nfj5jXXn0dnpIiqQSz+onvNe8yevr7wl7dpbC4sn1XF54TmzNo1dO+b3ffZuh92Qf8THSVA5rK8YUGceeTCqbb5xRSukOM/PUcJWjKJjdQvZucVUh4oCmmdDfIye4/GGm2pYsyGG5zYdnwWFyZhJYi0VjTUD5Xh6S68DqI0Uh+cLtGFod1sWETk4nchx8H8/4o5Me9jU3z2r2O7GZtnKsVhXJgPdGWpqLt2iNBnsgV/Ve6tUyECO886Znu8mgBrKK6NwSRin+XywblBJbGqN0zQ5DkOLvxjLrQH2M8Yl2XLTRmAnVLUZPolA4fvwcTbhjM5ZLJB1jKpX2BydGSZWWODFHk2K5WMhEzRlnDA/u3ePy2TPCCME72qUVTowU5rAxFm2Nfgc5jViXMZUDHwqVOsQMYXKY8lTBfrgebUUDQoqCE8aKUyO05nKexkrXUCgoQYwS/eMD2jgqZ9HW4IcBlaE2ZmKnoKorJlEv66ykNbqusN5ayJBCIuZE8hGvpNYmhli4QCgOgThAOeWSHtLUF0/QlfB+jD4WZ0cKZmOG88trYi5dVeV85Pxjib6ztC0/fkxcLbHGsDo/RRclYxCNIGMk0jtWLw1RimVdKRALQar2U+HseKc6OKqTM+B9EN4E40ANR8dbkNVD4LtM6chJjwMgFGE4Y6bo5WBCJp4hchIaeyV1FlUlzMfNohXVYGu4OlmzXy+FpEsrhtWSZ/unNKpBKcWoR95dvIVSmuA8La2khpQYvnrbUvlqdgDDCM37gS+cttRtTaWE4OsYzr4cOq7iCI2laVtCiGxvdlzcrTk9E56G3eaaavkfyOrPU7dvUOU3AUGAzi7OWK+WPMueoBVhu2OxWtKnyPt+j0Gx0BatoaocfT8y7GuWp6WLbA4j8xzVHVbtB0eezrwgcwfbfctscyjUnUz8FARMDs/hs0opbNNRnTxmvHogQZCeNmPmrusJ3cLXOLfk7PRE0LLRs6zkV6bASRcnduwGtLrCmmtCPi+b40tEtUIhPDCnF2fiKPQDzWLBOIyz7MQwCousthbT1FhdihxVcfiyKk60KinCkqZOFO9FTt5ZQ1XXpY6skEUqGIMvYrGiIO2cpe9GhkLK5hbtLDRpaqF+Pzs7ZXOzEaczJSm3KE51LqkUQZplI3zUPuBOPCMmsQVamflZaSz3u/uchFMeLx/T2z1oQbBTecbGwdm9QOwNDx+d883fe4dkBvZdhzYJlTU5jOx3e5wPqJxFaHFqA3fXpN1FqcmD3XZPXQmlxjB4Vqcc6vK0lo0csNahipbRLSDkAKJQJvEc/M6zLcPEK4ZSwm6rxdFR9gaqbXF0ipfJJJwrR7nltufMlEG4tY+h5vWTy+cmWo7pGAn5blU1jEMiZQl6xAXQWJul1CEfitltJSljqbVTXF/2fD89RanMbjuAinj3HbIaqdPnWCzviTxGziV4S/SdaF2JBlWNW92Q9BW8/sJl/Ucen2jHxVqNNZa6dkfOygeLK20RvoODgwMUiXlorWbMh4ee1QTLfZAqua6bo2MJh4XKSy6feFxt2O8CkHG1pm5bEXscC+lZQSRiiGQtqrXWOSCjMzN6MFGNK6BqW3IURVdVYE5jteS5teSKJ0K1lDM5ROrKUDtLNhrQmKZiGAPWOqpWGHQn/RWdEuPgsUqclpQTwzCQ9qUQQ4EfRjFmtZPOn5yom4ZY6ii0FVZEMZpGhOgMwttgDam7i1LXKDtidEQ5J5wZJNoQqfuRoWqwKEStKosy7OiLvRVeHN91OGeFG6fcf2OlYl4V9l6fpE05xgM/j2h+BClyToftTdJFn5+fsJlo8McAKs3cN9NQWLxeHodTgpgpVfK3gjrFUIo7Y8LVDhUE+aprS9PWOOek9iUmotEMTYWNCW80T+/fpV+0t3LOSineb95hU10J0oOhRhCN0+EExiOW06MxXVe/VSSvOGkbMWNHsETOcBM9b3cb6kVLVWjsl4sFz548YxxH7r+qWV4s+d43ItvxDxiHn0CZf1tk7MXpbRctT/PImBN1UxFToC9zNSbL09iTVM1aOZkjStHvMs1KYeyUrp08qQR88Ho+eIGTgu/zV1ycGSaUoTzfqHH7iuQC0Up9jNj3NMe2SoNpb+D6ASlmun0nmkrTocvGE3E47WjqhuVqQU6iUj+O4VDsaCykQL+XeZvHAWM8fkz0O3jwqcydl15m//bLGLNg0S54+4232HcDZrvHx8hYihoJiZCFpdtYw2Ll0JWkoq0x+JiojJ3XRc6gSCQKW7RcrdRiaSGTU0oXZDDM6fKcAk1TM4ZIjKJLZKydr11IDkeWK5Gj2G+uD3d+ghpKTVfSuqw5qWJaxboU0hu6Tc/q9BBgKAVZaZrQcKe7xxur14t8gtRTiB0QPp16uefey4p334eo9vih47Lr0Ujb737fY/oB5yppOkjCLJ7ShphWaGNZVI5hGOn7EWMUph4ZR4vRwgUjjBCic6Vsd8SmrQ5TU92epQeH44CX6Pmz5XWtQBsOE3MqS1fPOULy13TEmfF2dkim9xFHpZzMxJFD+X1V0J4pKZFjqcmzpiC1xXHUQkURp+s0Rpy3II0hGilBePJ4KxIn5Rey9kh9nSDOtrLsdwPeC7P04txQ1xbbBGx9RdZ7QvojrO0fMD7RjotSCt+PbEJkc3NN5Zr5QczdIUoVaXbR90hFjS8mQTVCQUUmU6m0hjlXWSDfEp0pLJoGPdNWC0mSKGKOBO8lRVE5Usp0u1AQmzTztKgygyb6YxSEmPBe0kPz/pMl0gjjiDYSAcWUilCdbILj6HGVtE8rpRlHjzGaxonQojBdykSvaimqG7pBdC8ATRaV3wSRSIgiFpnSRN0vNTApJqlxKUy7CUGQFsu2dDwxt4Zb62bG4FhIlvze4Pd3wfQ8+rzn9GTN2+++Qc6Rlc60OvNsu8HudlRNfaj5OK5ZSfCkHziNiWEc6bodC/KcPtNZiviMFlnUSQ15TjelxPMpwJwzKi1nQiRJBRcHMKX5M9N8AnhmL7g3HpABWaBp1i+aak+sc1S1o2mbEiiJc7FftFyfn3J2vQHg6vyU/XpZqNQ1GC36IBwie501q7DEqWoWRNOlEPsYYVAl/SE093LTchI25ZmIUV5lyIltGuljZDcOKKMPdO9KY504oTEOrO9ZrMuktOIbv9/QX+9p6zO02QvDqhX9mH3wTEbVWst2s8Uai7UOT+ZJGuhy5I6uxdEOEmXOjcv5YHCZV+CHD9FBeR6ReQ5xmYeCpFhuF2SVSDYTbWBoBqKd5oPcO7t+THj7NTY3A9ubHbEU3SqlcLVjTFuZH0rsQ/CBuq5A1ZCh70VQsNaKYRhmtC3GXIrpE91WQbzGd11hNG7YbXfc3GyZNqyZxRdBe8YxzASCKUuNmeiWyVrTuugKpSzrNGdQkZSLDpXWQrmuDilm7wO7fSfOdBQG3rQTNXmjJ8HZ0katNT4GjNY0Tc3m8hnbzYaqKswuOc3RfsoI+limaFKKV+NDUApjHP0WXD1SOSXM12XtybklqSPDonVCZ8EMUBIA2EpzcpF49PmBrtd03YJu56mcxVjNGIsyOGBKwa1RGVV1LO68TR7voFWFW2RM3eOagdoYfu7p/0LenwiHilYMZuSNxTdp4jUaYd9WJbVvJrFFOKAgt/qgFVfukjH3ZOBOuIvB0qs9W30DWXEx3kVleGrel6LgiXepIPricxxYcPPRsW/N7BcELajJaVFgSjJMCWliRrhYjDlCp0sNpErCt+KsYb/vha8qpcMaVRQBTkXK0gadGedygxBKsGUs67uBk/sbUg74cYSyNyqvP3i+H3F8oh0X7yO9j+QxiEjdaV3iitsPUopOlWwMVlI5pCytkQlZcFE4QBSH0qqJlhoNOVWotMLYBrdalKhR3nbNnrqOqJIikPqJA2TWrlaSTkHUV4d+xBaa7K4QXgmd89TqNjlRam4nbk/W7K435JQZQ8A5Q91U9N1At49UtdD7o2FMibGPc3uzVmJ4jgnWtFIsli3OOoGxSytcMgY/euGTaQzdfqSupO5iGMZZb2TSypgMVAhR8vVZjLP3kFNiGEaaqqJuHItV4Px0zaJdcv/inO3umrZoJaU8zhvEi5MD8O6Txyy8J+VEN464YRAnUClCFm4FrRXBR8LUslec12mBfoBg7ujXbEnDtSnTpsilMSIUdvQdkz/NqP9P6lL3knPGOmGk7Yv0gzGK5WqNda4YC4not+slj+/dIVjD/mQtz8FI54Sc420a8il116Sa2tQHDRnKBLll0kqHWC7XVBzJlGAczHzMmDOPU88+S81TN/QlNbGc05Oyhyi0sXgfidFgKzh/GKi/+3MolUjpa6T8bwGRH9jtulIPInTx3gdyTIxxPLBTo9gRyAlOlZ5fy1OOgczEnJynzerDJsOLnmKWGyNB/5EzWnIm8ppGYTA+Y7zBDRU3ZxuykZRjTon9jeHZ0xuGvXC5TEZ9dbLCWsOz7euYqVDayHX0wyi1HM4x9CPRB6a4VGldmLYTVfVdBn+PFBLPHn8TT4/vBlZrzfvvvC8OghF5DlBlgyjz0+qCHCZisKjStTQGqZXTFggS8ExpDjK3UqGTjULJ636UgukwSj2ItEYzp8iMlecZYpJOu5BYrZdorbi5vMSnJGyo6lDXk8s8jCmSlOahucOXw2c5yyeHYDBb/DhizQH5Q8lzjKPHdwOoEaMhKVsYwws1XbnffkyopHHKMhDQWnS3alWRdSzM2RmrpfU9U1ARFVCUmryUSTgUlgbP/aszYpTUjqkCP+XuQMiocFh3x/Ulx9NzjjmzJG02ZoNXUvO09icYLAMde7NDZTgJZyiluLGXpT9u6kJVdGbPm+33MUrR6Z5L++xonUwO++3Wf1Um/NywYjicYbEvqfBwTazfU7v0dN6xiG32naBUKClPiCHgxzA3jcjPG2x8iKIClhht0AXJQSmWZ4/Zbm64utyQleLi7hlV7ea6to8zPtGOS+iXopKsurkW5UXtk9M0y7NHPMFqlCKwwydTTofuFAU6ngEWnWXR5FABhw0mZ+HJaBvHmBEuk5BmIUetDOTEbrcvTKkCi1dWz2hOThlTmRk9FPQ6HSJurUqhbjzqolHoUhQp+iUQCBAlFaUL0qQVuKqSqK84F9pZ2dxjpmoMyo7UJzf47YO5yDNlqOuaYUiUUgvqRqBeEMKqEMJMUicel5qJjIzSJORcMAGVLW1rOD1Z433ibrzHhT+niR6jrzk5qVDLVXkOL96tJqHAnKXCvdtLrvx57pXnuRWmBf2HjblFksxF+CZtep1r8wuk55aI1zU7c0KVnh18BwrDr1alQFH+3hvN9dkJ+7ZGKUNo6tl4olR5rkcO8tF7CjBKHJVVWM2dQ+VkD7D8fA5phtQPfA0lBVPm1T5HnsUBf0RfH0LAWEPTVCXiy7NFVgr8mOm3lroN2ApW6y3vPzkT/aNSxjX0I8FHXF3RLBelHnag7wZmcr4jh2yfIioEzqrm6HmX9ArTo7v9DH/QeH4T+eAD5oVAjM6Kqqvolh2QGXdLnn370/g+zvxJpIypLIuV1J3EpG/d+6kweNKAoqQOdT+wWC1YLGpSCgw+UMfHDOMNIaxpmhO+8tWG3/k/ejY3G7r9gLFS5DqnaJQuReYSBU8pGFmnSqJ8JcX5rgqMgZL6KvflmOq92JaUU1GZBh/S/GwU0mESYyrFtjIvfYhSWJwpztkhdTQHBjCn10liE0JMvJZf4hfSz1KpSa7h4ETF0ZEbfwtlBni0fY3vu++QlQSDkVCQwMJnlRKx2B4ywgM1BWRG7otrnCDJMQqKOgzYnFDWzc5mBogJgzgjsfLUC1+ixumk9GE+lms+xgPnup6j6aWyKCOv0ok4vTnNXN51qqlTzdQhBHAW7sz3cp7D4YJPjZ8CpRi1Z6d35TeLg3PIETBlCEzpaPtO822+036r3NPbnGYHBJn5/emFyW6ABDzOmTnYNcZQry11bXn6+KbwsmTwJ6AUPiSSEZRRldPKMXJzdcM4RtpVK11r+riI/Icfn2jHxYZXhP1P7YDux/Mj2aCObtNUOf4/1FAJZT6+8NWHjXNOeCnfZx06dI5A4sv5J1lcLyFu+RbfoNIR9B8OIZ62UsCqtKGuqo99XjutuTGGYx5HmyNt+i1sfoLi53l+iei84Kl7xLl/9qHHzSieXJxxdXpCKkZeSQb+Bw6bLMuwpI71rLnicgUfk2xyHwOXhFIDIWf0w4y2fRfy2cc6l0zm6bhnZSs+9oV93JGFqVclw7C5S/fOa2Qfge2P5eeUCtTVNwjhz/xYjv/HadQ4fjJ/HvcRt5lzf4fP7b/Etxa/f+t1Y6U+6geOCWj9SL8Kbyy+z6d2n/kjrtT/dsMmx2k6B/LsuNz2xCfERZyqT/FpvrP41h8RrfyjDaUVX/zySywWjm9/y/DG95784O8oReUOabsf5fhEOy7TUHmBzu4Hf/BPxn/zYbH8efWz3E/3sP2O7/CbQODx+bt86u3PMqhrdjzF5eoDaZznx6PTM6LSGGdYLZYMPP5Y56a4g+bBrdfqdI3N13/o90z+EvDbfJhlyApu1kuiMS80noeqDjDJ0saWqCIazWk4xaXi7GRduts+0mV9YMSceOo7sra8MB/+EYbVNzj7g43WDxp9DNyEgfssPvaxPu4wfUu/e5nu6kFBW3c/1t/Tqv+xHv+Py1jScs7JR/6ewfDl7U8C8PrJN4lltdRVg7VOWsT/sGmc86EZ4iOMJjY/+EP/kw4FWGdKOvjDnUdJxmqM81itWTZLnI144od+54cZn2jHJQwrctCYakT9iG/Mi0ZOotP4J+OPPiKBX8//nq/pL/FQ10ybffgxIjx/1KEwqGxvGUGdn6DpPpAiOh6aHw7tUSgWacFJWrMze1RWrOKSOldCiIaa4fkf5Xg87NmFkUX9wy136y0mZIIJoCJKBX4UpuM6jKTcfuzjfLyRGfyC4ealj5KZ+pPxRxjXbPltvsXP8OUXpvD/sGGy5svbn+CRf8TrzRv0rqNbbkrqRfHK8BpVannLvc7e+1shRJ0b2tiyN5v5NYXCZsfL3acY3MCT6v0P/OaD4WV01v/DAeo/ipGztEDb06ZQCdwer+qXODMnnKo1r6aXed2/Rds/43rzmMFH3ly+8SM9n0+04+L354RBYZwn554fKTZ2NKaSid1GsVrBh3cufDLH3KXyYxgZuGHLf1a/wztN5jOcAS9Q4n6uLuWFx8oHMr5PylAIcZdRhpO4Zh3WaKWpU83UBooqulA/ljmVicd1Dh9xaBSroWF5XbE92cKPMEAYSQTyD+kG/mhGdJGN8qTrH1gl88dqrNd//NGBSOK39B/winrAA+585O+bbDgf73I23uNx/T7/afF/4P1IpSsevfca9y4f8nn9Jd6Pb/Kt3Ru0asFpveDB8DJrf8rbzetstfDM2L7iUf+IhgVX1SX//uJf02tBvnTW3B8e8XL3yo/6FvwPM3KGt9645Lvf8nTdcOu9z+pX+AX3Z6lNhVUGg+FBvEPVbdmFa3yK/Jv0r7nk4yO10/hEOy7TiMERxxr40UOwfafIUdH3ihgyT97fEsMKY/945UE/zli0LZ957YLfu/zxQtgvD69g6IDI9ur6lqPSX13BZkOz/PDUweatt1n8xNd+rOf4oxoKRZsbTsMpVRYyOMuBcOu/1YhktumHhwm1gkppTFIsNgtU/vHUfvz3GEMzMC4H0vXyv/epfORxdv7fP8X2RxmJxLv6KQ/SR3dcjsfFeJfVuCbnTDssQVQmaGLLo/FTrMcH1PuaRWGCIsOnd5+ftdhijOjScnzu7/CnL/8cj+v3ISYu/B3u+AdYhFPrT8aLx3bTl+7U24HQI/3SUfH1B4dC8XJ69CeOy4vGH0oN/jFGt1dEf6gjn7hJ/kcaIqz1458KJhcREuDV/Wdvwcc5pYO43YcMaU39cZ7hj2YoFHfSXep4yiQjOLd0/HcYB+mEjz5CzuxyYIHBBovzn/xasqgjw7JjbMaPXfPzJ+MHj/f106nx5YceuvwPYNmvsNEx8MOlmxWKu+MD7g73Zzbk/OMCPP9k/FjGJ9pxCSGSEW2b7bOW85eks+h5Y5Tnf4oBn95/PleXS1HXNPzgiEHPLbjPde3NEz2njA8RikihNhRhReEWiUVkcRyDcHUgbKPSOszhXErKxliDH8b5t7SCHPMsyDeNGIR74pijZCJuS8g5qEILrktaIiP027HQ07sgmhSzyGDhYzBFkLFpK6xRoAqNvcgdzzwROQtD7IF7RDpoQM3GKpPnDpnpvtl8xGZcntnEjzA/qqPnQr6t23EsijgX9ZbWzBd5li8q/C18bUL2hKSvRnOXQMOoL0hHSYwPqI1n4SLNeWp9t7h2JS2sF6/SsILjfPncYnnggzg8yucqAOYPcIvXZU5RHt2I223gh3t1qxlc8Rz53uGknHWFgly+q/WhHVlaxKd1kY4SpIqUxvm3rLO0ywWr1YLlasHQ90QrqsMxZVGnfe78p2NPr0/sSz9MUJDniy9TJx86p+a/1fQ7ib7p8M0gPRrR4Hdns43IITCOQ+GrSGTVo3VDu2iE3DCDVmn+/K2zyKWTorY0bUUYA370R0RyGVtVVPUS1WmqukWpEaUhjJ522WCNiP6Nwwgomkb4e1DImiw2o6orXCUKvnLsdGs9iC6PvnWOCqGzJwBFEgBk/SZ90DlTiByF1QaTHEEFEqJrZGwl9Ahmmv/PtdMydbfkwpGSZ0K8Y0qCQrH33IMsCt/T99VhXophUvOFTHxDwGw3cvns8Wo65kRS5Twngres1Dzz5mX9vPOipqZjXebP4V4CTGwa83mWNufpzsu5afQ0Y/SkTT6f4GE5q6IHVQygUkfrQs1T7A8dt/a6MvGn88of/ODBXs5t5SJhUlUiAROmos4MwQlf19gPhZYjU6uKu/pcPlL2HqUV2mS87wHRynvJ3ud7ZkGR+vzY4xPtuIyDxxphhFUm3V4YqizMI4fjRU99+srUVp/L336s2D49JQVQumh4WIN19rA3JkSJuXb4sENn4REAhOROFYrswYsIWspkIsF79p1MpOCPSNeKEbLOibOThIkSbRj6jhSE2XKyxsH7mbDopVcrLp+M7G7keFOfvStGb+KCEQIiRbusGbqRcRhZrCvqhWG5ruh70Ria+ESMFVrwsR9IIWKdFR6EmERoUSmcNWANfvAYBUZLN82YhYwoF6fknbTltSgYREY205BkA7HWEI89mxeMg4MChTnwRR/60Ic8cSfowqGyp7k1LZRSRHefbfWlYiyqmUH3eHi1YtB3afITcQqrFn3/C5iTlwvZmJuNK0w6f5MDcrjGmcpBHVwXVUQBJ4dFazUbt4ljQf6Zj3S0JkKoybTe3qyM1gxFiVwdnVfOmaZt5PiTQT1yiFKMrNZLco4Hh0CLomzqv13ODYyxnJ2tOVkvGUZPikmkOJpKpC2KLEMu8uKpSDAsli3i3er5Nw+XmX9g2dMtx6d8drqf0/HUkcFOLtA1A77xqKQJ+zOGp6/gtxfoHKjGLfQ73u08Pm3p7e9g2hseNv932vpEfPGc0Uro91MsRId1JY5AcWSdc6xXC64ubwg+0HWDdMIA9SJhdp/nJ8wZb+7vcLN/G9N27J5q1ueAGoj9CmuFGbuq3cEogXSZZRFVNCUYkOs0eL+DDClmkeAwWYq9cxEIVIpx9KQQhGhOq7LJiDhpVVdoBTEkqmj5c/qneGDu8L/H/x/v+6cklVidGU5eusI46LqGYchzdKWYSA+jSHqU53xdbdmoHeu8BFW2YqNJ0ZBJky9BzkcU+YcnO6+TGOR+37hrsg3CFyMrTObvzG90CAhnzSh9WP9kcSgOnLQHr+B4vsynoienbAo6ps1ePqm1Ojyjg9d8mKeU35s+oyhIz8GeTUGU2I0Dz8zhXPJ0oHK2JQAo785OXPl94dGCjDCJy0/rUssYjyzE0XlzeGbBJiGUc5q6qgsjeSEcHUb2+46hH6h9xYU6dI6lmPBZ6DWs9SxWLdZalqphYVr2asfHht/4hDsuElkEYh5o14MQRmlZAFN8nhFnYq1PMFmDVxgMnxk+i8bM0QlApzu+UX+T7cYxbBqJPHSaJ9REABcn1WelyDHji9y3ICixRFgUITONtsJwqbQiFgK5vh8ElUmiQjw5FSklghf59YlzY1I21UaDB+tsEUeT42bg4r5j6GG3jeQoDsakg6TQKANNI36/dQatDXop6p33HlVUjcZWmbARdsRx9CV6dPT7QXLEWlMZaYdT2kIWyv2UM047ArKJCYW+wirNwgh5VoiJtzZXnLxzQvtyeX7Ak/4/kVMWVtAj1Of4GU/EVroYJzFmet5s4bAhHzO/ZqWKQveBvt9oIZSKMXPpvja/PkVk2hiu3E9hcj87hbdQDSDplnjv/8Jq+R1U1aJWd1GukQhXHQzhsabVMbp0a6jJgVGzczOT0B3JV0wR3cyKCbcEQPNRAe4UtaJEufZsWfFOt5Nz0lMseLifxwiIXKroNKWUaGrH0gnaNoTE9W6kNm/i9Za6bWgWtUjVx8Ru1zEOvsDuwsy83+0FJTAFwckTDT6sWoctzsCkO5RLxDk5Sj8QgclHf+Ri0DNkNSm1yLX2zZ5uuS+bhqF77zOMlw/JSVHFPYvUE/o9KSea9nWu+T3O7kUevHwffbkn7U5mlC+nRNYWtKPvB0FjlMaHyPX1DWGMGC26QilnqpnqP6O04avqjC+7e/zm9vN0N7/DtntM8JanN2+C6VDDQxhPAEW374Utt8zFKbjpux5TWGe1MbRNhfcSBU9MxSDOVSxKioIGm1u6O3VT0bYi56GNKSljxUle8sXhNXLMLBG135wS2njq1UBOCmPb2WZZKzpBogDuyD4yKqjbhkGP7BlYpyUwoUeaHITqVxWnwkyb9QvSd8polienVE3NqEao1Xwt0yRIRQV61uvksEXOmz3HToI6WpAz7nHkWBSkY9pNpiD3CNeYV/URyiLzuDybaS3fnqzFTBxYjA8uyOR8q+fm/uHcju5KUbc+vDGTABYUdT6/0h5ujNioNOuBHa5ba03TNkWkN4lMjs+MaSgEgPLRYRBF+Lqpy9yQACvnQ0Blas1yuUTbIuiqKCK46gOO3Q8zPtGOyyGCzSRECG1O66jJjc3ci/f52e3PY/PhcnWeNr1ZXo1N7vjN/Y7dsBedm2nBH21CMSbR+8kHzY/JUZl+XyuFq6zQnqdEjmXaFlEziYpKrFAinRgixgq1fiismQW0KSiJpqprjDbUi5qbqw2QC3oARkPVaBYnC8Lgi86Ine9BzhmSpK58SGhdhAx9JCdHzhk/jCQfiCiBrheNeN2F8lmXY+qyqWY0Ogq83O8HUBBSQqUDqhtTpNv1rBYNqtL0eqDNmmADQ7ph798BJrgb5uiZowg85yJmOD8ylJZFeFjcYkYm1d/bCsOHEYKovHp9wl7dm1/PWZg+K62I7QP2vRfpauJRquYw74bl57EP7CESVjAZ5eO5qY4ggGmeqenz6oCsTMZq0jQ6XJNsGKnMLZ6/N2lyZg6I4zHyoJRi3Wje05qhH6nb+uDYleOoEjFOhjjlzHa7E8p3EpZIjNAPgeubHZXa8NLDJQ8vGpR1vH3pubrcEBdNcYbKcRHjlskzfXiKie1mz3LRcH8lEHqKh1TsAXXJHBvVF408RRS3PnO842TIwjK6z72gmyqTk6K/XkNIrBkx4wadE+AZ1Ft0q9/ntUcrTtYrVGroh7UY8ekZKCBHQQnHILIWTU2327PfdiilMW3Nol1yYlo2cYtPZc5eG75YvUSlDH+u+hq/98a3eIPf5/xRx/L0FJTQ4veXlu66ph88y9VCDD6KSfesXTTUtTDr2srhhw7TGmLMNIuG0/MV25s9Kcc5yDHG0DY1qqkKApDLBnn0b/KRxyj3sskV5IMata0cGk27cNxcjYIMVe7I0YZGF8bfLBviO/ExD9Kd4jQURnClicFinaBRswsyIWVH618hzpoN5lCPNz8Pmb8pT5rKE0nb8w7DwSEW50bSRRMqnwv0IULNkxd/OOI0p+bZNq3Tcr/y0br9wNacb8/o6TqPHafjVf9Bf+r4iPIJVbyp5/0ABWgSWWlysYnTqhJR2nEuZTjWR5r+7ZwlFfmUXJzBFCPrdc04BvqrAe8Di9WCL9WPqHHkyFwIDQpbF1QPdXS9kx38QdHIDx6feMfFKMNKRVZYlI6zcdEcjOAiLqlyzewyMm0shymSSPzW/g2uup2IjU2bc2aG2GTznPzbCZ4/RK85R0CzXLaYuuLm6qbotkRc7Yiz1gNUTSUwcyoCfSiqylAvWjZXG8ZxLFNZNsPddifU/RS+D2NmmfnF2nF64XDOcv1kL9TgqUi6Z4GNU5Jq8Knepq6dICE+zimpjMYYK5IBWovku1HUdYV1hspVGGckisliRBXgo8eHRGUMTjHXswgKNWn1wLFT8uzeM+wblj7eSL1NQZ9SmjbSg2DbFH1kVwFS65OMJYQ4h+Rz+oPbW9nsEDy3uK/tVxlZzZs4Zb54H2fHSGfQ2mKMJkRZvFNdlNiMI8fjyEE5mqHcfvXoPI5QmAOikyU1WWzmzJE5Oy3HVQGHKzx2iA5ItZqVq++tNU9OWy6vdlhrcPUhFThd6zGK0+93xJi4f+eEzz2oqSs53om1/OkvSHHuSWtp24raWdqq5z9vtiIWuGyxxh7OQR1qm0bv6XZ7rLU8uFhw3ujDtecPbC9H1/jiIV/9MKKxw70KOjCaSVxUk7oVqVtwYXpaAqNSjGHA2+9jqp5Hj+5JmotMCo4c2vkHc0rY8CrevIsyO5qFYb/bF8kHPc+F9XLJT6Yv8Pn+Ib9R/SeuliPddk/LgtO2IRGIIfOF659hrL/J9+13WJ9ciCOnDOv1yPZxy9Xjhq7rWS6XLKuGJteYs8hq3c76YuPYUy0DtnJ0+8idO+dok+h2bxaqfoVWiaapCVnRNtUsjjqJqRZx4HmtDN7zve5tXlMP+ar7PN8xb8v3B4ijwjWR9Z2RzWXNft/TLlpBXTjUZWhj56DuUt1QwLCy5nQJ4CR1Ma+JI2flsEGX4CuGeb1Pe/ms2AxSowFF04ujyP6wzo6WX0EAn5tjR5v8wX0+Dk6OanOUvrWej6be85P0sKin1/LhXk/Ol0JJWdx0DrMvkbm93auDZVGHM5oc+VVYceLPuLbXIopY7lO1iLhGYzqRdQghUlWH5oH5PJRCa0FktNFzSvjRK2cYo/i+g/feveFcL/mUWZH8M1JqgBpQmCpSNergbCO8PA+Gh3x78Y0fgdvyCXdcjFL89GLBV6sL/M3Itx79HjOUfrQAgvFgMipN3vM0CopC4t+P3+X3xrfnmoYJ8oxBipVUyXOKInlxWooTc4BmZQvph5F2UlWNhzREjEE25nnTKueTwVpFvVigFFRty9h15XWDtnauhVFlglV1je8HpuJQlKSyxpKCGqfPqyMUogjvTSkWcc6YJ6tzhh2iU1LXFaaovlbGEIPU3MQYiyN3uIVGG5KejInc31g2+FQW6aRd4n0kZ0XvO16/+i12XUeMUZyQ41jDVShrWS6b+Rr05z8LxggU+eqrVN9+glXNfB4x9Yzx8tYckceUZyPj1Zor+zUu9Vfmezk9jylNZ4zhXlPjjIiG0T5jN67YbyO7XWkZVxalKoxJB+NTdGMODsoRkjKjKvJ/PQkqlven/2sOdRnH2/EUqZIzuny/FM8cjn8UpSpVfr14cT+9POH33qx5//Ez1mbBYrVEaVF1RmkUiRgzm82erht46f4ZX3m4oK0KAJ7BZLh74mal6RQSm2HP0gS+8PKab7+3o9t3VM5JVF6iuRgiox8Z+pG2rXn57ppPnTuZQ7O3dViRqdwkWYofYuby4T2FwpR5DNPaP2wqWjka1eCdKIYrt+GiuaQNohljnAH1Nm0dae+csT3ZkiXywYcV1mh0zvQpiwBpPpNnaALndyo2lxJY1I0otTtt+BnzZX4ifR5lFSfNGe9136frNiwfPOPJ9h3uDK+Kw+jP+NrwZ7Ebx+X5WyQtSEZVWapXO7RZcf10wbgd+LPD1zh3Z/yH4TcJPoLKpBRYno1UjSYEqEJNVVdc8hRntLA3q4xePMOZhwyDR5umFPof9LlAcf/kFHaKm7Tjyf6Sfxf+K48Wpzxc3OWnms/xnd3b+CFz+VbFxWtbqpVnfbZkv4fdbs96tZAofXK582EDfjW+fPvRKU3MmdqFI6Rkmgu3HY4PhgPHdYsFcZzWYMqHAluVZ5t0kKQ7+md+7tiHfbYc+1bfI4LeiS2dAtfMFMA8P0FLOHGMeB+/V35rvpLJsUmzu0a+dcY8B8VQ1u5xKlt+06WalT/nmb2Go9upTMBUibqu2e07xlGEKe1E7aGYVaRFo6k4j0rjnKZdVBir+MpnX+XVG/i0f0lSrLFH24hVNbbyVMuMq6Y9ZjpXxTqKsOyEzH2c8Yl2XH5hfcKnm5V4dkFRdTXj4jY5Dhl2ZxtG56mG+vakp6SHuu/xW9vXsU5Uj1NM88RuFocCzuj9FKTemlx1XWopUhIjagy7bc9qvaTrRvr9XqL1KDCvAqkhiNOmlwDpJkgF6h26jpwTPkRMWSDDMGCtYxwE8u+0qBmL2Jo4C95LKiQlyElqXeaTJs8pFnHGRLV2Unp2zlJVIn2ecibGjDGyF++3e1JKnJ2t5ZhMh8xoY8gqYG0mlYmfsqQHxlFUmqNPfMm8jGVPzolhGDCdRfs7GK1oTleMqzMxohn0/QesTj7HK/WfQeMIIbLxiZvUY5TiZHyZO2d/CqdW82KOeU8f3z2KVORc9uENNuG73JB5x/1l9nFFCOKgWmc5aVtOteKGTNQKozU/7VrW1rE6U7x1+gbvbRd8qxeq65Qyo6+oF/dZtTuY4NZyj3P5bX28QPNzducWPC8ptcmRkrR3Onwn59LRlYoC9CHNKJFWnnPy5SnPx58Kg0mZh6vMOLQ8vdqx2fZUzmCtIwHjODAOI0ob7t1Z8elzTfYdu1E6BaYIUeuiZs2RQVWK+yuDYsVbzzqubjryvj84OEnmyGq15HMPWu6u7KFBRIlRu40g5ede+/Bxy/Gbz2q2lmQlxeANjqRHklJo7althwoVQgWQMTpIIfkiYqyaUwXD9iFWwYXueRI0KSugRakGU7ecPNzQLJe8/4bFdyNn7YJ7izNeTfcYGTHBcu/qjO9V3+EnPnVBc9Jh3nkf7R+gzYjOPTErvtb/FL/zPXh9/T3sy7YohifW965Y+od8Pv8Mr44PiWMivJ/ZPex4uT3H1gOmN+hBkcaah9//NN9V3yQ0nuXpmiVSZ2GsIW5GxtGK/WjqA4KhYOEq/qL6s2jv+N7wDv+v/f8HvfbctO/yWv2I/2v9RUy95Tdff8x7b46M9pqXHq5ZvezZ7hqun3UYrWmaasIJ53+6bDkPa1FrBoyR2rucAwlP8IfU0MG5FwRiQguOu/mm0q45EMsckBqm0FQdpk/OvHA6Hczi7LMc+cPPffR2F1Sarm4Okssvq+MZKIGMOj6G4nAuuZyroiA9L+oimnaaDxnH0MzRiz+5+Wluqitu7FV5RTp91i/dEP0FIQTG0dOTqJtGGiw4XkOZCsvPxK/wXf0WYd2jFYQx8OX95zg7XTGOIynBdtfhKs1qLUHf4XSOAwnFA/+AOtdE9fFJLD/Rjsujui7tg5lURcbF1GXDPPmmugDZEPP8Rgbe99f8v29+i6txW9aKol22pJRKceqEeGiCj8SgUTp/gJb9wSsNr397dyuiTkkUmptFTbfdElOeO45UgXhTPHDChBDYXt1gjKZuGqY0iaRyMnVbCwJTV4z7HleJU+LHkalIl8zsyGityNpQ1RVTh5XWpUBPqbkIRcdI34mj0vcD+91ACBGtNM35CdpoQXSYOgbS7XWtDijAg0cVj9+Wd7VSZFNQKq1ZVA0/136WZ+59nvIeTb3g0/f/H2J0ChrybfsHbLiBDCuz5tP3/p9Uo5tN4Pl14snT96j6iov376LORT15LoBTpyj9kKnQFSiG5WfwceA/bR8zDgatEsaI4TtpG/7C+RkP0Xzbj/yHsWcMgV8fbrDOcae2XOiKJ5eWsevmOTV0PbvdHp26o03z9m1hciCKKU0pzgiPgAKKyprjL5SCW2khzlMrcTFgx+37SmksGjV1UBw5QZnScZWUKLFmSa+1NvGFu467yyXvX434ENh30vZrFZwtHOvWcXcZyb6nD4dWzWl9hJCfa60+XP7awGcvNP16weNdmlWTrVHcW1uc0SzrTPD+uRQb85o8RtYpv/micQvQT4LiHXahY+RJvu+ua9JyT9SBKtbUzRVhXJCSQ9cdtXEMfY/toTPj/Dsh7xkDXCnHXduR14r3N/dw/DTXu//C9mbLehF55dUV7fU5JhqiT/xm/o9UNNS24jPuPv+35mdY7VboTlDOsP4mMe9JTYLcoozmf9G/wOB+jv6mm7eqTOZUn2KXC9RKCvtfOhu5f3fNn373C+y/18+O7Dh6hmHk0/Vn6PSO7598B6WOOh0XW1I64frJHqPBVg7ba05igz4LxNWIvXKcdEs+u7qPvnvJ/c251H55y0+pz/HN5ilbvyOlPcNQo1Cc3Id+V7Hd7kBBVbn52QA8TPc4zyfzc7XOMnQ9pvaSBlGH5zmDbDlzCxtXMIZ4C52Z5s+EsMzIx9GcUfPxbs+bW47N9M4t5/+2u5APL054y9F+oo5eO/o8E4IyoajFLiluPd9jx2N2WspJzz7OC5bBIT0+2ZnDUapU8aXtV/lPJ/+eqIN8SilcFVle7ElhIQj4GEl5INUOZycFesWjdJ+fjF/kIp/wsr/L//7ur7O76Dk5sbySL9jZLZWFMDhU0d5SRVhtvrLj1LbKLNKSZVqz/xEIIn+iHZcDNPxBdzqXYroZIcmHgs1cJs43xnfYpF4KCpW05OaCIDStnuF8ow1BZaIPVFV15JgeW1lVItKpwDYSQyAbKVCb2pi1Mbi6mnlaDgZcEWMmxsDoxQkSg5NwzhQpeU3bNqQQ8D5gnCF4iaolklE0bV1qG+Tcp3s01dbEEFFGobICJZ1Ml48HXnmtkR79UaKwZlkJKqMUuThqVbmuutFyf+HA76EU7ULTtDAOsui0lmLYpqn48voR63rJrnYorblzfZ+2acttlAV69/o+28WGnDPn3QUnZg1tcYLKM1s/FoRFLcsimRf5ZBCQ1zkIwAM4HD/fLvmUH/mWHxh8YOgGvtIueZBgDJ6HIfG1kPnNEFDaUDmP9z3ffcNws9sRQ3HKtDiwKfb4EOaof863z4ZpgqoTZDWnzaYILQfoZ1K9w/w8FBce2+BD3DY5MsGHo6l39P4h1Lxl8ZTSOAv31457K0dMmc7LOToNtTlaRUf2dLq+nBM6q6l7mdlIlWeglMI6xbKBOydTlCrnptX0cBTP/1P+zMVZ59Z4Ef/Oh47J6ucP1r0oNKthxXV7Q+tb0BGzuCTs7qKrDZVxKAXGG27ChlTSKHrxFvnpq3RJszSasyqzXMOYPs/WDtyNC6q9RWeHOo2QAymW6FVt0SbyPd5nHU95NL7KaTgXW1NFHDUpJ2KQdIk2mkVcs9hL7VWIAR8iSSuCHiSaJfNTu6/QfnPBfugIMXCc8mwaCVS+evOniCnwvcV3yD7P6FdzMeLHUzZXN5y4U/5X8/OcpxP+wzu/zePTDfeGisop/reLLzPGXnyiHCEr7uQL/uL51/gN8+vU64U41mSq5Z6Lh4onbxq2N1vaxYKqtsIFkw1fSp+ebaApwVaIA4smHM3R290xzz/7nDPj6BlDxOk4o49zU5Hi0CQhQMcHgYiyGcwdeErNdTHPzyNV1tiLZ9+R8zNbmvyBNXMAQ46clJzFHBxBjmouMzh2fg51LDPYdPSrt89kunPq6BXFw/5VUsr859N/T7JR6j4VLM53Jc21oNt1DIOnj5FgheriNf0yfy79KRwWnwIqKvow4trAg/YUXYq9DyjBZIReZK8OZ22y4Yv7L/K0/aBO1Ecdn2zHJR8/uKOW0ckZPv5gMZyjGahzAxm+2Dzk98O79IMYBW0M3gfI0C4aaV+OCb8fCN5jnSGWqHn61WkYa0hjhpxIKRNDZHOzkymdM6bUZqSYGLt+jp4zwpdh7BEh25RmKIbIVo6hH4TcR0lbWQxROn60KZ1KqnBsFFKqlBiDlwLgcqIpJbTKtG2NVYqgMmOM3Ht5ASiqymGMEGa17dQhMiEtmaa2JBQ+SEfFZCUUUjfT7xNDL+2ZOSeGnSBg68WKn6hexWpdNn2ofX0o4i03szvfl81dntd0Tyb0QpZ1UUyeFrfKRwuI8reeN6+cD+R6OmdeVpYHRhEIROVKMWqP14HO7lDrJ7ymR7JSWBswxuObyKK9x7Y7J+FYNB3nq6dUtiNGXdIxGQoCMhV+z8jf8RqeDeWxE6Pm66Fc4zyzn0MggFvdGxN6M90CpY4iMFkQB2dKHR9P7t1K85y5O6wncT713Lk0dyAcOVVzecr0IMs5HdlrgHnjVHO8fDxUyddza219GNpyuA+HVsvjIx+jMWpKEwB1qDnfnaFTmR/VBmtGUCMpp3kt5TETjS/3cQDdE0NDzMwImcOxaO+j44jK0tkzpVyPLguFFCrHPPLG6ls8SQvupPvcGx9ggiXGiLOWlKTOKwTZfFMM+HGUZ2tNOZasl3ZcofaKXvUFQZ2cw+kJKgyWn9z9LPeHl/iD9vd5Yh8ztdO354/5gvoan7n8Gm1f0zPw2fQqy6EmNlsWJxEdl8TQ0MeBFA1Ri+35dHqZpH6Wf73917DypQ02U59cc/7yiut3a/a7PcNgOG1XfF3/JHfy6cxPNOx7Ug60JwNKJXJS5CMv4wMdJ8cTqUzUlCX9OLXtzsUmSC2dmXgkDi+XpZAO60wdkj8ftteqyQGa5+Ott49sl9SmHacrZ1einPO0quXjas4EzBwrR2s2F7smqaUDod7zzv6xYzefS5nz03p4ZfgU68s1315+k7ebN0lKULvF+Q7XevbPluyvKvpuYO0XfC18nteU1CN5PCiFq+Fzr9Y0pyPDYo+qpGA3ltrJqT4wp3Sr3ucWIlT+eml4yKk94+OOT7TjovVEqMNc+YxSt/axlABTun4MvL74Dp/rvoLNlpVqhEQOKUzVRjP6gCowpVIao/Xc1twsW2L+YCfLcmU4v1vx+J0wt46BwgcPJZJSSqFLEdRMHFdQmHy0gaUoBtwYx1Qr0u+HudVs7HuMkzy1c9L1MxWMxRDpdntUSd10o6ABVS0dEiEkbOXI1pFyIqQkjhqyYJQ2wjthDRk1s+P60r1U1TXKaPpuwK4WUmNRDEuKkfWZZb/JdF1mHEe6rmO9XPJzy89wbhbzBir3rjAClwjIe08aAqqWDcnsDN4PGGOLgzO581L/MMcw+RCblFlxiNyOUi6xdG/FKEgYCvZuR1/teeYek0xmtAOgaNXxpulw1rFcbApZnqGyA1MB2638exlzay9HG/v0nMuzOnas1UwQNT2KfLBPSjg7OUJzpitORw66nI4qOWZViuzKfSjnNHWSCEGXKl1msTjX8llrNK6u546VnNMtXhDZqCZrfEgbTjVDxexi3bSJF6cJVRhnjziW5nsgaGNO4uxNKabj+fKiITUQE9owPbN8+N3ZDpTtUEVMNPN5ggi0gkJnV64xcT/cn9luezvgX/5tlG9YjRV5WGKiBT2gagVUhe3aljl9uN+oo5lZzqPTHW/Y7/Gee4eX+kfY4DDZsA6nVNbiciGPjAfMUDa+wr47kcsdDjk/Y11Iwo5R3PvDy5zv7rEx13yv+i57veMzw2e5n15GrxQ57Ym+4iRZdL3HmEBMEGJB2LQmhciY0mxTX/Wf5s/FzB/wu9y4K4kTUNjlJet7a9zNgrS3/OnuK9zTd+gpqTclzQ3NqkfpRJxNqSrF/sfeOfMcnmbNJAmij6fFUSAwpbKVLkIbz6X0pxqT6ZapfNTV8yHz67Dn5jKPbrc6q+O/jryHW8GWmhyTw/qfHewjx2han87q8r7Gao1RipgzoTgKc8QwnVP5Tz0f/bD/KQVn/pyfuf45Pr/7At9efpOr6oqtvcEsAotmy8niERdPX+Pl/mVsrMpvZLRNuNpj6sRLzZpL/4yUT4otOxCkKgU5ZcYx0DTTuR8C0imIy4DOhs/uvvDC+/1RxifaccnkuQvo+Va35z+XUkIn0ctJOZKT5pnfEUrrsy6FrpOjMbX3hpSIpdNE2GgPhUXTA5Ji11JfUt6raictyMXITMY1xoPBPmxuBRGYGRplhBgxGKraMI4Hps7RC+qTopffLky1GTF61mj8VMGmyvXHJN0oWmNrIZwad11x8sTZG/oBhRDiTcRaShvGMWCM5qcWn6K1Nf82f5vNZkvT1jjnxMBohbEKVGTf9XTbjrqueLS6w1frR6IzMq8oNS/fyewY63j1rU9T6xYXLXcu76Osmh2W5wncxCCow13Mk0kpxj2nuVspxSTPXCc21Q3bk2t61zPqgaRiuQcag73lWHHrF8HpgFJx8hLQqhgZpeZzuT31JGQ7OktyzgyjOMKqfF+IAqe5SrFNct05xcM55HS4ZzkXnhn5QkoScU/kYnG617P1OER5EyfJsUMyXXNMiTz0VFU9oyRTTdQhDSbOZc6aCZ6u6yNpjCPk8LZpT6CF2wGtjy3bbADn+zCTSH74mNpE1RyxH0i7JtqCcuiCzJXnUO7jc7vMwQs8fn5TrFxPrfkelX1xlM6ZWE5nZLLsK7PDVK4xozAz67Uc+Wr1vhhzNNv8DJBN2uw0zXZFPs2c9ReFCyrLuk+ROCFgmcLxIzYlHjyBQ/SNzLmlWvO1/U8dIZiQCCilMJUvS7PM4YJG8P8n799ib0uu+mD0N2rOtdb/svfu+8V22+ZmDO1ASJzkcx99n77vIwQLWVEkrHPygMAPPFkGJTiKIiQUJSAuh4dwIiWgKEIoUoTQIUd5OPAABOUigREcEucQSAgQiG3cF9vd+/a/rDXnrHEealxrrt12d6Oc7GTavf9rrTln1ahR4/KrUaOqaGg7zspmZXFjuC9bvhLvuHoOF/t7+IPd7+FQBZxsKp49fzce2zyL88NjYF4sCjlsZpRxsb5QkOVIIuNUB9QhSoGmyxfbC4xlI6sRYZ6yMtpRA9Q0pQV6itVhUdA0cKDMM0L+bj9K9EN5rICEbDiyBiRSXwI4iPYLafRRl4r9/iCb+m1QC+FqWdCSaweLxGsklX25VEsYXkUp7SZuTY/iG27/eRzKHtflukk2E25MN4BTQt3OAC/GZ5Qm17Uy/uvwR3h297RtaLjMM+ZFEvfRIu5t9eCEsRTjDYkNWrjlJ5Uy4NnpHXir10MNXMDxfA5dxrx+jNCEc0DBl11+FQYJ2n1q/jwWXiTB17Pay9A2NTjsD5imtltuLTNq3UD3HNDQZxvVt2hH0/ViIKXI9JD7nSbeZSjtvKDaRk9to58KDAPGTdvKexwKKsuKgGEAsMhuhVuptpWju0UyGvDZbAbMs2yjLTMO7bwUlvwXSdST33WFEMAYhoJbj95sxyig0T/NMw7Xezx+fhN/avdO3CgnwA3Cr9Mf4OLyElcX1xjHQXRpwMXFJa7u73Hj/AxvP38c/+fp8xjZR7kkRl77RCMXbaukAe/8zLsbv4qPbZhZAJ8uKxQgGkGNGO/Kumy7gomxH69xdXKBL+w+By4Vh/HQRmRyFgtotHOcPKoTDAqR7HngZ2yooVMj0qajaoxY+2hI6NWN0BqNbO2a5gXTrOAJSCbORm3ti7taDx/7g7KRm22gS2k0mlyCTBnEKSa9hoGw3e2w2+1QNQTOPpILFaDEOLo2M1BG2nYIfwABYhAZVD60QjgadfbfH3ipUyDIJmv9A6z/N971ANjAHR2vx7GMjQKga2vZPrP1veUpqTx10VnlpfWl/H6P7vsy0cIYHv0cyjjgtfnz2GwGPHP1NtQ6Y3d5hrIfAKogLjjsp2YDlgWVqwxiGNf7ueu33I9RlhKLySRO4wWyKaIsLxcdKczY8gbb5TH8uekDBt60TwsBOLk0PiwCaAtRxNLCv2asCC7jDZgFcAnGjf0tXFxcYDtucTVe4iY9gsqL9EXjwTJPDRCEqBMRy3Raa0OO5ElbNTQa2WGAJsqpDJRBtm2/62SPiQKA6cQrSoFuakjUjlgBStvLRaMsNARs7SBZI8rz0mz3OG6gK7F0kKPySqKbzBXDNOAc52YrJ+jgugrIqCCwnZ8HMDZ3Nrh95w42N9pmqYfDjGVZLHcSaPmZ9WpB1R3bNVIO2FRSGRbM9YC3ej3cwCUgTEJLpuVwDoIvsfNEzhEjAMaMBXeWSxAIwyARAN1cTIRsWarMM7c9SJba1qebvolUXt6f8ern9q6kS0Xd79seamjbzFMpWKYmIMNQMG5G8LSgUm2jV1nmWoaCk3HAdts21GsJwnqWS7URdZEM8HmZMNqBh3qWmRhSbQ+15ZDzXFEKcO/epYym2wqPu7cPePodpzg7O4EGlAq1OczL+1coBDx/4504px3AjK8f34G3nT+C/+/mU/jD65exP8w4OyfcuDngfV/1BGa6ia89eQdulVOcouXcVLH0dRaAMbcNkOzwMagtkxGMhH11w7y2X021LcbjKMUM1FBAI+P+9g6WoeLVk8/jUPaYMFkkgGT1SeXalraqQaFGRU5yzX97v7joVu72lAKraHAhfWefvDwdgIdRsNWk0YQjUQd3grDRl1OqgCUYTSuFzbkqjQqO2q7IBZtNS1K9d/deOL4+0KI2P45gDVxFfnU0p5LcmSYj/1YuDsDnOAmBFn/A+o7il1Ss0daDPLvPX6wVEfRIOfqkd585VSoEHoHNMGLZHjBzxR+e/j6oEHY3tuCJcTHv8djFkxi3W4ArRt7i5uFmA+EAeDM0H1tZVqexbPPQ9FDPLpsPM2oYtXOwaxqZowroDtJxtVYDjDKgENbptO4CGQDKHkFAG0gtpHLUAEuB86MGvrS+VJDQgMWXX30VfvNzv4Znx7fjsVefwMXVPQdLBJSBmj5SsfoanQVVAAwJgNEpPd/cTYFSAB86wEpeJQpLPFKAEXrV5X0VxevlAkGoXJ+G0Yg4/pq2h4sNINpO740XfiCvtgC+0SgDjCq5awp0lO86QBTeycqPP3/9Afzuf/lPePrRt2F/x3M0aSjYbDceteI2jeT7A0nZLIcOz/CDG9/C9VADl6UyKjWUuLnc4qmXnsWrb/98EzgLcxc89dlncTLtZJt6AEw4YMLLy70GAoYB41AwA6gz2bbrdZlt/xUAGAa2FTx6EYBhGLA7PcWytP1a2hxrsWmiWhmoviFcvMzwE0n4HdgvFbSfcHa6Qy2j7KnSQMwiU2MD2oh/PkzASQMxo+yjcDhMcnqngJZhxDgOOEwzlmmyc1P0v1c/dxBnroczAkDF1eUe0/UeX/7Is/i67TtRZ58KexJn+N+3X40/P74bDODq5gVeHP4QT54+gnduvwJYAF4YexxcLxl45DOPAnvG2as3sNQZEgQVR+3bv1cztotva19d0am0TQHLSFg2C+6f3MVh2OP25lUcsIdOBkAMl40ho8+H2QCsgQrcSesL+jHZkujUeP2wPe+/tep4ZZNSjgYRdEI+Dg5bFYZ41Or74I6DscjjavnZaYyb1Z2cnuD89BTLUnG9vxZW90aTA1Mi2BLHZRvwaSv9s1GhdJIaSayvNe77Eq4wWg/vBlwX+t4gslfEvumfRkwdXEYndwTAUAChq/6QBrkns9e8vzSBXJxRZUwTY54WXGsURqJX93EhXwl/vPk0eJRpI8iOyMoDYtxYbuHGfAMGZsNofSTCE/NTOGyK5c8ttWIohFKLTCM2x7wZCFyBwzybLm4Kte3fDwuicy6SZzVuBkCAkvK5HaKqhyqqzWt/FwKgDk/0gKkKyGnO97HlCfyvr/wf2Hx+i8t6HxW6pwthHEf0kkfKZGZUtMTRFqWt1vtanx4p4hp4LDoVAbhPcxMQ9CUOEVSG8lJpG2X6UCPLkoLwaJc4TG7aT2IfKCtMe0a3yGCTOY0oDyOheRCnVsEbDLjG3D3GCU7xF+r/An61maXTs10wNaG13izvRwFC7fDN5sve6vVQAxcCbIkXUPDUHz+Lx155smFM2/yLsJlHycNokZdCjC0PGMYCmtqBX+M4AlSxvz7g+mqPfgRXhoKTkx1Ozzag0pYlFtJEYDJFB1pHaqRgkGmUWn0EAJCNVNrzFSebEcN2g/2+Je7uGRhl9LW/2INrxfn5KWigtkX+XHG4ngQctWTazXbA2fkpGITpMGMY2z4uKjjb7ShbOA+YpgnTviUPbzft9N4Wam0JrPv9Acs04+bZGb7h/N045U0Ly0JWgMh1hpbMxewASw+gDHjFPozXWzz1mWcQ1bVC8lDkRFmNLPn22zKSG9rJxBgBbBh3drdxZ/sa9uUSBz60s07Eb1huTHIaIhHB68RoB0FHKN1lNicCEx1h+O8JMyTDFX5nhATBEJRP6MQIet1LpyE5TpOY4VmDjpag616XuTmaW7du4vys7aZ6eXmF6+u9tCEnHlP4J0ZaMm9ijTrq6oyqfPDoWnf3jR4eG8Co/6BG2BmjSd0NrMY0yw4gNlQVThAOTibIdfshoqRQdwe+NKrAR7kVwaTLD5EkmcKnIok8Cdf2kxKRqdyWVVfZ/+fV8Qt4bfN5x2axLiZ8ll90cKU8LBXPXL+tJa6KQ9LB2jRXoNaWjFsZvFRcy6rFiWc8PT2LwkU2udTp4wwMT8rYBomyQnKeF2w3m+bQxKZWDpHV0iLiSuMJztpUMC0gGlCKAjcOA5SADzUagyL96SCDSPdX0ggDtzwkkQWDL+z62oMNKTHl/7SVbBSmSqUsCvdjIQHQGPDtxYPCFBt8pWB82XkN2MAolOXT1qFyQnNOJRxZkQiSvyJ82nrlZQQqmlzf7gsJMk0FbgfwAmwD+rdyPdzApQAopU0ECSM3ixzXXgkkS2dp0wQuygOxT8GoZNoppZtRpikagzebESdnJxjHDcooIVLW00BDIJ6b4Dcg04RzkCiPHsR7stuigrC/3hvYKWBswUCtOD3b4TDNqJqMN7dkrXEc22morIcjtgQpgBs4KoTDfsK0P7T9Y7gdcLfdbtvKI4aMaIqUIYIuwwxG2yfh4v5Vyx8pBTdv3sDXnb0TXz4+HTiXxyPq4MbrLcbrDc7unq/C6ST/023Uq4QTAbbziRaJrMThLMn5UDxUjNsR+90l7u4u8NruC6i8YM8HU2QbVSPkq8RLFCwur9Z/YxKo6aGBjeB0EyBZO+rMn/ALh3oDWTEaEGkPPzTRLNp/CRmFkY3QE7YkV0O2Ao/2flv588itmzg5PcEyz7hz9x4Ohwk6UIt0Rqce+WcgDGvCj+GupjtrHq2J/GKXj3dj8OroCq+AHFmJUOOuJbG/u0oEt/fJ7H4GuxGYWEulGnd8a46EpwOYbE61/W1HhBRxygwmYHd2gvOTXdNlWTE3yk7YYMb+cMCF7HTtMuF0KUF7TPJThnyf2X06y+GqDBbZCguKifGZehnuH0FuKHhmetajUwJsxs2A03qKm/tbWLiCl4rCpR2EK/Klo/pKfiSLnRtn0Ul3ugUkckZWjyZPlzqYgzYwZ/UoyGjRmTHo6MJq7+FwXEcNuppUt3xQZoqM6FR5tjvNh1SwHeirRsL3l5EnGWavzf7KwCXLvOi+RqdZeEJRttwqtCPhpCz2vEErK2QXJ1tSpR5iP6aAuU3JcaO3ElAqh+XffgL8W70eauAylGK7/ekGVxZaZEfUAFbodosRT29u4j5dGOIu1A6V2m03GDdtNc08TRiHtl8Kc8U8Q4RCNxRry4znaW6CPo42FTOOA8bdph3uRoRlWrDZbhpw2R9kZQlht9tglBU8KG1ksL/c4+pq30YvMh+9vz7Yst4qoGp3smurf9Bmku/fv8IsJ03vTnbBGAOgdgz8fn/A/nqPzTDg0Ru38GXv2YLQchxOtjucbnZ4YtP2XnlueLQpEVc3Ulgb4u2hzbHfuHcLzWkK2yUqxVhsyatOBekosvWLKGUpLZt9rLh9+iqwBW7vXkWlBZUXLFRtRK7lWNi5c6ru2KNstBv2GCN9RiBHf3jgPHUwLj0ICQ+tnGn82jvLtQP2vJnoC2Lipy+/9pHSeq+hAO4KYbvb4tatm9hs2hESd+/da+ffwPmRR3DHYIjQ5VwAcOy57hX92KM7vR3A65cCZnj1r5HmgI/8N+u3BM4iNAv1m+NQB9210PojtkcFi2xEmjUnv5sKMPn0HtUpnrbjNnB9cY1Jzn3abLYtwZIrBgHHwzDgxs0bmKcD5qltVlmrTm6Q0Xe0S+GAwMnsO8Ejcf4vYS6zvZGetRIqPjt+BtFyaBRgGAeUzYi1SOjUqfO3aJc0hBFY6vJPAMax2FYIWl5BwROHp3ObuOnEsBvw9uk5jCGpFLI6kdDO6loYvo1AjJxQRS0MpkWOIIAthDDaFWhxwVBbWsAioGRaZsxlkUhVa+CGt4DloignzfgZ8EGwIaqRyh8bylgUUyCXAeW2E7yCw8WiuHoOUsfXAIDULuj+QHpfAZVvqNnarmD2MHfH8ryJ6w0Bl5/4iZ/AT/zET+CP/uiPAADve9/78Lf/9t/Gt3zLtwAArq+v8Tf+xt/Az/zMz2C/3+ODH/wgfvzHfxzPPPOMlfGpT30KH/3oR/Ev/+W/xI0bN/CRj3wEP/zDP+xHlb+Ba7vdYDOOLsQIMqyjKqx8EgBgQwOeHG7iD+llLAsb0BnHAfM0twPTtoTtdkzTDzRo/owuRyPoqpfdyRa7kx0uL66wVMZ2t8U4brCf91imGaVQMyLsezEADd0flgpiaghVQr11XkBlsJOn2x4xbSVVGQbsdhtstlstBeA2RdWW0g0ydy0GUADPNM0N2JSCP/vIV+L9J1+GV4bP4A5exfu+4nGcXj2F54bHUEAYuAAzY8ZsyF5NXwVs2kEV5Zn/+A4UJiwkez5QAaqc/Cwb86kRViBRAKAQlqFi3h5w7+QO5u2E++NdLNT2GFFdq8w+umZdpeCjMv8QwJqJQwhzGuOVPTnX4oG5F3gwOOl/d7ez9g7ul2V09YDyTISj8ZAburRZ57H5iBfKci+RqFJwcrrDzfMzEBVcXV7h7v2LJmvk3l1BXppqM9qCc1sxREP3q/hDfMTuaD5JLiVvC/Cgi+KHYExT/6LjYUB/CXwzWljbQG5fEx/57HCJzJm707DHCZIU3gGCDpwl+EdsKV1OvjqHpuf371+ilCucnJxgHAqupwnzssgpz03mT05OsNksuLq6bhtYWnmU+JdJi6CEjRnHu8RlJSbu5rLCtDG7LhaSKAZXVAALzX3R8Y9tVLcEmmJ0IOJdAKhotmHRnJYCzLzgxZM/VkRrvGijK8KL42ebHxh8c8xxbPt5xUhn3EOJJWI8S6Tb9rlLmuBAYawjHpsfd0IZOJQD7oyvmY4CjCeunzaQECU2fiK0ATyjgQ71U1GHLNcl0KCFLFxxNp/jsfpo0BsBSGZrvT9IfaHkGDZ9aQnCRNSmm3QjOmY75qR1SFtZ+N/8rKLnnnsOP/IjP4L3vOc9YGb8k3/yT/BX/spfwb/7d/8O73vf+/A93/M9+Pmf/3n87M/+LB555BF813d9F771W78Vv/IrvwKg7TPwoQ99CM8++yx+9Vd/FS+++CK+4zu+A5vNBj/0Qz/0phoQ+sO+B/vRftN/wsiHATy3fQyfHEfMc8sVGTcjxnHE1eEa82HGsNuABVnrHKOuEALY0KeGwerSIinTNGO3HXFyshPBb6c7z5I/0kKWFZtxxLAdMU0LDod2fkMpethibbvxMjBuBty8dYb9NONwdWiuVzLjG/rXOfD233bbNtO6uHcJUyGhk8A435zgfefvxJ/bfBmGGXjk04/itUdexU3a4Dl6DFQhoKB3KB56Bcj2d6pMYF5QltYRldoJ05vNiMNharsNywGUTadaBGkZFszbCbdPX8PF7i6mMrUN/kJfeh5QRv2NODJH41fOF7FpFP1XlM+cauWujZ1s+Ztf5KFMRxuMiNfSJ/rIiz6ZRvuAzylxeE7pD87OrFcu11YNGcoTF10IN26c4fzsFESE+/cucXl1Zcnn7Un1tO5unCanseeNJSDqvbBUOnAfmUnh+T40/iVcrZXHQOaDgScUBSeK5HBQQEAZ2dYfMfKRolwdKE1AK/DORrby+UGALCZNA7pUPPa8L63n2jZso0KoC7czs8iP4XAyCMt8AZ26jobxeBTQ60nTQPZMAGwBO/QAwx+SfzpgpJ9n+y2DxZ5F/rWvQXMMpbUqmPJYWxUnTlw/KS1hVECAnd22oIGnNq4UkD5DFlwAw1gsKqLFlLEdbVCYULkdq1Klr9rCDIhtbgDiQDNeGl5cQWCCnifXgNHLu8+CQ5Ny3wbYRZq782C9SUHM9FhbHPHHJl/J2jhf9SfjtU/JExVZpUZtoN04J+kSeRk8g3F1/d94OfRf/st/OX3/wR/8QfzET/wEfu3Xfg3PPfccfvInfxI//dM/jW/8xm8EAPzUT/0UvvZrvxa/9mu/hg984AP4xV/8RfzO7/wO/sW/+Bd45pln8A3f8A34gR/4Afytv/W38Hf+zt9p5wC9gcvMT+oI6oxqML6cvz893MKN3QlenaZ2CvM4YBgKNrsRV1d73NyOLXy59+W0QBOAJigwKaDS9l05XO7bs6W0HJkGSDFuRizzbKOek+0Wj5/cwrs2T2B7MuB39n+Me1UOn2JCKWNbps3ANE24d/cCu5OdnWC9LAsgYdB5YtQKnJ0PeNvjj2DZt31o9suE+8seqIwtjTgdttgOI/63k/fiyfEmsNS2aRGjJf++eqsBM/jUGxNhHAbZ0Vem30QBGbA8Hea8odkyN7CysG5gNrQRz2bG/d1dHLbXuNzex77ssbCceFxjNETFHDqmAyhGAkJHJOOa//YSc8yA+ruUnjmu6P0VAYsABOrpOQZM4mudZVezxEdupYLCs107NEyr98pQcHJ60jYenCtQ20aBSwItOMo4hu9yrN97WMUdrcmPJ6wSTfWKdHPOx949Rlj0fTmsHWAJN6f7oGiZOm1P3m3Opq1CjO85r7RMr4uMHjXoeU+XTLd1cXCeXlomtDkuPYenPblUtp1fQSRLlx0Iql/mJXi9o5jQO9Vph+tfAAZ9AUaO/kaAHY+MI952XWt7baU/Ts/qPYvq9O8GmqSsyNs87RHApDjhYrmJ1XWHAZ3i4KVFheZ5AWiCOvRhHLEZB4zjiO1mh6KnI7PnrbDsUD7Psxzr4MewGK8kRLfUtrpL+xVBzvptk5RnzKEtiEnnEXwc1ymW6MpCUUiwer9981oUUVlE1sabWdgYzfaMpaCMAzbDiN3pW89QedMlLMuCn/3Zn8XFxQVeeOEF/OZv/iamacI3fdM32TNf8zVfg3e96134xCc+gQ984AP4xCc+ga/7uq9LU0cf/OAH8dGPfhS//du/jT/zZ/7M0br2+z32e58Xu3v3rnxSZeov38pKFUGVPgwscI4t/o/zr8X/e//vME8TpoGw2Wyw2YxY5oqLuxe48egNjNtRlkW7QPcrU5iBZW7JbsNmaEuSJ90Eqj1bRSC3mw3+9Mm78f6TL7MdZb96fBZ/vLzWymPfgZPB+PeHT+ML030c7lw0ZdHTXiWBeLNpe6VsTwZ88JHncXLvDGDGvXqNz813UQE8Npzj8XIOorYRnx16R8BIG9y4dwuPfOGxlssDSHKaOiyWBFGSVQuSiS9TV3p4oOqaasayMIZNwbJrO11e7O7i7ni77aKoVru23lJx15Uvldv+N3krcLOq3v0B/fehYrmblNxs8pHL8nG60W8Qq1Cv0qPvor8Zpl7i9/4pu9n/EMoOc8WJHE7fgDCiZxanyxiGZlyn62vMC2OeKqbpYFN3Mb+GujamPWO62oxsNjt2FOwlh6GRFQY8kH6s5HU564u9PznTlAYvBuKOoAcKq+zBnjLBLcHRVyd2V2in8ShgWI1wWN/FYuIQVpx97Et/XvMCpG29k67V9LRFP4v1u5ZvIFyRnUUa9H5wPiL7JrXsNJA/kpvQo5NgYBXv6Kjb2hwZmJxlBkVrRxp16ki/8Nrudw8cKatdNeTB2M8U31NQWAE5M6rZrwXToeJaoghlENsqcj5ufIPLYWjT/rpXEkE2Ap1mWZxQHxA1kTav2RTaor8nQTvyueeB3iNRT469h9S/Qb7jytJ4+TSUT0bWpQ2WaJqxxwHT8v+HDeh+67d+Cy+88AKur69x48YN/PN//s/x/PPP45Of/CS22y0effTR9PwzzzyDl156CQDw0ksvJdCi9/Xeg64f/uEfxt/9u393fYM94axH6eYI4b/HnDNl8HPDY3jv+dvwO3c/jYPsNjluNthtN9jvD7jz2j2cnp9id7IDygzJAQ/BG3EQur/KKNsyixFZ1BFy2/Tp0c05PnDylXhneQK0AChN2c5og/eMz2AlWADeNj6K/zh/Fp+eXsWr0/22LTsDIxGe3D2CJ981yi6FbSqrCCJ+lE7xyPaslUN+cGPRXTBFEs/2A77i99/TxLe0BLb2TqOhyuhBHV2VCd7FzqogwRSSXDsy6m7GS6cvYRkW3B1vY9Ydh0W5miP2xC7duEgBpi2nFNpJCOqnX5xOnxZyZ3h8Gii6iWgn2iGWRzz0A2zlg8BS5J2aAF2enSp93XBCLMvfi4ZtPe2gOUSt5bVWjBLWPhwme35/fW2WLo5cg0gk+oJf7sLJWAGGlSOL7U2O6UgPddGWo84pXdKTgb5V/RFUofpTazESW+GG16MHoetgZj79bpHIcOmeKtlnh0oDwqJId3ohO/oEykTeK6NN78pvJUo4AScnO2zGYrrLCvZlR9xChOkw4SBgFpCVIdTWvAROB0pDnyp468Tb8VFI3jzGzPx0196er84/i2zpdO+DyjIUtlbWXHYjSEFuO4+n5X4NeiQMeeIuM2Fe2HgAyJlogUNLZWzGAZvN2EBMKUnsKtoCi7q0VaKHacLhMBswoPCPRZD8x45lvGZjLIOBB6wztO+UgG1nZ+OzYbCzrrPRYZvzqTwoj5bjoOeNXG8YuLz3ve/FJz/5Sdy5cwf/7J/9M3zkIx/Bv/7X//otE/J61/d+7/fi4x//uH2/e/cu3vnOd+ZwIcOUo5koNg3SfLyauq3dG7jgfz/5aizLgv90/4+x308tUjAWbLYDpmnB/bv3cXHvvuRtDKjzFixTKlrjOA4ADW2KhIuf81IIJzTi0XKGr92+DU+Vm3hsOLedLAfy4wb6g8a4thHgrXKKv7D9Crx/+2V4cb7dktPQEozfNjyCu/MdvMifkSPoue1ZMzTjZLaBCD5vHYCXWHUNjxYCaglCLHTM02yjEtvIaJB9cQph3hywPzng9smrmMuEy+G+77wpcs4IEQ1um0JVOVOpSO6Q7WgpHtT+dhGu9eW9705R/1WjGX9fv4/GCg9HJycTZA3NaPWg5Vi0IUYUjrthd1YU6k+ui2H3/Fda8UETXauUMY5Dy32QpDi2qQUWwAkH/dkspbKbXMgQwYx2+8eTgtXoCziIzAkj0OREoGVxqqvn54Mv7pCBVqsGIQImNbQhLXUFIN1xGbCRL6ovlItb0azvOp/z7z1izgEQkXU+Drj1NaujL07ojatEQIR5nlGGtgJpBMuZZUM7+0YHCLXton11fS2rF0VGOpgCeH+xCWbb9kF5rkdoWdcY2lI99MTPvguyjPfAwn9XG8Zd7k7w9H6lMGLnjFO9ZNtZMIC6ABjaRm3tHCA5m6tX6OS9Y6+0TdcO+wWHw2Sb85n9BaArImPTNpsB4CL2sg3oalW7/XpKQdCz0bxNwpbExqhva8Dy4GnVB4Ae8j8cfkg4ktavvZXrDQOX7XaLr/qqrwIAvP/978dv/MZv4O///b+Pv/pX/yoOhwNu376doi4vv/wynn32WQDAs88+i1//9V9P5b388st270HXTs5OWV8udQ9Ckiz3/bk1/zY04P88+xpsqOA/X7yIq+kAmimdYcO14rCf2nkMyyksiQ/AydmA5566ic9+4QJcmjDsMOIrdk/jyzZP4bzs8Nhwbksj1abp+5qNbQSTOqHgrOV/7xqfMOXUUc7ZdAoAKPOADTYYhiJGgWORDWxYPZyeaeWJka7trYXbSiSl0c4GKgQMhPl0j2VY8IWTz+Gi3MNMs+3REcF/oiUcCteiQAW+dwDJoWgi+N2IX81e++yfVBJ6/eidPXffk5CswG8y1TBZQ6bJ6eTVvbhk1BI7Y2hD74o3MtlkoLdPHBu5gkARBLQqSpGND7sRZfA1AVvklSE6yo30V/Yhvfkiaz+Ql9F0DFpd0et3d45ELl6/HDfocWfb9ZMJssTegjEl9EmcQqHwCJsQ5fbpPiE63ZgkSDqVj/Vd92yepsxy6HlLftu2yRfiGjckt072fqlLxdXlFfblGrvdFqe7nTjQFmUchkbTuN3g5jjidHfA1fUe13uJwHDbtLNQaYMRiP6p3BPk4EekyItjRwoy4m1QWU9RpNRe16HEMC0bKmbqccOLcBGskYa+NKuu0abnmLWIJWX6Hqx2MMOun9UOerNbVEU2JiUAVMgGw8M4ms7mprbI6TwvmObZFnmYHJrcroHTqrlH7IfznhCT+ROgM2ASbEzgbx6o5f5Mgx3q+uktXG85S6btC7LH+9//fmw2G/zyL/8yPvzhDwMAfvd3fxef+tSn8MILLwAAXnjhBfzgD/4gXnnlFTz9dNvU7Jd+6Zdw69YtPP/882+4blUgM17IDpNEc5hl9bs5cjcuGoMoTPjftl+Nr6Fn8e+vPoX/sn8Fhzq7dWfgqeEmtps2T6nlgoBxJPxfbn0VrvettN+bXsFXjU/hOQEZChr0b3LBxJDV+FAjoEv3Vo2196OdJYx1xLiMOL8+w9nhBjD2TiXUryMV+O/t54qFGXVu+waUQjgcDpgO7RDI3ekWm90GF7t7+MLp51CHBffLPRvla3taTowmjLEYr7aKqtFDcp5JMVD44GiKgsN+fYO0Izkiqcuelt+toZGP0bNFY6ppwJ0mJkASXV5TdjF54bdEaLBnRyyf9AF31txGZKk9kQvBUDEQV5QonX0kIJLQ/FyQJUFL2h9x2bqBqehp1GfpfEiqm0wuGPAkEq/Y26L8YwctRIG2Bxi5QJ48585Ki281sNNOzkmSnVxtLt7a5r3LwhOuDkgicgivNP3q8VgUM+W/rqqN4ZfO5/goOMqx16v1cfjc2MxeHAOExU8TRjtO4/LiGvvrPU5OTrA72WEoBXPVbmnlDcOI07MRu90O+/0B1/t9G8AUSrxMl2EYwhCWLbOUu9JDey9xewU6j723BnoxaviA6eEHyFGfh7YsFUvcupni3QcoNvU/5gN/MxgPK7Yq2/EsZSht369xtPOeFAxrBZtxxFAKhmGW6SSv1SMxvNL1nrqem6Rb21pbAviJYAxRDmHfVXdJ3NYSQHzwOsFav/XrDQGX7/3e78W3fMu34F3vehfu3buHn/7pn8a/+lf/Cr/wC7+ARx55BN/5nd+Jj3/843j88cdx69YtfPd3fzdeeOEFfOADHwAAfPM3fzOef/55fPu3fzt+9Ed/FC+99BK+7/u+Dx/72MceEFH5YpdCl7AUMzktAS32k1u1mF8RO/vJ8Rb+4o334RvOvgwHLAgL6fBUuQneLPi98h8xY4L6MSrA6bjF07tHwADevXsKGkFIo28BQU0XjyWPRSX25LZ+BOzPtrD82XwT7/2D5wFqq5EstFMr3NG0I9N1rT8DkrcSsughjw4EVG5JZKeEademgO5v7+JiuI9k4DUsLW2KfWBnDEFC0yWCLs9XOapg9tsDwuYEIG5gZ0+vf4vDBlHHztaQhOeV75166+sr9MTq77F+2D82O9+3g00eFARnSMJ9aS7hKbrBthmhTuHljfmMTMcMamQIxujUtEBLEH/zVQ2QcHoXABDD9kanj8RJyuYYrjGdVKOYnfbrhcZJRymrfgnc4si30POkAx2y/UFg32NxAn8UTGjJ0c5rReRJ4ishjHym9W2tK+v4SrjNjqQly+o8QlXMuiMrQLT4ZmhgzAtwcXGJ/eGAs7NTnOy2IiNtP5KlFts59uRkh2EcsN8fJE/KadG2mGqIbVuEQR3HEj9j+46O3M2BCmu1H8BYpgnDOLTnSwnvutwmS/mgqE14OgIg00XSe5GmGPVyHYhl2+pE5ZNOmes9QjIajHbcyn6p2O8nB6PcVqe2vEkBM2jJ9qeno9HKDNlHRrbaqEdsoNIS9ELbGKS/4w86w9EVx+GMJrlteS02APL7qld/EgDmDQGXV155Bd/xHd+BF198EY888gi+/uu/Hr/wC7+Av/SX/hIA4Md+7MdQSsGHP/zhtAGdXsMw4Od+7ufw0Y9+FC+88ALOz8/xkY98BN///d//pojX6ZO4oQ6Fw6UY0QjJ+EQFgggI2fJQgRXD+iwesxFjdCrzQBJxQTgrhrB/5AqP3n0MGiphhKBJh2L1s8lDoXZKMsUdG5G0jwDbOdMjJsW2g98czpvTGrXtAHPBvCxYlnY0gA3qVbhray80SW8g8Fhxub3CYbjEne1rmMqMfck7HSpgE/ck+iuJyMITz1mRnupGpKacfZ8+0KjDwZs4hmNrUuxrr3C9x+nrT85UXghWME9bKejV22L0Ig0U6uyLjiAmNJbjB4LxVee6/aYYHwWdgE23aXKuAoVoZC0qpDx2j+N6IA+sgTKg4cwYMHGH4YDcnUAw3to6BYjRGSTf1uvJF7/YSTs+sg7AnMG2tJsVjYkRV0Cmh0UayEs8gHdBuKFtT21dmWi9L46tF12OOsLd31Cfgkjts44Wx2Zi+WrbaKwQmQ0Bt0MSp8M9XIy+W2tT32MTa7CBXuwhS2lKz0WqV41seXThflyxreSr7Htz/AkaxrZkGBRo7MBCZ2sBl3s3BYuB/UDgESAVND0rcrAzTmmk2t60nWODO8i1IsuEyIoeSDgAVGT59eBARt9pqz3bsSnTNGOelraJqeUqeQSUIOCSnB63u8cBSmozvH+KKLC2OfZ7LE9BrQ4P3+pF/KVPKP93c929exePPPII/u/v/3/gdDg1A6uMspUv3dXmgsMcNDUl1Y3WuFaJCpABBdurRQx/HWb8l/f+Hi5P71u9ZSj4st//Sjxy5zG41ZA/uoJHpVXoiqO6uJmP0yrOI0QpzGW5FQahnQkBoX9eKuo8y/b6LcJS2UEKR2UrBbRhXJ9com4XvLr7PBZacIUrcJUU4EhocA5xhKNCW0gFNBpgBWmUAEC8t+6nY7/6FZ3eaoollJGMWXxP5CAbS/IwfucIEs3kZVP+wdoZaW9G2Am2fkwRlmgYg2GwO4FSM5QeTfTpNjFSMRJiUTCh2EBKA+DqiNSwOF/7vjpi3IIwHO0vXtOfjWPvEBzcHLXuD6wjOFmL+JDxyO2C+yiifJaNdqOtuJGy2vM+H2ZTgVJNdu3r64EtsD7U72Rt6R1Fcrb5ViDAeRZNut9ujdcVj2rz2gCmhrZSfi+QZ9Vy/q4PHvFv7cPrjUaibNgvlG9R39iOr5HYHnQw5wfI7ZHdSeRxsHPHe8/ynwDTn9zGNUFRQxw4Zf4eAw452tNs1FAGbDaD+aoqkXN9XreTAPvKT6Wlt4WZzgA7Ij+6q+pqUgAkCzRij/ggBWtBAnBYDvh//uufwZ07d3Dr1q1V+V/K9VCfVVRKQRlK2P1UkGXJxgdwg0NRwNSRENIpl2b34AxycDTiudvvwv3hjr0wTCMevX4ctBmgsCeiW1V0BmyHRqevWGTGVj2J8zHX1o3Qbf4TwFIXzHNbSqdnLlkm+rLYqh2QtHMkXJ9fgLcVr51+ASiM63LVjgpYqgm9qjdCG5Q5SeglpGz8DbwOD1nYMBu948bMHG4AP8cUSXTVHbz+Y04pKGJXPhkh0akyLJOuC+Wm0DUy6NAl3gDlaSMthnJZx1YN9YbDHKw+FwyYrhoiIgxSvq4cil7VgLoU4ImTZJurtWeK8y84dicGiok6hsQfYZ2roMutcftv3f/ZqnGQe9L+eJ0rOoAKgPQkWhPY47kVUa5J/iErMwKgVEsWaTtk7kjbe38XnanaGo6lskUzVvIIZ/WqUD//QhsWiNTKPHrG3I4mIVRw0d1Oi+f/hbKsujQojC5K6bZNrONLoMLpHc7EySnQEp1LOsNpLx1nVN+H4ZPqD8FPSk8EaZtiWe4x9H3mGbo8vDJjLG034rmu8zO8PW3zv/5u16ikJ4m32nV9G7siDHwvAC9tMzsvrPm8Ydy0HJiN+pigpoCBtXlZbDPUnH8UZJ1U/ijdUwoVLBUeLNHbrugwwj5Ex2Hgm7seauAyFGFabIUaBQrmSRxSO0C0hezIvZGNPrRr+twLNUaEFpJ79PbjePR2OGsCYvBkYJaDYREV5ZUaba6/QoOeQb3kSPRGV8zTZWbZfXExYFJlFVCti00BNQfetqOedzMOu2tcbS9wdXqBw7Bve8HUlowbT+uNK5GUmZYqI4l+1gIDKtZSt9qm1+vpnGPGPSb5pnyCCujyXVX0aALSgEqdcqJDFTFaAYhDZ+iJ2aHRCdBk/60jtWPKeMxjReebTZ/1dUiqW1/+BoXHCAraB1uSDrRTwxW8Nh2QBGiGgRbbB8fsPaWqS2iYg4eVBV3R6/IcAQV3T/g+KugdVtSNY+DpAZdO7Rah3qIvovaF2HaHtuTc0CfRaFNHT3bRcCDGrqvuYDv5QvgpymwCevoMib5TeO+IK6SOpcYEL5qCw6DoQIT+ogCyViyVUAbZjj2VzcHZ5Stwzn9Ljq9/QcpWXgqTq9CjdwwIUJz6Z5dBUscr+qxA0QhQBxyBszAnISi1jVHvVNcHtChme3de4mAgcyEBjQQ6e05p59sBUuGR+E6X45b67gho6uWAW54MgVFKO25FbYNG9BvJbcuCNiuxYJoX2+rCVivZFftMV9qh2csC6LkYzUdxPi8t4h0gbzFzTIbf4PVQAxdXMIbLqYwkg7HWXrNRc2CmRWRMOYoxXfMFYOW2MkvoIHP2wXmSGUSnrYLN8Nh6AHlPDxnT8lRBVTmm6kvi2g6LHgJnZjtPiQGgMJaTBdenl7h99iqwZXBZcMDUtq1eKniGPw+I4sUwIkOjPG0KhWTKau1Ij6uW/qAOo58bPm6Av+gzHBwMa26H0uBm7dj3QDlA1XjvSzo754MjjrOry8iCw5KVo08gx82glWNgzZ8yWBNH3GpECmGzGXDj/KydjD6M4FpxeX2N6e7sMqsAMzpHI4v9vtFFoX3OX7DTHe83cJANqFJu4N9kTImgwA3kd+PIPiHbB4EXrVun35RXFPpWie56zYDRMfvv8/aNHqcl9gdpuV13W3SkF4HQv36b00Oi9fAQsL9M5M/3GDyEfYzeDrcbPV5jq61WyM67xXbJtj5MBYR2qH3sZD6Y01W9afVOGhy1cvR8G5VDonbA7XazwfX1Nea5usMOQMgYEgZfbl/1c2AWw1IAAtcQ9cOPcnF6jCMGgqItXGXahasl2G4lL4VBbZO6pXpiayAvfwhNNEpVNpMmAuwH7M7TjOvrFk0bxgGbcbSzgjL6bbI+jgPa3mNFViupnEV7lOWgDIQCXf2UaZRWr9piZuxBKv0GrocauGiI0x2MG6+Y5EoyKD1miO1v56QoKodxvL13TOAs/N8bMrQRRyHf0ZJAnpBW3RipAFTUdnRPXTBPC+Za23QYc4uS1KWhZtW+AeAt4+L0Hu6evoZpc7Aj5mtl8BROZlaqxPk7/TX4C5L9DCi0wtsao0bGb3P+9pDzJ4UcE5e91BRHh3VWA2jREFfpw/a+ThFARt5RKeP+jHE0aQaOg7OOoMgbgdihCi6abLD91vo4tCHBJXekx42bh9Qb/2M/wf2zgIFRQMt2uwVRm9++urrCxb2LtpIIsOPsI48pCWZvOcJ0kt13o105nFWkjqO2iU1Xva51XWTGVgwpKAiO2GhgTnpAq2d6zoUiQUHOglMpbasDB2JszsuXbMKdfUQ2RkOkktbAxERWjmqMiCiKfRO61qcxhh/dq/I3z73keqJ4OWEKceTRCK45lUdq7zSMz60/9RgQyfCD7t6qYGAoA4ZxSHRGImJCd63VpiLsBQbaEC7wUXRlGFoUfFqWBmSGgvOzXZMznQLXplqRGUw4+G12hIwjcU0SGThmk0PlUWxSmPZj9TXtEFvQEDewMP0MjIB1vAj0DAbPtZ06DTK7zx2NWXDiX7Zn3b4y3BJ5H+g1zzOWecYee3BdsFTGMAxyUDDJYcGuMVQaWOwvZm7RJ1utlKND2WaauetVCURIg/63cj3UwEUNTgwlxoEaqyHPfsCZrorTCay+H7/m8Bx3f0Vhok0GzChG12FzisFAM9iSaWttU0EWVYlLlqWUShV1U3Hv9DZ4y7hz+hpoAA6YAG77NfBcU/nJB5BHa4wnpBvuCbUGFOBAkMPUCbXwNvWM6j5aYdHoqumyJa/BwOqeEtHxw/MjtHiODTKb6JnzqbuU+2rcI6YAQhuQHGca+MN/C1Q4rUGDGQ2kGnHGfwpT78mbeV9UN4QOHxr/tydb3Do/QxnG1s+14t79S1xeXq4GxlYDtz15jkzYIcJRj0a48Q9dHQs0h0crJuXpTgd8DwAf0VcTkmxp0V/0SoZR6LI9Fl3bTX5LMZKP7R9kwJ20XxqFeXBEIl9dBAkBHkYfk2il9HxihBGQXJHxwvY04qDTTjQUcsQKo5TqlKjLVTaMNUVrSJ5n5yMBm82I090GINlRtoazyqg5Pw3ETdOM6/2hRYkDY+JAXuNM07KYXhMaIH/ttfsWzehnIfxTVlACW9JNtvU9gAK8B52bvHo+ywjRYLKQ+javtrDfWP43yyhqmatLAAOwQZfWq0VkH9NYbIuN7cFoK9s0ETBQG9BxLQCLZnMBlxlPHp7CFlswQc7l26COM+6e3Lb0ipU94zaIXpa2Cd4yL54fozSYL1lDsSK+pcgS9j8J8PJQA5cCAgps2R9kdA6COFXEKKpdFWzTRBFkRK1P009quIJTsxEcAA+pRVcrhyrG8sI9XhpIWZaKZZnBcgQ7M2QV0CJ7caDtq7IB7p29BgyMi/E+rreXWKht8cSVUSc3IE6Z08WBBphykG0q5QY+81imMaHWJoZh8/icbLptZbU58Mv6oSLu8xEvO/SOdMohmPpIH2u7YAP54KtkGim47JVzchblkX6spDOMlBqRZAjSGgUtcWrBRrwBFMEUX0+RtdbAZs0FNJ6c7nDj7BTjOIIlLHx5eYHLy72AjAwWzDEoOExtyG4rmew+8qQ/k3+lqFgU/gakEaeKnDrKj0qn9ZR01OJBF6XonJcbwSWnR44nzz7Yjq6dVxj3iqgTFI0GUddPkI0O5OVgYzhypKu1V4hAI3sFYWTL6cVV1KcrNAdzvI2mrpWhu2hDnI7J3MU1DocZZ2en2G23GIbBHRizOMwm09vtBtvdFvM04eLyup2srLWkNhKoNCBEXden/mNN3lZnGeg30aHwU7bLicdw3pHxV+UzJrsH/oVnsvULfsaeVT+UJquMKm8sGX4BybRdwEDa/ipljTzCpi8ZqEV4SsBmKCio2JYNHr1+Cjf2j2E7nwQwVjFWmTYS/StE4IExnu5w58YXcNjsUVn3hdIz65qfGKnllPK2rV5d5hnTvLT0g9BE/VgZ4GXBzBXbzYixjDg2hHoz10MNXKBn+6gUh7AvAIe1nAXBHHaw8flqzofTPLN8UuENym9T0qLAyXjGbci5LU9rWd01KQdDclUEJC3DAmyAu+e3sT+9xsXmvgAVmfZZ4vRPskThszp9DlETtH1b+pZT5kPMgAgNCG7VFTgBENb7zvvYF1lkgzE9JstCe8RAgdzk58yQaTt09VZXcJIPQHJ3dLrmQR6s5684qgRiXOZ6l5QMLBzQcPdbGkWjyek4Djg/P8HpyQnKMILRRrL37t/HdJhhzVFvRP5uMsaIXZEjgfrH8Ten361jQRZF5IaKYEtDKfQ5QoKl/eaf86ZyAeyAZIdlhTt4cJfA/YOpef9DRCTRPsT2cS+TEQCp3sT+DJFT05KQdBxaI0RBhTJHbYUXfVs4fzfZjCSn92nVt4DKfXCyweFnMjpNF5LdmbI5UuY2jX3YHzBNM05Pdzg7P8dYioEEAkADA1xs1dC42eDmjYKr6z32+wnsYUWP8pgOBhvb679uLaG8J9elvhObmYv2rfMJUfpJKKf4NsKmkQTd/K0HFOk8KiDxUk3KanrRTLaUqe3g2B5bMgleGI8fnsFZvYEnl6eDzDLuj3dxb3MXn9u8jMu6x83DLXz59ddiWEbnQRiFcK1gRUfMcoAucGt6DKd3z/G505fwysmLGLZjODfObTuHfgLQjkcgbnLCTf7SRpKlnbs0LcBydWi+7chWJW/0eriBi6IENcN6hHw0RiZg3gnBatsjOYvD2I5eI1oHso3wwUAX1Qtvtikgne9tGwS15ypXExwCo46Mckq4d3Ibdbvg7vY25jJhoQVgTbzSnI+uMqW5Awd5JEselciWLhMdlUxtb+DOGnzArKzm+XAsRx1c9/iDrpyQqvR17kZsBedfxciROWEiPeoBXZnu1I472N4J9QRHfr/eM2tA6TodwtTm29x4FhokCfdU8lnaqoHDNOP+/QscDlOmlMgjj0fakqnL/dnaQoG3lHy+W/dGqDdBe4BBnB2oGjnVAxuwIkuo1xNPvhY4wOue6NtXq39nZktCbHagOggJBcZEUXXIDhIiKFX5aOAlR+S0jCB/nSw1XXCvlpc3r8edfWJ35JkD0lZ/WxVC1pZWZJuGMZdMsFwKi0yTfRU+ZZjN2iZRJd8NWf+0lVtcGRcX1zgcJpye6llybANDlW8qBSDCSITz8wEnJwuur/fY7w8SZVaJIpDses20HpWTMKSCZLoh3LAO9x8aCEYauDAFGTXZbTWzRIB1w0y1WXEq3HfzyZOEukmk0ggCNiNhs91You90mNueKmGaaRhbifM8gZaCUsfGf9kw8LnlneCR8dj8OM6WMxAVDGORw3cbGD2jMzzGj+F6uMS9chcDCraHXet7EXw/G06AhWxKl30dwDPwxOFpLPOCV05f9MCArEIqMs2qIsVo/CVCyI9CA0ZBJ3yDa/JVj2/xeriBi15hh0UuFBQ+OA+V2NIZWHmM5Zk86uyqiW+uCzCFXpa2dXZdwlJjGVHHBKeFZpRdwcXZPXzh7POYhwMq6dp6blGZpa4o0fcNH5jitv0H7DDEQLE1SdsYDKQ79ODQ7Bldb+RlWf0UHpUtNNWJ6XysOQykgo2jkX/wgYAbTnsnjspWXlXakd3c8Z1IESpRwwMQFRkJUi7eCwuM+uK3WYCTfo5O3imXhvrciVW93Y64cfMcm6GpaK2M6/017t+/RDWD39PK1kwbeYf7HoGp6lbg1gbuHNWBWnEaVTkWSYnASNvrACRFlTqe5TySfKUVfUcuq09JVSNda5L1anP8bDqhsuSDGS/U+RVkMwAa1wkIP4Q/5LKWcsfkE9uS6VhWbpFHXR7MM7vFOhWqo2GxgeYYORKQTCHI72eRDpFYiu/rB9msU6cpuC3Bv39/wWE/YXeylT1QIHZwacnRMuVQhoJSBpydnmC73eDq6rotxe0EgMO+XBnIta0LGH4uU+YkmUIriHBJhPWZLpKwVoleNBGiWJo5e4TnOdQapMF1nIHDVLEsByx1Mb72z43DgHFDOFlu4Ozzj+P0cAPMFdtlC6KC7bjFhjZtBc8o1qIyUBpwmYYZczng1e3nUQpwMuxw2O7x2eFTeO7y3Rh4dC6qz1naNM80zTbQ1N3X2+nVG7xjeheGMuDlzYvt4NzpgHleMI4DaCgoY8FIQ1vBtCwYdlucnJ5gKLofVDVw3/JilrZVw5L7+a1c/0MAl9X25A0pwC0xhd/dN7m+uNPwDHS9o8a1JiNsDoLbLr11aQlLix4/HpJrFYhMwx7YALfPXgWNhKvtBabxACbNa5GoStWlf+6YPMriSmM/mbKG05/t1X50nZ1vDE8TcdqLo198z8prrYDbr5lXYkyTjHJvYcItsZ7k5iB2V2hIAGLRGq/8rlobKagzXRSe0V9NTIq/zgaV7HnPt1k3JI/Y9XPkrZASRz8prES2ceL52QnOzs9sY6daK673e1zcvwqgRdkXZd+TY23kaPS548wy0Dnl0AHcc/oBQyUz6x1vGm3qUHsZjt/1hQZ+bd+ILKqrOhudFXbMhnYvhRG5PK15Gk0EFMQwGAUxLB9pf9AVwYORkeTM9XQdlTNB8KeNJcdAXHSXuvoL4Td5L5KktkkB1aoo1rui4jHRV16v2aZq/3sryZfYMjAdJkzzjHEcsNlsALTNMevCGAphKEMDDaXVNg4Dzs/PMM8zDodJFiRIH1k0gGBxSXZwGNvjnAwdcwSzMQNc85leKj0xVSquNHN75/b2mB74cmjvJ4AxV4bJpo6mpX0M4Hp/AO2BSxzwhbP7wClj4QVPTE/i7ft34hKX2B62GNDOJRqHAXOZcXv8PO6Od3Cxu4MyEmpdcJhncG3Lk18e/hhXpxd49+VX4t54B+OyxaPLowBktdc8o0rCNBWg1JIAMy/AM1fvwK3pUfz+2X/CYWSc4cyOfiEUGVgvbcXsUDAOpZU9zQAqyrjBUAZstxvsdlvMS219Pc1YeMZbvR5q4JKcrPrYeBIc0NnoKNiqoZyfIXG8QIgUZGPMteWqVBlV6G+2B8Iiy+aYsR/2oC3h9vnncff0NjCQbN7T6qnzYtsyezSBjTbfmlzIoLXSNGMcg6uq9PJZw8SWUBmcVC7N3ybYLpTmfJHrob6eOBJJgOtYvgKlZzQ60ndXMkCs9XWEh9CyGmPYk8KfKA42TYQUFUnniQRFDhQBRO7nOsfa2hF25FH6ifIoO1herupE27XdbHB2dtbmhmXFxr2LS1xeXssGU0AcVT/oOII1aOldagQZgQdGeszb8NyxGO3LKzFiv8fIjMtznCsH2GYhzJeCghNY8/foJec09OqeHIxFisgZYLc1p6aF7dcAqzMO6VrnPHhUS/mhACby2omII/+AOEJDHI1VjhDF29jqrAGIBH0IhJEbyRUQUZ33fgo1iWAwwzfGlD0mNFeQmYFaMR3aqsjdbovT0xOAm60sRXdXdcBDAHbbtrJlmuZ2Gv20ABqVFuDrLSbTz9aeGhkBHbCYjAeV8/ts0TkHxl1kUKPkqf0xfu3vadvXz8vfaC+7CBC4DRSb36htCwomvLZ7Fbd3t7Fgxq3lEWyXU7zt8DZwqfjMyX/FvXKnVT0zeGJZDQpM09QGzgRc8+fwhe2rABjTXPH+/f+CkQYsZcZ+3OOEToM/iFEotZeEDXYYMAA84ivmr8Yfnv4eJmoRssoAD+00awLhME22+WkpZHO4ejbWMIwYhwHb7Q7D8KUo9utfDzVwQeW2Ko8IPvZoV9R9u2wkHgQ7AJjmeMIoyexIjqrUupiC2E6Lsgqo0oLDeGjb6e8Yl7v7wNjAg44mqi595mjQvK7o5Ksk8Nppv2IsfEMhAJ7rJkasJUz5ais4byiY245BFD+Inq/DrpGzCgA0gc8dYGwRADuMTZ2gR2X84Rp9pfqZaOetald/M/iydNO28jcD3r1LTnM0coD3uxZhbRPGJmPKrU0tShIO4oZG5+CjXQZAbjBjG0vxVSfb7QY3bpxhGGSr8XnGxdUVrq4Oco5WcQccQYv8RjonffTqYcr6sukTDq4vzX8dAz3+duShlSfOP2QBmByU0C8eHGPPq3idqMcRyq1tmjCsrLKNJtXpmoOHRdH0ZY6/p5IjEHTSejujI3aXIV4B8L6PnMXROLErbChbm+IAswOX7UFzQm3SlmSHYfiUFqNrmYCVKF+R/fa86oFMB1RKdFZmYGZcLVfY7w84PT1pzk3rrAuWsFnAslQwFWzGAeOww7ytuLratykkodvlJ/K5WofZ8SgiP2YblSxhGmmIIYEcgY7WbwrM9J9wHGSQx9a/LdqXQEsYfa0ix+HSb4VaxKIyYwlTZIwFBQVXm/u43t7Ha9vPic1k03eg5atUbQ8VDENXFROGU+CPhj/A2w/vwGdO/yvultu4Md3CO/bvxq6eYFt32A/XGHjAhjfYl2tcDPfxyvZFXOEKZQD+4Ox32pRV2/K41cmERaaByqFteDeOA6gM0ETqKoN8xqxihEUPjnwL10MNXKjAE4FSVCI8FA0pCbIOoAMQr2NevQlPZQYvtUVWJILC8b2wvwoGYNrtcffsNq62V7jaXtjhiGDZ60DOAYqjnAc6GY3cBDRS9PylzpiB0QaL1Y1teyInWJqsQ0OkbaFmxG7OEwcMRM6vnqlm75mDoc7+JpocXaVgI/UwUjZ2uE6ubXcALRGQtJ/biNOz6DmAI69fuW8RFUbeqhrueHy06u00RpHXX6uPm6ljqNUXlmkaAeHa7Ta4efMc4zDKLskT7t+/wuEw2bJ4k3FvNMzrv46PN2cKNjPbz+VbGYFf7V1Y3bmKhCSPRKeEDS54PVVeF1c7lVg5piP71426cKgjyn4CDnAsEKdNKLh68sTyJiSNF74fTIffTN7J7veE2XlirAOONQBaA1l3eo0H6u3b73YYbLJprkcRTHVKA+U3M2SzRKcTiLvFqs4GBquT72RAV4+UQtAN32zbiNr2LLm4f4lhGBI4izoZbUAfUXW4y0HdWmcUAMw+YLWyhWwKfNRHiuRyaFupey/KsOaEGA9D3xAA4trOCRsIhYqf/QORC52yz0oPjZJqXQsDrCNPG6UBtgeMRDeq8m2lj+rTRKeZUdDAkAKhwgPujK/i7viqyFXBxXgf/3n8bYzLFuf1Bi6Gexh4xAmf4n65i5n0LCRZYEINohXdzdWFwDi4yM7u2Dde5fP/WPSPcJj3eKvXQw1c7ArD8tb/cf8UN7Bca4tECGpUB8CA7Uirq3eqTd+0snUqqEpYb7+5Ap8yXjv7PLABrnaXQBCudo5QDYlm/ahB6WpXDVZHhb8MZO1wxReBJsojIlVUNSDIKmNsCtSA+jnetZPxd7KjMvDCwaCskhKiAYxEulNa5Y0EwnteMSNHmmA+JuIId3ogO+gp+s/mMAi9V/SwfvzN2+KkhMLsD1m5YYY8NL2b1tF+LYST3QY3zs8wlAHMFdM04eLiCodpDjtsej3ZIsDK6R2sOzP9MZzlkzjrEQhtK2mbkJvh78Xwei8X3PHRjdu6oPZbCSCgaxmOX65XJAZe0ImAErcJ/kpjkDm3QFvr1iA38GnDWKc5iNTuNZCJuT09f1KfHFPUQMNKIVgsAPuTWqfqkdOhtHJsZV69rY6nHpmWSfQGIqM/l1UiemSAvU0Ih776aJsCzYCAw+p3GJqfxd2TR67oFDM3AuCWkpix2FSREEhqC5C7w5zscQoUkIIJtCxgankj19cHMDM22w3KZuN61tmQHuTXpc/ag/XLrMGJKMarDxLblPbYClbIIcQ2QIv2uv2dygG3yxeEJwdc02W3AzlZ+bU2ANXKBgY5qFPTImplsbcDnCAphQrGzYBxHFCmePrem7sefuCijIk+IpokFcwwH9q+VixokRAFKppoS5CIS63QhAYiwvXuEpenl7i/u4frk0sngRm8sERm8vSPG8ka5u/ZFKjpD9k0ENSZA5Kb0lrUX77FTAYMOj3ER+6tWCfE+YZvgaFeYjBc0Rl0bUQAH6BsxLs6LYQaY6lRqxLJwYRTqEsfpaCGaqisfCcwfdZnj17+4ANnKwI68Cmn9mC1jHrtg75ohQoMKgVn5yc4OzlFofbu4TDh/v0LG73peyvQc8QnP6gtunonZiM5JRHgxD51LcpvIX2LuRtWTnAWaehL3kdaLtkOp1KPOpfXbxi8v9mkUlE4RcYFOnykawjAHvPgmjqB4PWI/HgNP7o4v9hdzG2ED2jkJZGS/q5k0UgMMi31J39iD8dPHj2KWhqBWeRhjBSSHWoYIV3mpZ8NFuplAJWxiI2zHcOpyVENA8tEMwFUYesPi74Tz+oI9djWBtbnnL4js8x03dpdl6S7/m4E7t5ReUqd0zmJVIqtniI0R17GEczVQA+pbZWmj6W0aROxF8ojB4lGkpkKHSBQ+J2YfKAbxJTVtpXB9kPSZP6GJNl4ZDoKoC4zQKXtKm0d6pcOMP0eYVlmzIdDo6cQBhGMurSDfZMNBACuWGbZHy0dxvLmroccuLgmO1M9XGgSrHLLMapSJarS7ilo0ZMzCxHqOONwsserp18AbyquNhcWZrVN4BRpmi/0uXWxzEZfWuJJZAKRMv9j69ibkdTKHDQn+4vwnHv5UAKzG+QjV9QFe5N0miIKYXj/COHqn8IWEAFoxPrUocrz0POcOroRp6KcuWacoi9ZNSiADE2EpeA0Ql/ZqhO5x7EBqVzlJRINOuqOUSp7O4GWtofD+fkZTnYnIADzMuPy+hrXks+iRagIxfjCGty1h9MmY9YX/S9riYqO1VeKtFPL8/REnH7k3r75aM5ELIAWxP523jDYopIU28XhxaMXI52bzuaCO8fQphNY+1f5KP2hVSrvdNsCj9zIc3aAuCkwWkK59ku+MkiilRhZ/R0A0WiNJseaQyXADoCF12nTN/KPSthRVbDK/UcdpQP9rgW1ObOunLY7d3iwlJY/Y0hMf3fZqRWyFNb1T/OQaqihIjQWfWxQuZT5nSK1woe4jYJRSgBDjzzgBExSwrPosBVmL7P9xGHaSBoLKsBmOxovLZBjUVzZIgMuU+33oLNmk7xPfdggfztA3a3VCC1xHadIfxosNn/XFn9U2eeHuhKUL+yyBmAcRnAptr1HZYnAKGCpFZUryjDgZLe1VUfXhwn7w//kU0Vc0aJSnBPJ1AmyRFLatI0Ckya0GlHR7zpC2m8vQSdtyfJ+c43DuG9AhWUjuXDgoXayI2KCz7tomNT9TJv7xFF1TIJmjlTuUp7JNSMVnIPaDHcNeQ7Xnwm/R5032Q6jF3PQ+kYs8bjBbu9lw5qe4vgn/ttjhGCaONhr0y2fGunNDIzmfNNynKArg4IhjfTbcpeudcqfOBqTOqwlrMmBFOgl4wsRYRgG3Lxxis04toPQlrApV8eC1gq28izpusMi0R4pfwI7umiaGtd17+XJgqruP7UhM8Tlz96L/iczDzF/ggwgGNJJ14MAvV5KXZRTdXmGRuHgzZySKAqLc5a7XeVGhAxmMvhYRyeP6DRnftqdzoeExxOg0t+1JRyieV4OWQcXcYTZKlkxzhvdLDCCPXT9Sv4MAk0KnH2VlgIS50dbZSk6IJFkIpJodvUoRFE6A1iQ+taTCWtOGgAgB77q8P0J13e73yt8BDBKRiwhrpZXGxrtszE4ACD9y4yQ7ghCi04wt6Rps4cMK9CDlE5/p7pGj+m6gZ0QIbUdzcUeClBpdbRduYkJSynQLVaiBmmFm81ostBOtm5PlDJg2IyygER4KDLPXLHMC6gUbLYjtuOA/fXBphbf6vVwAxco8GjfNfrRAMbiCbHS/xpRUQBDBThsr7FsZ9w7vYNpe8A07LGUtmkQmFHnKp0VJBVQfYGGK22pospZmH9pPvB1VDEYxZU9tGdhzjddHcgxSx7fFSRH/nh8NVWwFqqwBNbslChY8VEldVbYnUd2Ph2MyXSa8vtqoIAPzWgmyoPBd39dVmBMHRZ1gELBpa8GkbYF35dcgPSlR0GC84Q6gfhstoRcKyoBlxfXqCz7/kj9NTjfBLqE5ihCPr1jbLYvKenZrSrceUcD2YMGgoPVtTPOTo6MDjPix8Iw3UXQaFyr20FRyOkqnWM/clHQfdv7RZx5WuEmclWCPMQ2xSXwbRQbcg56ndMRdXAqR4NynD9HMfAD9CjTY84nT+HY6a265Nl03ARZqAkykzbMC5GhCFYD4WkljqmWRhWDM0t2wrngCeCRryyLFKhNJyjgEYYY+Ik2S2014vccRSehXes1sBF2UY7gRHvMIjixb/RfN9fWF92jBgzE0mcdTHzLVzWZbFQsGnYxkJGMl9GhacmmjxRKYW7TQVVLIP9Nnmk7Bzf51T2ilMBaF8ycI3SEtmNvIddx3fV9sxlwuhtRK3DNFbUChRjb7YiCguv9krbypzJgs21J2RcX17gkyIasR93bG74eauCihxTqvirLEk5VZgCo7bRdUXJVpPlkj/3uCq+dfwHTOKGWOZRZUSf2pcoaOZH7Ua5tzw6RYJ2rJawFJUco9F9y2ByNRecwjo9gxVik78FeRXdr3/05/9mtKvmvGaNpMe6djRuuvGzPHA1UdN99rcBKZzsu0MpA9CNVddzrZDj4YP6ItiTb7y1agTkzVKsS3KArxTYaA+wws5Ys7m1Y5opadcv+uPok2HAKcpAQCtLntdNk/2tymxnmztj7Oq1ISxG2yDyy6cm47LeVkZOP3Z80hxsoFkcbNUK4TgBk9Z5O+byumRNHqH0jY9gkV0Q6vXHs/QAC2KdnDLyF/k08CfKvbZXiVteqDRIti1Ew+xxGL8kGkNgAn6+KPQJQ8f7QFWjEYapZci26yFbq3c4mmLwbje4gEfhhv3vySygIstNrcKA0QFeReb/phzB9GBhLoT7SPleiO5Vo3RntQEyy7TqKHQho/XE6UfsGCKAsfO+a2ux+AiR+bUYSwAAsNazA4iAjOsh14q0Pkm1j4OxkAwwDChH2V3vsD7NtnQECNuMGw1hQSss30YGY89tti/FTbwZ731Iqml+8ul7sqBpCm/67vNw3HbOBeoECaYhIaN5oPIz0rV4PNXCZDgcQPFGpyYwymwFZXUQjYdpO2J9c4vb5q5jGA2Y0x8Gc91XpD4CyTYM01BZDmnqJ5Sn6HMKZF+FPKleVqtN3C/SKsVIj134E+klNJ8NHa9FdKQCLgkThXZY2NgMv5YiRo2OkJ6PNoS3tKqT7knD3Uv7u3zxcvaqNPRnQ+cVOI+B7lzA8MU+cThyNRUeZajFljU4D2VCLMdPFDykawcZ5L1LC401pw9EHUk2kQJfZA342z5rnYaTYid+DnGYOdKggrQp2R6Hek9F4LAIY5WtVXldRWk4KRnQQq8hFdBhWDCfZ6YF5f1mkR/fVsXIR9IbFmWeZ07ZX6T9LKI3gRY0se75WdCqpuE4KeiBnre7k2BxT0HNPV/aynGsNqLQucujheqKRiKDngWEOCMRRhraQASTXV3++AypRpR/YSa0OrhW2fwoIREWS0dmMkNazWtqulZlt6pgFHSAERQhyY2BDbV2Yt0nRQVK5177TH715RovwoR9ipjaEayzAyTBgGAcsdcLFla5ODcBJywj6lqIswRcQgP20YMvAzG3bfSptE7lFNsNqCbOlDaC5HY6pkX2q7QwvEsB7OEwomw0KDX4+kdjYYRgSr7TPFMDMc8W8zNLV1Hwu+e43BEIZCk53G9RaMU0L3vq+uQ85cJnnBUNhcF1sZKvOqowFF6cXwIZx+/QLOAx7zBJZaXOwsjFOjYe75Us3bUqayWx/LLSsziwpsgh4J94sRktNQQxiuFEISVcdaTGhdfVANAJQU6rJtT14aJWW8DwFut12BM+iPuFoDF/bm956AIjJv61Bi/MhRbv0EM21tbCvBr6QUX6/vb4VZPz3+60b3CmAZKsfZYXEYC1uIEpLXb9DDaDZfQqiEfpKnokHlaW5BS0gsV2dAI5f1t0+TWBGELH5oceCbCdBir8htjW+1skXhRykUnzKVq5S0JyQNK2yLKsMFb4eaHEusO13UoK86D4ctSoI8Cm9TKeUU2U1iLBZ5UiT5xUN5KWiUZqzE1MeeeRGeS70qDO15IvYv2SMTXQT4FvIK49Vw3xCR0fzMZkyOfRSUhuUI8xHRazZuH4Al4TDeRoHPQDZ9A0zt61NhCdFXXaIvrWiyZ1gyBfUAeERE7YCLb3g2Dijy+nSx11e9He3ZZ3VsG/9gFN/zxHA9ndeKi6uDgDE4dMANvCpOhXAQXw/ApxARGXG9X5WzrXdcwcZLDFwOEyYpgNKGTAStX1mmDFuRuyGDaa6YF4ms18DzRiGI/mMIv8KogY0uSrCy1IqaGq+WPebKtQAEy8LGO3MvWteMFDBgLYpw1u9HmrgskwL5jK1Th4Ylyd3sewW3Du9g2WcMZcZlWqbL10YWCDL0dimlOyKkRT57HucBDU1Y6xOKBtxfdAMSKdFBHZjFqpcXSqnFoLLt7Pp7HNTIprXx3yeWI2Evp5C4qE8UgeLNkpaGauVlfOPrNY2OPP8QnS6wSSE0Y4t6gksUAO7Ks+e83wWqzvxhqxv1peADUSHIGUiiUZYfUPmZ6BGmNVhZXtpo/De+PpQHgRCKRIJiGBhzfAHgxZzejB61Ngitq2TGXvnaKTAna+BHgNGoRT7jdB2FhUDJ/yx1Qmy67BGSB00uZOq4J7Io23V5PVa3eTHdlgETuTZS2yCqgMQQAAMyG1A5RgsSLJI6v8DCE74UniRHKD2hRZJ5O+yg6y82YqCT3eH0dE5GPJ8nWao4EmkYrOUiGNO1/5l55Jvr2BKbe1vkbqsxwqGDcCQlqe7f4t+FFhkUh9iy9rV4sh5G3+yz3EF4rHWrH+l8J6eLJ7AiUQorNyu34V9brsRgSUZz5W+dhVLI2CUELnzcnsxZ/lRq7L012S8G/WE2rb3qNx2t7XUZklsLC0CsxxmXF5d488ufwHT7oBXdi/islxYJnRdFuhUj1n74B9cxrgFCSqD5xnzIscVCDcqMwYUoAxQkDvNFTM1XRqmzdHeeSPXQw1ceFhAu4p7N+7i/uldXI2X4KKb4TQjVOH7q6gcrqQkgpbur6qpGTdCHnH2ThXJDSchD1kb4WUKGzeFkKfSYY7fC4qO1+dkCbHmYz4tFSWvqKmM7ySsYTX2ZKnRSmbZSmtlrAFLNGSxfMsPkcqPOWXmUL7ae7YiEEtNORxHABYDaSt4n5aI1h4STgWS46BwOi2R0e4OmLIsqMwgj8jSdIoQxSSy2zkp5WIympzvx4JWkSkr4fgVR72vd8X7x8r330IegkRCW6JhkBZJdGjgTp1Y4CuTjUiPXmE02gYSBN2KPo4cI3DTz8ywwUfMidERqL6L4tGLqI9JZwwQUeh0Y4P/iap95JkcxrLe90pWUZKQ2KzvkYNjs14hemeyty7uGEH+JwfDDATZtBZTfCPci7IMA77Q6SMBMAUEFEiyOrvtJQcSmuhbyOVCzp2GaVW/AtOa49OQtXLq4mjDC8veXsyyr0lsFxk/48SzlRYAS8/aplu+2cOXdOViDUhomMjw7rJgnmYwAwOGtqeK8GoohM2mAOMWZRyAbcH96wu8fXoHUBj/dftfULktXZ5rO30bhbDbbnC6GzEOrZxpXjBPFdfTgmWZJU8HWKYJy1LbQYvj0PbisaNJdIBXgKGgEoPmEV91+JovnQcPuB5q4PKpt/8BttstFmrbCzLLKqC5dcQXHawBKw0+FoWxlR7k4tuB8GBkXKCteHPMYvACio3TQ/GvAQvOShNDw30bjIaV6qaCAmBBe0+dBjg95+VxiIToPaUnOrBWd4zURLUjcyLSAna+Rl4ec54KaLyWdhUdrVmjpK3FAVYzrO5oUig4/J74RYFd5Ct1Es2swJQlcpBXJlm+Iruj6+tSVhHZmhEE6UnPJXHm8LICAgM0DwIga3NKEjZIK1LewOX90vpTp2ubfY1hc7J2Eppxgzyjp80CDsiJyPO8Xr/y5viGIquGyBxTc0Atz62Utl25OrwW8SkYC2FaqstOFWlSAFRK4FEAiuwOi7veijJgjsY4rt0WZFKRhIEmNoedXkToYK1V7YSeZRZHVMHxRTPX65qvzDToptoNNRalFJl28yRg62fEfva6j2+DpGBL9GepsuuuR2fmw8EA+jCOKHJK+jAMOD09wWYcnV+hgW46czy1MuNwOGB/dY0lnq5uhjyAmqVivz+g1opxu8EwjkjJvjZYUA7p9wDMzHJ2AEcHR50ya5erCtrt7rmelywVLtyOcGFUYKlgLCAuNuia5Ww9gLErW/zh6X/Gk8tTeHR+EjO1E56nssdrwxdQibHQjGWuuOIZ4+Arm3SbiFIGkZuKWhpYGccB290uRMQysa2vGc9P78Ph5KoXijd8PdTAZSkLJm5nubAl5IoiHTN4Zkxci23lEGCCVcRg2aVAQwQpGuvYPxlMICD59lBRI9GRom9HcBLdl5N/FMdbhTrO5/CL3ReauTOiVl8ANfFeFkMy1j14xNb/mMxZ93sgH5EvYZ4+1G8mQMGKGXktgWVOmGypbHYta0o4/LU6WEvzpwwYCTGR102E5HtlGxla3eR8C+cr2A6bVqw6vBgaj3Tm7s7cpPXn3Gbtt5B7ocZfRZv7N2J5ZHriwK0aWNEKWtIe0gwaJBkzOuV4+eq89o8nLNMDZKxdOs5eagUtFYMmbJUBNBAGECie4UXAOI7gujRgC2CpC4gEAJe2ByovejAhUJaKhWX/Jq4YxgGbceOzJhIiJyqy7UA1Prs3CnxmdW7tGV2+SjpgMNuSGJR5xrmDFZj0YKVVLVaEOfeqYpIg0w7O8mMwWXFy/FLL4FOTKlAOfvQ90eDg5AF4fpE+XQZ7tnL7h0o70O/q6hrl/AwnJ7tME+AHrEpdTGSTJtvNiJPtiMurPQ6HFiUQFXY9LW1KZ9xtLZqpLbQoSizf7mXGWDS8uXzLi+oe87Lh+mK1pn4JbYysl04uw4Ay+OZ39oyarGDkFjrg3cu7cVI2GHnE2/bPtUEXAe/Au3EY9rg93Aaj4vb2C5imyQrTqdYtdq23CdhuxH8SY+EJ23GDsRAqE+YlHCTMwFAIv3/2H7HggLd6PdTAZX84gMfoOF7nikZXlVgPx5ORylBK7nX9lLyL/GO2KBr7EDb0iqEPm7B3SWIOYji4QwUinRELl40Eg3RGNvS0KBrOJR7P9tBp/fCYlB/D00dyRTg/vwYyUQt16sDBhzt4qYE7QEHB0cXfhTZ9159w48OJR4rAEO57sq05A1E8kpB2EzaSQ8848UPzgGJ8Rc1xXDHETpZJTY5Gucyl1SnqDKiBjPWuuN2VRvFxVJhlJQKZbFS9FQZue17DR2KiiM5zIthImGErFtpjGgkZ2p4S89w2tBoJVJuTWurrt2+htjnWpsgZKOQ6o32nkTFnNgHjBuC2D4WdnCx83QxDgtqMxut5aftCHQ4HTNOEYRgxDG1Uu9QFy7xg3Gyw2+3aRpaHSbaDry7nFAENnKYk5ORNNp3wfjHfHItgtQU1vBhyL46BFuMHYMdtyLu+qqlZI4vKkN6HPav1aHnRIjiAy/bZgBtCtUJjKQXjZmNgOeaaMbck0Lt37+NwmHB6eoLddmPgSv8aZbWaHWBmDOMGN84HHLYzrq6ucDjMgY/UpnolopCiYcGGuMZGyWwROptiogIafNv7UFACMBYxDP1j4IWQ+yzcMzLsRzKQyszY8g5LZbx9egeux0vcHe9gxoyZZ5xdPoIv56/AZhjbQF9yKAsI4AGn8xlOpjMwgGeun7XVTwBQacbdch+P1kczEANhHg/4/dPfxR5XmGXZvgYQIscOaLryVq+HGrhYgm0Q/lW8vAM0tjyYICFK2QZalTK8jiPFAuKwOYRlOf2xL+7E8hRCqy8CnlxnTpB1kLBqf7cKQ1dFaFm92Y/KuHKS/i2PIIIT9+mSRtFqBJGMG3ft9T0oGvNDuwHLN/F32FbytAiKgpR0QpzQm4FDJiXz3j9z4g9rfwWDkVYraDs59IU4GnX6Bio6vjqwJAc/9kD7XMXhR+NoBRqjdPQW2B0Ob+yxexqBUaSjf855EsPb1sOhPgTO9b5W2GOJuFQC7QlEAZtxxLgdsUwLLq8n0FCwO9lhnifMkvBXjpNrVxkHjOOIoZAlSxt/KrzfIhSRRrQ8CfLDoIPzZqLV1MtmHIGRMYwFFxfXWOYZXAs2mxEnpye4urzGPC8YxwXDuMV2M+JwmIx/MUqbTZRGwI7kKkUxi33HfKRvYm5HaHE3Cg9+Oqqr32S2xPpkJ1J0MHdKH0GII41uMVkqy3on6OdSa8vRgDh+BW8syb0MMCquLq8wHSacnG5xdnom+UrNZsYkYKOxtu32K7cd0s/PTrEZD7i+ntr+XyrIqb0M24TG7LnSnPnJoBbJqRXjOGIzbF3cFfgBHlmzurIdSuxzUvI9tRVKgwjxu/ZfAa4VT83PtEEBCjAzmCou6RIXuMLj8xM4MDBhlq3+yWjQvnWQXVACcSMPeIpPm77LyFbFcqEJKGo/mo3WMUwIMqe/b+V6qIEL0DvNYHz0N/ZpIMCngWLeSjTwDh7QffArRRlCSLg/EDEl40q5LSfD39GejWXGMKUKkj5vYCgSGkbDvVD0SuHMye3T51rEIagOZb6sCzguhisnCg5G1M1WX0YMsR9b/mwOils5diqyGoBkbIOiSwPVQEkwwDZHMvOhxiQ4CgqeJk5DJpCxMjfsxhCpN72tCkQCD6wfONat1jvzdI3ROTlIfSk6sONXNMRZ9nLFIoNhJU4cexKAQu2EazCDq9PdO5KlMnBoI6/tyRZLZeyv9xiGgnG7RVkq6jznzu+upTKurtoGWOPQkhKphPN1xPhmxfYIC5ucy0BmqeBCYC5g2dW41raTaLVNLqtFZoehgfH91R7DMGC3a5GCaZraCo1IB1xuueNZdEKJ15ntAaRQkAUHmwnbWGldH3J+wJwUKExXhGlE/TcMKI652fQrZ53Jz2o3hPbLP0pr27NOBwNSPkE2uas2gJjmGfO9GYf9hPMb59iMbbqkMqMIaIor1kBRFxibzQZEBfvD1ECmoSyl05CB8bm/1AYwM8btBqV6G0i3TJARWIzHE1qUhoWuyJuuu1faWGjAtu5AIMw84W2Hd+Cs3sSt5ZatzDIgwgC44Aw3cEY3YIljDBu0a7+3Qy59y2qKZSTLFYgBAGJ8Yfs57Gkf+CUPcV764ZHat3Y99MClvxzHcDL+gyR4te/5nZyZ391LArXyxi6MUcpMi0k9LAABLWkr7jX1fSREHWh0pDq/GB9UH8m8LjnWpqMSNxbSDgqgxUYYgVfJL/dOOhDsX3Ko1O73oKcpbYUegXacN/pWOkZItZM5730QwEu7nY21Apa+bFN49gTC6HDUQBkPdMRuPI0Rr0aEHphnNXT9K24CJM5R388ccD6tZUI/5xB9LP+4rPXXEZ5z16UMhGPJEzBTR9v4kfOtWl5HpoPBmOWAlFII41CAQYx+rRiGAZtxfD3c0nbNZpZdqtuUTZ0WQI71GAbCOI4A5HwVdWKlYBgGjJsNpmnGMh/AVaMwBWVoq0nqMoOZRW8ZKCOGsWCQqYRSCKUU0RVGrfMDjDK5jDAbzQqY4hLwiGNN5SmWJEwGyYi5MTiOajkUYI6R053OXnk+Vpz+tS5jldLY37BnyOTSY3X5hGcgRmzICMvPqjg1nNkOJSyF7N1m3yKCa58OhwnL3Xs4OzvFbtdyX1QGh1JMN1V/25JkARtj8w3bzYj9/oBpnpve9nCBWu7V8Yn1Jn/D2CIUWceVVi+HuIJEFpelggkYN5vGGfIatKXnfIZD3ePJwzuwww6ljnh0eTT0KwGsm8w5cEI6whIAJNdMV3MZkQXDUNpUV61NT7TNgZb41we47cfTeorCAxYsKlJQ/3IMhL3V638M4MKeb6DfAfh2xytuPZh9dOR2zo0A4jSHK32TB5gSSk6BGG3PYTBolcrXOmLVNSi0CU62QU6fPNRNNqS223vkb6aNr4x92TlpxNY34/Pck8gwH2XpTpn9la16FmjSBiSAtHa+Yvo4hMOp6xL2MhPQ6PigDsOjOBzaIe20ugOlHWgs0N2bffVYQknizO0rq3HOzaLAy0h1AmJRhjJCSX0uwcZO9js5DnyxPubgoqjjGRCWikR+cJKtuOgzhouZ4P3GsG0Altl399Mai+QIvO7ojDzSOIxDA3+0gHnAGPhcuTkVSN21tn0nal0wlAEYtqCxjdB1F9Y22CktSZ+FF8JQjWy1c9GOzdd7p6oUGdg2U94+G/YThBejqwoYbLCj9wgS1dK9plxuo33ImKef4At1SMYwa58zYEOBoItrQIxUgwEM9tpU/t0+tXeKKOzSARxrvzRkWRSYSvSFGtc0kVzbuMwL7t+7wH5/wNnZKTabEbbRDrVBUQUwUAmDHAIkajYMBbuTE+z3e1xcXNlZc8ZDidr2FsGdP1nfRO2okhyu5lCn0Kel5Xowo+1yOzaen9dbwrKKd07vAoHwNJ4EV8Zh8kNBbbdojn0E43cDTCXpf9TnmFcTQc/aC2l/uq1d9TsIj+2fwowFn9r9od+NMhV5/idwPdTApVbuQrIi4EXzVr40JkVBy8ougiqJkBpS9epUE71nPf/BR8QaHu6pOVoXMvhIzxJgK21CWFNBRXxLDa0aMVuJQ26cjFpx4utwdef4xLjq72IT7HGLVJjB6FvclRsPt4t1PPBSx8vOEC1P51yDNmreiFh6Ny7qA0RedBTkJCb0BO8p9j7QkbOAHuWvzq+bX+DYo+5M3cCtx3ARLMKAhNO9hjbJchlPNSKi5fVdQv44AN+bJj/okYL4MusKYuNzMPAWiUKAcdoGL0cjBszKp/aFCOBpysQduXT6kYiwLG11UIvCKFcY7bhUAmoVUCdgVk6608jQUpXF4nxYtliQqUTd6lz72xybyGFLMC/eN6oTUHkNtoJin4S+E4+qtLd2iFWIxiKmeclzvVzoO9oHxl6o3CrxHQRRgMFhSvaY4QLshtalQDOOFZzkxgMFuRU6bR7fj80KjtVPC5RCnc9Rr5gZh/0By7zg9OwE2+2mLd2FT2hWZsxLbcncRaY9uYJLi8ifnOxAAPaHCfM02zlXKV8PFGh1wMLBzsaIDZXWYNtLlAljGVC2hHog4DDgy+b3YCgDnqhPtGnHcWinxu8P2NMBRehdKlvCMWntWlXoqBJWxTqPomxkIFsXTqCLundz34uOm91vdQ8Y9Evap8j0XN/5E8AuDzVwUUNiDghujJm/NO7E0Ky939kJO1k1cNyMCYIRQ0jGRTDO3Yg4NUHa4fdFCeKTwRLUQJyPSDNdFGjSRqmQmnGS7+kkHcldsCLNz0j54agCK5fzdxtVEmVlDw7fTXN4PjyXmoxQf1gzaAfmGkDwZqwv7v4auY2OflgfjWZ4JstKSGzj2I4wFaf95D0r8pnBSjTcGeEIhTZH7kzyqJIywx1i8NyIs+p9gjgDvqU4BbCjDtXaoQCXA5iCAXIgG7E+Mbt2/KmJhg6mKw322wM71eofqO36aTSxT3moLCuQ0iRk7UMrPQANy4GxNvtqM9stn+wBX4IvZxrboEFBo9TjS+WDNISyjm9VEBus/KwoYeN076bg0vpyYye7YBovvP/crnl/iP1LEbicGwiQ8d7tidgjjZYY43yRRM9/b6dOg6ltZ5tKNU0gWtleMGOeF9y/f4lxt8H52Rm2o6wUk3OOxlH01FdEw+0AYXeyw3a3xTzNuLy6wjxVmKzoP4wmDKFfCrk91jJj1FAT6Reu2NRTPHd4N3bLKW7QzXYEApMNwPaHueVUya67bauy3ioh2IWYrGtqC+/caAngtiU8EvtCsXFQ21y3M0PaW/Hq+Hn5XtvK2TiwhPP6TwC3PNzApWgIkTKTgO5rHOZ218pnpX9FJFg/5zAhy8FVuhdMIyoatrXDTHncYkx6gXKH0FOsTspBS3oXPorJDjUa7eygIuiwjwY+sjHVlT8uzGqIPUStAh33CzFDmrjXV5xF2g6NM9qdpXFklp1LNMDpiWCwvRe1fAq8iRuLxYti5XB5sC3jgzGNTlgpyODIRzvWfxSI9x8SDZYL0XmsFKeThD/fFTjLdH+ZDAVZZXEAbdVN0y0K9LccjRaG1k33XDtypFGJ1KWmOm1qvGFfLqz15ym+17kIAJNMN/heMt6OCCL0nTVodKca5cqTKn0Pd9hKjNi2xBeVD3O+7kW0XzSqo0Idwab+HLoPLm0yoUruGF05XNiI4LkSSQYBshO0gyZSYFtoi74cn3VdCf0UZF51QcGjM0OBs7JSWmTtl3Yyg+uChRmlFNt8Dqx8YTkUVmQ70WkSCFoYh6s96lxx48YZtht1dW1vF6bivFImwNsFImy2I24O57i6usb1/uCDQepsPitsdWmI/ah9SSAsVPGV1+/FY9NTGGiQnZn1cFpuS4VFUBrgz33gkZIgIO0GKjsVZnO8gS6pavuD/2gB/CzP+qh1Y8hvy1eIVqstCPKUeII/meuhBi4kZzAoa5Ki9r5x3SfHGRkFQyTb3Z07PDfQqrBusFyN0P0mvwdjQuwjC6OJpJbgc1VPeozWi5C1iqJbXDc4Otu4H0ikX59TuxTPemmR27iUPOmIjP6C8yVXJq3bEtcix9l5rHppZR7hJ6n1EZrchh9RQkaoG2ZVmMjpTckyXTk5JAKKwkah/GAQ0nPGcrLPsQxzCHIaHevvUqDXDOniUJkxRA1HXLpJXd84KWkaIoTbmoMQqZecEJ9YabvSWqvSfjIRwij7tA1escuyeWfTYk48ex1TJ7S6erMfgkjURtT9EQAmPN30Cfq+Yzi+8joiRRpN8S2SG98zCGAUSXxUubR2Rjku2kEy6q59OWQgzxTZdDms3LDocORcEHbhtzop43NBcMwcO89ylqJdcDvo7VTA29eqd/uuZNakYm0Poy4zaq2YF8YwtARoPZavkd6o0Eh2BKZr4AjMhwn37tzDuBkxDgM22xHjOIq4U9LVIkmKrKt90DZ3Ozs/x+5kh+uraxwOS0tgNfE0afEypb1FjCczY8GCR+bH8e7Dl+NGvQkaIPx3o6FH06RoudShPsJ6reT8FXu0AsxLsyErW+Ta6YNxBHmILXHh5Cg+UVeSXfOK8qo3L1a7+nU0+ku+Hmrg0i7qvh0ZMR/rYTyAgUd43h6OHSY1kTraILhabjTGvTfjrh5Kf7wdUS7C5xXdaquh9Kjpz07ADgYkfVab5mFGF8hYC4tD9LCkma++EZ25jBEaFmcbnag6kLibZjpB9+jFuRZluLDYQ7P2MzRHKbVR+0+jFEp+8sHU9btOxpGxiUHhIFt2Pkk7VUJa3xQHbDbF0+63fWhCe7S8QK/x2GyOd6ZH0XzUY6Nit/zOKymXJH/ARp7sdQOStFoBnV13RwnFJVDUmPgY+ij49qP6lUGUAsm+HL9MjslzB5LcOmHH341Fs4b0vTIDFQpyhC/ReZak18G1p5ebQ1q31p2AEsP6G3u/mxvRSBWy/qx52kUSRf8tApP46XKYNap4X8s/2V7Ao56mGJprp8Qdj1zG9jgF/i/LSeLU1uZaKl9njfyTgAO3Pus+X5aKZTlgT8Apt1VHpZSW12aDryKiH/vGyxnHEec3zjHuD7i+vMYkuZW+h1STC3tLdZFavkmpI7728KdaHkgRJrIcgihL7eeZDQDknaflH1ZwRUd6GbJ7fJWVbjHywWYMo9ykqL4xmfw3Tk/A7L6ZkZgXGfRX64nR4dh5D7TrX/r1kAMXH2l4bsgRrnyJjGKo+nW/SiccM4HRXffO3PyFGjLVaX5gTevPKjyx/uCYPWLJMV/X/wZF1BsmhtSr5zFKpCAnG5FTCkbsSQUD/lpKwjy2UuTBEaRQD7JzM6MeeO08cuOP/hn7zg72tJYQObH+SaHWbIx9Giw6KuWxjU3EZlDinYOMxFgphgOt3mGNVv83ehPdzyaH99hCwLbteJtHQNoAkLMM5ClFWQESjRCRjIF1usA3nMp9yd18u/NerZ8GEIzn5PJ+xAeFspV/sQKPBgaLb3bBOCc8SRNcaWDSzjZyQXUi1GC78baOEXo49ZmtfhEeV2mjYYbA2ghy+wiliyFrU5Mu5yhk5JMPXmxVYNgVzhwbN2+p9Qf84ZEJ6u3W2rC6HdbdWONEpstZBL+horbCRs6/ybXotFTIimKntZUJ6GCA7d3QUQxcX+0xHSaMmxEnuy3GDcH3CfcdX01vEe0bY7fbYrPZ4Pr6GpMeHQC0PKsgzCSbIoIIlSq++uq9GGpYdhraVuVk55DRHhmKmB6gstXnhrFE6EopJlBs7wcdD3oR3/f6lAB/hpEKgh6kwAQ5TV2FWfSMKLzXyluw4NH5cczlgOl/9i3/gSPMd5vQjez9eTc+dPReEgg1uEciLsciAmqX+1tHowe9EAXj1FvsB9hvALqsNDpVcgOe6g+j9yPl2iqZCAyiEHdE2NSZWNK4jDhNo0iTFNS87vI4c2z6R5yuOZjsQ9d8jcz3/IVYT9zXhdnL1+cNXJHzzEcukW+U6VAjDwdrBprkeUrvh98B6LRGfM4aDbR5eW2fJnlSXMkRJjOJHDDHLd2trZnpUex6sJQ8pDTWojMhOuYs6vQxeFR3JIFvELkoJIPQo8OPo1ecgmCtzMXQBCYb0rWG+d4qgf48MggAyUF70zO2QYA5fvMaLm9qdyw/KlIQZTY4HlIhCgodBz96pWnDUJwePOkyH48gIG+TbhvvVARww6a/2UYZUwInvS5bwYjAw/4KfIrRrGBmQ8lZaxC6x7a9UN3lGvI23JbpEvZlrpgOM05Od9hut9V53VwAAH01SURBVBjHQZa2S0QjmSXRUtG/cSCcnZ2hniw47A8tkXZeBGCWxMc97fGVl+/FY9Pjgo8oOaZFQQuQwJyrDDuLSiIqdDd7PlZn21kYm5sTfV+A7/EhtRuhRKsrDtRKm0hkctsV66Fa8Pj0FJ6ensXpcorrzSV+a/NJvNXroQcueiVd0t8eBBbUKBy9nUfiqXwpU/ssL7cOo/yImMw4xErye8eAzrp9walaXUqzGgv3Nv2pukQrtc8OJn4OvmW9pFwdlSpbpAE2DdL3h37XpDYiTyNTA51Z54Ah9gk5CcI3Duxlv2nOgp0CY0CfP6BM87wS+6OZ/loSh7iLGuUYcco1JhzmtDnjooHOYE8dMPlqlJUDlRbLfQNKKX7LUoYYxppiRuIsOEx1peJdtgJJefmz9pkmSJvr9jYHZsekxpgPAIKceYROlo9pqdPvyb4kc0aBx8ENJppNJc3rtTKkX2J+T7wyGAld0f+gv63JPfJD0F1zKISW+B8Ilu+JJgVb3D6bRATvV0NCHRN34CQ/G8nSai0SBSACYO+hvlGuxD6xHLTCBgqhaYkbgS7yfmS4fhyz3Q5gPB+kzcgEO9WJx7JUXFxc43CYsNtuMAwDhnGQpcRrAKA7Qrfze9oqp3leZEuOQKEoUK0LaCY8uX9KcnKcdhKZrNVtW6zL1bhFNAnl+Myn1IMQjbH2xu5JbihMf7P/lhoM57v+2BL1B9PhWAah4InpKdw5ud3aWRn7OuH5y6/Ho/Ux0VHGdtnhdDjFW72O7RL2JV8/8iM/AiLCX//rf91+u76+xsc+9jE88cQTuHHjBj784Q/j5ZdfTu996lOfwoc+9CGcnZ3h6aefxt/8m38T8zy/KRrMNHE2M6EP8/Ps912S9d4atGg5Gq5dyw3be/GyZdr6/ch/Sk+kwux6MITuCNsW5F5Xe5O7tve06NcKdUwZgbfqCJZsKzzQOXzf3M8pofB2j8u0dRQUwNSDYAcUOm2dIwyvJX5bRyAb8dVD+rqMgdVBSj/F0SRiv0bGMRA35ytiGNQoRroTHyz0YPbb6IyJqNZ3ZtBbCRFUQGlaAV02uQHDnFeMXqgcqVP1Je3eXl2BplE1Vhp1K3AOIEUak1lERrMD3F6yVL46J0mBA+zyoDf8O7/Of7Gqtb4kywqfcrHHu6hFeEn6hcUBQykNrQr9Gr7Z4EW+mG1wj4XMiPDX7IXvXNoiai16YNOkIJs2iHppcEA62OJMYbRFUcbCJm6Inwjwg6LW/OlzgfIKMDK+OhvYn7WOzzYg2r/UUUpFigIK3TXIePyXNHlVdZYw6AnlCgaELq4Vh8OE+/evcO/eBa6urjFNExbZNTkKDNeKZVkwHQ64vtrj6uIS8zS5jEhftAUXDB6Ax/EkBvIdoAspDyvmaWqr7aLsQLuM/WRloViThrM8xba6eEV163oXRI2O5NfWaqu96XZY+Kc7VRt/BWyPaEnPLOeEjXXEY8tjAvhboSNv8OX79+CtXm864vIbv/Eb+Ef/6B/h67/+69Pv3/M934Of//mfx8/+7M/ikUcewXd913fhW7/1W/Erv/IrAIBlWfChD30Izz77LH71V38VL774Ir7jO74Dm80GP/RDP/SG6bBj9bpwmI3QSZSl6h4L3TMUFG/lJOQ6FoaNIziEvu7eD322RsFRQOjI/b49KqhduYrwsxt1Z7JukUq9/OW48uQIOrPn4mtiAhk296109pcKtvK52Em2PvPdDVgTX6L/MeehRmL1Fgf6cguaTLA/Hsq03I9VVMNHxOaoVqNJrcM3P7MzlKjjixEV+G+/mLs0Y5EBXmgPs406LJqiwFv7MvDe3LcaWWoBijaag+wQ28ogUueoSXaNgiRuyHLYRcA7PnoZBM8uye0SPspGcVC9PCJP9kYApAA5gAPDoiiOW6QN5v0Q0JNTExOmOwOe9YvDX6fDDHx4fiXTAIgKfMlwGOCQ2y6b+nLuJNBEoNALUZaCvJqKi67GlkhORZTANcF5kALlaceXaBrSFWxffkb76tgzZAmsjLATswmb1pmn1drRB+T9b4NH9iM+QhN72WNmORiTsNmMGIamJHVpK4mmw4x5ngA5v4oI2AxtU7hFj9zQKSoizDThyenJbqFiI6ByS8gFSM6+ijBYbRwagKqeFzOMG8lj8QYo8M9n8Em7Qh9Ht9N1cVoI4v0WyjLRch3SnzVlbrPssKk77Om60YohGQW1JZtli7d6vamIy/379/Ft3/Zt+Mf/+B/jscces9/v3LmDn/zJn8Tf+3t/D9/4jd+I97///fipn/op/Oqv/ip+7dd+DQDwi7/4i/id3/kd/NN/+k/xDd/wDfiWb/kW/MAP/AD+4T/8hzgcjift7Pd73L17N/2nF4f/8iXj7ZojEjYS5a7zHnDpiKKPjHzR90Jloc+PImEbQUdDqQLIQUBUUCHjXCI/gZfkHd3bRvYHIP2dWrJYCfuuxIz4TLkTEhF/f6JzRACNR9XeYdYwKAcehtHaA6YAYu3tc+f4Q/RHfDIqV6tfc2jItbpxLOyMqyPW+D3xPTo9NY7xIo1RqIdy4Yh7CnlUL8KcCCPI2sChjV6cC6m+p5TYdHcMEdtfdaihQJMFeJkU6O0JUCciRbZZnJxiqY5ajX41cKC0eT1KWI7YhHYFAY/v0+v8pw+7jOprrjv50lURFN6L/RsLVVlQ+dJ+UZ2O1lxqNUd5JHImjKL4BQxd+K52qnLoCrMVBMgIV8/uiXXHmJA5dtU3cAcAo7t+gBpKMZVXP6XRuhZiti42N5Kp4JkaX0oYVFB4lq0L2EBL7kMH0o0O56N7Zml/bedV6Qt6/IsSzIzk6FWu7eBBbtHtw/U17t+7xMXFFWbZlRly+GatFfM0Y56mNgAIkQgQULjgdDnPegZ/P9pzrk6/RYoBlDKgjCPKOLbDR4cSOk3tjEdIw8/oJcP4DfdF2lmxH6JYW58kw6z9w6nO0/kUX3n1XjwxP4m6AO/dP+/CoOUjl/9mrzcFXD72sY/hQx/6EL7pm74p/f6bv/mbmKYp/f41X/M1eNe73oVPfOITAIBPfOIT+Lqv+zo888wz9swHP/hB3L17F7/92799tL4f/uEfxiOPPGL/vfOd70z3NWCdQ5buAHIuBwLjM1iw2w9ot8tDNkspYtM/Q543QX1l1H0MwMacfN/JEb3aB4+YEEgy2lVRc4tYlSOCiOCI/Jlwqipr2FLDv2z1IhoPVX/S5LbY3gY0VltR944oN9bAiCu0lCV0ajZ9dEBVDtnjKo5Ad9wMBneVoMuAjnqijkLrUBeio3xCoCc4GMQuC/zX97TB8P5Su9tPJfVO3t5XPxStTFeG5rJoO5UfKmDmGO0/NvBg8gq/rxRY+Jpjy11OSP5q+10MlFuie1YGebu1QnID+/pX46vuaRHpZIadwQNxHCo7FumQ0eN6qpcERFRz+pz0N/Y8nJGphNAfISqgfaJJmbbo+EEoIvC6H9zE+rt1YUZFDOnb7/Y902SEY/URFl0NNNiUFWJ5ymV/T6c9XKa6yBTH54NEcc8SCkBJ7hsNUnsaIHXa2TloDtM0ek3TjKvLa9y7d4l79y9xvZ8cJIluzFxxmGZcXB5weT1hWtqW+bVWLFp/ZWApOFvOBKTolGGTq3ma8+9KqX2O4E5kNHEoUE7AMAwNUB7xgQDa9H+4lU1H5kF/9VOBNijOlhIgwvl8A++++kp83dU3tP1qpM3ewYTXrexLvN7wVNHP/MzP4N/+23+L3/iN31jde+mll7DdbvHoo4+m35955hm89NJL9kwELXpf7x27vvd7vxcf//jH7fvdu3cDeMkin5Qijqw4aIFauQAu0l8gPy/fzVno+315CGJ1ZJSeqgbyUcfMlrSWrk7YQlWZTGZUyNJV7tWxFcRdeYBHbmwkQmoGdcGrOpf4ckAAnUN3DxSNZTBj0blAl9MivUvI9Mduivu9sP6mfLDns+P0BE59T5104EStTu8a73m7Ozbo8+nMJkRarOXNYaRKs6HXZcWNjMDjrtpV4VYcuzHXZF7SVUf+bARwHukICayxAU6oL9gpuR+1I/K4TvhuHeRlaQTGAURoWBQt81Lry4GktI3iSjCnrcmF3vC/bTrCAZMlgOue/vI4E3JitFUabLDV2z4k112VD3BQKbcp1MGArwILGqDyGy8KMCVbP7dHZChDuMXeLwj1OHyJwkuBZ8ptShy0PuhkpbdgPR5iq5/Sfb2ZZqq77je9iDqqHJHBStuvqe22W5llxkkVtLMRJnostqERQIQ2TWR2T30LQFQwbLYYRsa4bYCspCkanaZljHXMQAwtCj0dJosGca1tjx1Lsj52QK1EgmoFF6Wp47P9dRsQND6qX+JdMJU+gAlKmPhFsO01zMan9gGVFnz25NN4aXwR5/MtPLd/J07qKTa8MZux0JvLZ43XGwIun/70p/HX/tpfwy/90i/h5OTkLVf+pV673Q673e6B97PBotB5nbPuwciqEKxBSX8vlhO0run7A8p20rrvoeMV2ITywJzKjDPaObTqexxYwl0oSKk03VDAAApNcidk5qxD2s4eVXo3/M0hUdeC/F1tQBxV6CjEDXY0iO7xfAooRLAo16IjO4v4WLcpb9ucb1EQozQzPPZYQy/EPbHXvi8ZgbQvhbWtkw8Fp+YXGcl5sBpQHdG479HnU3SC3KCuhSsz2zC2ABTnUTZwOpI6mn4tZemZMV1NJs/9mVYWDWW911lFyuWbzh4PL6wq7nXEaiBfouwSAIAK9HRlMj1W58Yma0y85mp0dlofdQ8ko15dRzuvYRBdpomoDNpwBN9hbTL6DY/oc/3UlAMY1SOb1uPmF3tKglDCBmlQ1gRlCs9b8iqrLMNAT8zN6rs5CU/yfCppbgtjzQoAuTNuMfLQqq0SafK+omAXVXViudHE18rAQhhKjh+5U2+DsloX6JRSMR4SuFbsywFfuf+a2HpAntUTr1G5nW61VJQytn6pYTfyhDaU6ArNbuK+W+BT9jbdLW2OJ7ZnpxiYoXY97b4svSC6EIEl63djP+P+9g5e3rwIgHF/cwe/N94DasEj82N45vA2bMsG/2X3e3ir1xsCLr/5m7+JV155BX/2z/5Z+21ZFvybf/Nv8A/+wT/AL/zCL+BwOOD27dsp6vLyyy/j2WefBQA8++yz+PVf//VUrq460mfe6NWUWUUsq/CDjF9SQw4m5djzx6InHXixJ/r3YyTiyMGPKXMdnUFxbwPAx0D6s52RGkhZIFtNi5Nob/pzoTjP9u7o0iXX8XvXKEQD2xPehJnyjwY4kqsOjGj/mKGJmmsORmt1QwKWwFVp5SqwinkrADCMA05225SBn3gMoNYFV5fXbVOpzuKugkeI/ebJfUUQh+VdRP6E9nC4EUfK9hsHnoU2S3VBVkM71aGRRrLY/EQEo+qsu3xFc47MhL7nopEkAFzjCgmn3SMorG8aHYF8aHJ27HOtpEVDkBzo0euIqjlo0bo0oB2Nf0hR7YBImp5NTtb5p8VAI0YAso0wKYaBueCc4+OtCutQSbRW7isPRSfZvwcisg3JZskxicqAohcANtBRoNnx08Yywi89pyklkjox9hLHfjWZlM/SNOMJ+XdmQLcjMcAZgTpyuwzQiX0obtRCxfotgn46UqAcXsntqEyeGRiGMLUtfUptszkAGEdCoU1a1qz9wkyYeE4nrnNlzIeD2aAqxosLYVlmbDabdohnzbR7fwgjehlNV2N0rXpcgrKi8zPmt7SvHKDYO/qVVP6iVMI6LYx5UbiA0NpGACpV8FDxhfIK7oyv4ZROcL96juqbvd5Qjstf/It/Eb/1W7+FT37yk/bfn/tzfw7f9m3fZp83mw1++Zd/2d753d/9XXzqU5/CCy+8AAB44YUX8Fu/9Vt45ZVX7Jlf+qVfwq1bt/D888+/MeqFaWYT1rjArxgt6cBFZ/79ufh8/198pitrVafcUAPOr1MOda/7HLLe0yiF5hv4m0Q58c2qWDWOQtUkghltnyd1WYg7Udg7FFJr08oNWX3tyWruQ3lkT3AVI5VHaebwJJKktiZOLdggXo2i8cG8FogI290Gjz16C7du3cDNG2e4cX6KG2en7e/pCc5PthgKYX99cNDSXVqXa0xMlW0PWOIkywtqVCOf2D7Zvxw6iahI6LkYYCqkoExkAWGyQOSC5B9d4myhXQMtzl90cqj9wQzJC2q/kKyLj87C+6W2XCIjXcoKzlz71XqmxL6Jzo2NXylZGObXVv9FeuLlETmtNtSvdYGte1qdpSvDl4EDLocxwdv7zh5L77e/3P0SuMJI8h5psLwbOC/9Ty+cJGdbCTEWZer4Qq7n7rjdUWXzGOxRsAtDBPxKuzEyajUn+XUO5GkO1VtzhkTmbBt1hKhHyga1ATFKEi/juoHp3LYqq3SoEGgolg9YhOZSmg4utTY5oNY/JL9vNiNOdhvcOD/F2fkpzs92GAdTNlAp2JUTfHb3GaS+JwJTkcOBvR+YawM1U1uCHc/fM3zlGt++cUU8DDwCQIFwWJZF+Eu5g+GRI1MR6DRbtjMZIGUbjtw1YDBOljOc1NPsx9DM5jLMuCj38SdxvaGIy82bN/Gn/tSfSr+dn5/jiSeesN+/8zu/Ex//+Mfx+OOP49atW/ju7/5uvPDCC/jABz4AAPjmb/5mPP/88/j2b/92/OiP/iheeuklfN/3fR8+9rGPve500LHLjF4MFRMsMTHynJgf/I696L8ncEHRzYRnj11HAJLRQmTRnfhbX7bKYXTmRqmOFrVsMaIGajIxALEkp2btdmffhLiK5yrFUp2bYDMQt6nOSN046p+MXxmIeAN1ybBOb2VyoQoaR98k5SZnwTL1tabEUhIY2OxG3Lp5js1mNCceebRwxeXlNe7fv3Rea5+oceHYFx59sYgG1MEf8V5wdafQV+7SyKJFFs7vDmhRR6eRCG2/8Vv4pVEqzUmNDlYNJCj2HUzeor4UdX4CaqNx07bZtB17npLLrZZHSpp+8t9EvqLcW2RGp6LWsfDM3qir8R7pdFGoQ5166MMI5Cj1c7AdwhifrlFOMWDL+qU9sn+FP5HpygmwbKNYfTJ1lzyY+GUv61Svl9vYRbKDqvwOoAveSOfk0vRhpSVQ3EUR+vtr0ADT6xDVsurVdgR+mOOLUx8c+MUOgIT29mzwmFF6Y38bu1dEolY/fJNKc/VV3xM5aSdVV6AMSdb2hwVEjHFuU0Vcue1+G4DtjAlPHd4GnZJka29FXRpgUhFvOi+JveB2CGQJ+ylq/yj+sHZXsG1M50BH1m6hUEWbqgzPpOe0y7wf1JYZcXJf6Tfz7mbFg1xEuLN5DVflMneLOgDGsUmHN3X9ie+c+2M/9mMopeDDH/4w9vs9PvjBD+LHf/zH7f4wDPi5n/s5fPSjH8ULL7yA8/NzfOQjH8H3f//3v/HK1HEY+u/uB4DB4Z0IFrh7bg2E/HM07gmgvM77qysAEzNY0fOyh+Vjcyy/pXOOXk4APKz5IPoQJxLVgerIxY4YNL7Eljr/YuKWPdNbRzHKXlfgX6BdZVnDz0qT8zAYL2MSm7/QZ1VpdIt9c4BE2O22ePTWDQzDIC+xKRoDmOYZFxeXuLzaN3Cn7ErWQZ2fOIwIoggt1Cv9o+Alzi9D+K6vtWmXDiowUG2nVA+xJ+en7aqJFVYOGVoJIX3jpfPeHZUFh13OhEitX+XDDkg040b+IhEqV6xHcGKkgvOxMqMUaDyaCQYPVGYKkB5fXXEcqvLnuUUt9z3ru+mQOWJ5Oxjf4PGEt8qL3G6POuQmeSuDzAQe95v5+eCgsxuMtEeSZc1UTpG/VF/q0GCLgmzaWxyKaCM+c1hGmxCoYNbkVvrTppWDvitrUtdx5ElgtbHRvZrWGXPmGlnBBrKC0+CM2V6GWqgVT+0uhc/BxITny1Bsd9zNJg44Wt9NczWZKkRgSQoGmk29wbdSWwnAZrPxlXkksVNGawmjgaBlwTAUEX8dRHrb3NYAXBew5PO4zRFYy7JMukpejPRt9DetyNgyuBk37qgcBz533GyfKu4Mt8X+Ni7YYY9wmesHGm/mIv6TKOW/8XX37l088sgj+L/+r/83bMawmc3rRUIAHyH3wAVqo4KxP1bmKiYpo6bw3fv6dcqKUZbg703vgKRu0W+j+12LLbKhVXoeLizx/bTHVnguqLAbn+h1w++t3uCVtZ5oLOG8bvc5Nj89k7stWE0hqcroJ+3HoAApzMu2WwUnJ1vcunmOIR5hDy1nwTQvuHfvAtNhkm7r8mIo129Z/8rwI7zORtkdaGpuGLl5BKg952dOwYxKdEtmrdShSnvcaKlTWatBX07MYkqBAArTObZ/SZCBKLvwtkDbEoA8EcLGX5konbroR/Gxb79YsrsmtR69Qp/oiiGtiSKtgTtav23mZ51AiUnHcqj6ukOevB0VwBROaJeyY5Qv2oPOm9qP5rg73QvEJSCh5Zpt4LiqqxFH3aaTrg+x5q6vAhDNnDhiqMKloCTZydQ5D3w1le3dzs67oJPOwghRQjnB0ZPQYT5AgEVrItkGcIPtoUKB/bk2vSoYu+kUX3/5ficdkD1c2qZ2S1Muq8+0qrTpv2HwKUDtk1YUOZ3SthZMiUcVMKIYgHV4KmcpiRw7kCFLyrUuFn6kSHTsu6BXrUzCoezxqZM/wp3hNTCWLMryd5on/L9+9Wdx584d3Lrl4O6NXA/1WUXR0QNI00GUOhZmdHtAgPhsGLWbsivY0e/oQMUxD9HVkcoMj5kdiHSqY1vVE27zuoyKmhUxGi7KhjsyLS3j1fbJ+2mlUVBYpddWX6gxNMuryhUNZqinChAw5fKcg+C3QtulbwS0sBSiRjCbJsLp6Q63bpy1kKs5+bZ3xjQvmA4TLq6vMR/mpFHRR9Hqx9AZakI4Olc3GETFHLf5GHEqziKFEs4Ytn52J9X6g4yU5OzJnXArTuJgoYxImdMZDE68T76xXYA11n+WX6PyarIQp6fYl/mDZDbFO9d0DPK7Rqe0z4OAVvYpyuOXOyBPUBWZCjKmsmftNJnTRODAXLT3eNHpGHUusLoCQxI/m+Noo0wbHJA6BB1ZB0WOFr3vIhDaBgcw5WHU/BDFe8o3L59lF2KZwXJZhj0SKg+EkK9Cif0VXlr7ai2L+WiTgpERnnT31BEiSr6+IrJufI51h6ni1cA1TDFFGqSWNehtDxNgS/5j4nPUVDONagOCjdA2XJZLf0tfJtV6tx3agzbtWlvOS6217c8SluO7DMfvvpqoWH4MBbYyNOLMEh1l1mdccrKNk4hW5JHqwRF+tf22CJu6xVdcvAcX4z28vHsRd4bbqFi8jhBFeyvXQw1cjl4keSSdUPZTPulid0Ss7wehsr8RYBwrO4Kl5BmkrDBSyv3fKxz8eb1thjjTDXHkpAfU9W01w7MO1Xq7kj1b0ZfLAyKwiyM44xhDlpLq6LX9bqe2q8ElpPwH6Db5qushyVeTTmvgSesnbVMzBGfnp7h148yOd28bX81tvrgumKYZF5fX+WwsdTqimATYpnVIchAsE8J0UNJ6ddLyjCz/TWUFYNH6pz1v6QlZnKDdZvupHTPG7N/63KE+cpD8FwfjC42QeGFsDtRXCFlPywZeTQYDgbY4VPuKQps8uhb3eLEpsNAsSku11xcJk9jaFvyDnbWDADiy4fW9MzIr4/kx7hQhSbA5VA/RTXO8HJ2lT7uZrAudBrZMAWNFHa0U6hXwQ3bfp0xWOTS6S3awLS46OTcpRjDaKd2dw+3hiHUdBdrjNKP3pzpms1fB3nB8wS5OH3uLxbHwSJmBJs8AMlsSllCrPqhMsB2cGnLqRGctj0sdrhsw44fpV+T/GgnYu0Mp4GWBTQGBkOZFpY9RGQsDGFtSsMlqJx8eLWbM8wwiXw3lO/YKZ8QG1LqAqK0ASiAy9feqBdraMLUqksR6+E6L4N2YbuF8vomL8R7++OS/4l65J68zgC82IPni18MNXFRYosU7qqT5crmSzlFHHBFwcN4u8lHtxUAqcLDCyZdXP4CufuS5GqX0zwKIuQ9KE5WS2ngsH0cdSGOTG1zy4sN7GpLsWZrn6d04ONHJEHXv+ugkEKX0cshzQdiZVelzC2ntdjqchlIKzs9PceP83PerUbpFMysTpsOEZZ7XghEdevJY5mVT/QwBueK4jb4jm0cFO4AoVW4QxZASeWIxGHKUie9BIW/bVucdENJcIZcHvReci+ALbSx3iMFBTnAAMUSs7FR5MofpI88EzKo13Ef4zIBu9Bb62j9Gnh3TYKWDXAcl2dK6i12f25JTDk6/8UN5Xy1vSIAwk/ES1Fa6jOOIYRgb3XWR7d6ntgotlBXlXZ0fAANmPp0bnCSF6TlnnTgFHfWq7nLQ4aBbFKatpT9sI7OgPz7SJ+uTVnXxusWpZzsgeVQdjHAA5VWpf4+/ObiU9rM9ncvr7Q/5pKZqoMqRTW1484JNInSkJYoofI7vNzvQbHiMSFVRRl/1pH2HwGqVgVZUpYo/Hj+Nt0/PZboh8iKCF3msOXNKFHNFXRi66smTkjVBOcsTScJ4k4+cJGYyirZyasWbPCJKl/a82lWIzNhvRG4Y5OkiAOYr6tfY+UV3tq/h0/RHR+t4I9dDDVxWvufIM6uu6KMb1ItwZH14VwXMDGNQQHKw0wOZprQB7AjQ8jwC+d5FYyjQ1mwprdriIVRAAU609REOUXevvUJeTs8nU262ch1skRsnY5Q7KC0nTrW54UMa/bjZCE4uGnFx3NU2R1cDrjafQEPBrZtnOD3ZoQx5hQsYWGrF/jDh6rIdYc+cZ+ZJvfkRA2y8DFEJzyHgsNeBGoU8MtbmmOmNTYx2WxxIXOJuXDJwTu4oUnjCn44mPo6iV4+ytqn9Tfu0mAOMxMFkFWrUE0rSvwSbT48AVGU5yH0iT40/o434EXN3jl9xVQqpkxdaWvSK48PCP61f2g3v13ADKAXb7QZnN27g5OQE4zjK3YK6zC1P6rDHxcUlDvupLT2F9lDshdhIwNYDcTfSVRLDgMajgCzRSHaZJJmShB5L0K+0seVn6aJgR2LECyJ3/SDFQJk6S5PPDBqOSWMWDX3qCFgRwGmRJOUF6EFiDjc0qhvhZjZMiMLtgDE+q8XJztXySoyU+t5HjEH4Fu1uI8ORDDOwpQ3+8Oz3cX5xA48ujzcKhaxhHIFlblNCkWcFoAqjFWiyjGUBBtgBi3pcgLYzar9OS4OWVmDQX7WJMNAvtlffT05Qd/EVhhDakvBOd90MrHscADbLiA1uAgDOlnMsw3/jnXP/e7vMeAJuVPVe96wz+ogypwL9mSDT6T1Tgwgs+ucfUJcKTJrKshAqmzOOYYroP44pfjYc7elCxRRKw7kUnjXRYrVbITpBwVGzybw4ZIZvQAUBFmwKTAkDxPaz/WHNgyi+g6ntaNnxUI1ka49MVbCPtIfNBjdvnmK32bpzl7LaNFHFYV5wdXXdzh1B23hNN0/TiDhxrE+atuo+NYJyPzbW5M+V30LRsQgKbZS2udixyx6rYzKUYfJmK6gQ+13zMXodCNkqHPOBvIfU9MX6zVFCAZW3SMVAaU9mk1suUswHs36L/MnKJbKQvMgxUU9X273UHbtxu7O/NnKOkRmovPkgQmVxGEecnZ/i9OwMYMLV5RUO13ss84TpMFvyZNvbw/mRcsSAvIEX1FaEPA0hlACZdhPd0x7RMA0JbYFfRIPYEtUhcUCcgZjgSMTYfgNAxeUlIOVeekj61EHLehqZut/8PedDlp2oZO40W74RpUWKcYjhLjrELUOEz16T9/QwSMspUTmNA7DgbDVCkfiiGEcBDNp0ahm0K8gifobrA/ja0hZ/sPs9fN3Vn8YWJ1YXwChlwDRPIqPkdqiEQZyWVRlVIixlaFNHftZR5/uE0W1bkAWlDN4RnYE1TpBG29U/qbz5RpEKUmwqkV3fXu8yIAWAUPD0/m2v/8KXcD3UwAVAUDrNp3CD3PrP91rQKwENjXjEsmA3w0s9NPB3e3pWzhcq9644x+xy/G6j3hheNeXP41DuG+VIrCFq180uGdcBhlYT40W1+r4fok9w6+YAJ7IqVLUiJ/olT552ZfL8ldA6biMSNSkGcoiwO93ixnlLwi0WxXIjW5cZ0zTj/v0rHKbJaKDQB5H50dh2H70NxkPtS3R9QqHRjM5GI/acrV4R4GMJ0JEHgU49yybys0UMNGTbJRy6vfEyTV2CEe9DxOIodWRa2Qvpp5JiPdYy3TdIeKD8AUcjxoI3WptTNEFlifWf179SnhS6NodGpeXA8kwphGFoOTrL3LaKL6VgmmZcf/5VzHOF7n/DC2O/P2CzHdsSe2hOUNuIT/cGGRTUGIGBWLVHD5AzmG0ItsUe8KnABDKFv+4A2XJUbLmyOiQzhTFRHGYbqj/pkRBVcHXeKzuZIUBg+bo/zeLAHGHMwzNjxvF7tLPB0GQzYd/VcatOBMsJzelw/yDTpazHBPjUp/oHBtkxIVo+yzSPTtuqM3ceNNtLINRxj98++ySev/wz2PE23AeGzYi6LGaLbbCo9iOArbosYJK9WyQ/xSzjqh887seoPt0cwIvnWMU6a6dy0e+xyE+QHc4dEXMeYwmsCPqLq/OXdD3UwMUMon5WLVOjHH8Lz0bnmgqLwuN4Id5uV1ee3We2KR17NNbRRW3sn45uwB2K2yy/15/5ps8bWdxWZFg7VNBMeKPec7IXHvcLnkiMWlQOV4z2iwuyNinOvyMYKeeLO1RlQWszebFmcuI+LaUQTk52uHnjHMM4iCFVNS2Yl5aDcDgccHlxhf1hXo9EAy8dCQR+opMPZ3QauKwAhhrNABBygnQnM/YlJ6JGfnYBuO6ZkkhP4DiKKQdD1QEYFsLt5+ic+ihCb3iCM2rgTR2lAhOjNLWPEVYw9bKMwPt+YJCqddpWgE3+egpPm4ZgjrLaaFwWF9SKiv31NdTpW3SG5bRoyMF6KquFAC5NJ2tFXRbUpWKzGa1vjKTghG2KyjvOlDDbfRG2cD4DQSJNIrtJb5qXENHhbFacCPc56mik+HgKsml4kHcOf8OkE9x4Ot2adO4iwumen5l0rPTYldGxqv3iLnm7wQvjR0BN0d5rfS2uUkE6lSJPpGXJJiMyiaS6qAMMhk3PWQm6SCIMTgkF83DA75z9e7zv8k9jq+BFQS6AZV4c4yXD4JceyNj6u0r0o8jBoO2QST1HzEVNVxBpJEmbF+yQPG+DsCQ33orGGoeCmUY1VqqWqpvBP/fg8y1cDzVwiUCiLfmjIw9YVty6gGSNncEKQqL8HI2SSAf5KCX9jNR5x2hQBYy0aP0daIm0eBTxiLFGth8cHothTH3JZTiEzGXW1RyPAhuh1Q8B1BUNYoyD3emxHZVmbBMPxShAMuA1amIKpooHBTiNj6cnJ7h58wxF8w5Yp5AYzG2PlnmacHm5b1n2ysOuC0onL60eFsftbTZOeYdkx6I/xfLNboYRCLPx358NLiAyTftcDaP2kRqVRHW7F2XWDCnFvqCu/wMN5n+UPp1qZO//wC4Pu0eWZH6Sc9R1TKNGiYxeLxwErqfr8lvBF0dWJKCg8tqMsdAkhCvAY0jegCxB7RNYGc1xNNnO72rbx3HEPC+o84x5mjFuRgc/AbFbjgUzwIQySN7C7LvetsaR7SHS2uXRTXJWGvhMgbMj/dF+lihfkG4DUOz2QXlS9EvQQxfbnvGB/N42BdrU5kX5N6NhjcjJwdFCW5JwBAcrgBu1Fw14wnV+pT9ulAILyWyBCrrdE11qwJhsBVf7rYugACAMOJQD/sPpJ/G+qz+Nbd25jpaCMgI8h2XDBaBKXb0kbKrBFLUISTtupDjYUAXSnXodm6Wou8qD8znYcas5GvakXNZmL55gwE0HlBRyy47I5Ju5Hmrgopfx+ehwUHuo81rUiW6M1KgD0N+4N/fmlQAKuduc9DMAgaY4Sg519bjgw0bFyX7FmkUoGvJ348XdO6r6tgt1Ai2UnvKBH1tkQ5WOKGwiZr8nzsloxMVX/bQfga4I3h10rU35BkM2SMLtiiT8EGd+crLF7mQj/G7hXfWHzIxlaZGW66u97WyZ7GLon9SoyOdgS/OoOLxiDl7bLEqtBdhoUEeGbPZ7ffmBh+351m6NhESc1AOjWlWGQjicdI48Ru2cvl62GqBs99Xw1JqnVw38MCx5NjBJ2t926NR8gubsnU8cidf+KNopwUi7Kr7uFuER1CQJtcii979W7SNS51et1fIFxnFsx17YKDXSpYUEQ94BojaF1HY/XZalJWFyHMG6J9ZSjNd6K8iCvRfuUXpGXo1+IbA5PctqO1ygolx5sr9OMUebKLqoxFC2Jkf74cjHYFxCbgwjAh2yPWPDC3q7AJ5s20e3Nf+N/HtgRJzuMXRgX5QhxfdBiv0Q22KIUWwsMyqTRz8I3X79rYQCYBr2+A8nn8T7Lv80drxz2qgAQztfyBZ+iO+xNpL6h2YvGhktAlwXoAws5yCR95sCPLETXDyCaDwi53a81GZb9SvAguAbHfyYeqjO1+p6TD0wenPXww9cVBEB5+kDIhFh2JWKcIfF5rD1+ZhkiL6evoyYYBgfZbalmRR+s2oB6+14T+uM4MUGbubM1bF7pZoLkXyckhXAlBojlUc3TOqww4iSI3s7RYYrmY6Ymh3noP957rOUgnUvcOaX1FOIMIwF52cnODs9DfM7QXlq22Duer/H1cU15qU6r8nIsrZEkBp/09ELEVJuh8MTdplzxtnBhApMrR+pU3DhgfeC8AvIoslq0GQUF4ESx+8rFibv5km1nkeS5YlzVECiAMIA551VxjZN4YYsOzdz+VJXbD/5gzlCEJWK1j898Ar9wyZvfRTTKzoWlV2WBbUyNptNizTFMpLzIXceUlarl2AbIhKjDEM7e2ZeQEQSwfGG6W7HWqrPAqnuBVaE1fUpaV+ec3nUB/u2ep5bihqrc45aGGhiqaBrvfdtYL/X5XKZS9Z2+QAGHGxGoDUT487f9eJBchKnY3tI422IoEfBq1nmaCi7dpJEqYoMlFpbve3MLdJSikTrdC9CqVPpL1ww0zV+++Tf4X3XfwZb3hkTiVr0rS7V6bBtA6xXbLoICDYKQF2q7/fFaOchyeDTfFmw42YLGL78O7HNo5W+v1DWiPy05ucpKznss4Uomm/5ekOnQ/93d3HHB/Nn5P91zzui4OQAIFEPTxrVIj0hNtUD7+Xo0PMdfV5Uo3hkBaTI2ElL4VUtNwChOPjX+kxu+Zi9Jyu3B1SJziDJpruKWKy5FPgr74jF1ROpG46KtQf+BGHuCTAaA7/MyFI7M+TGzRs4OzsTpW2lEmA7TM7zgqvrPS7uX2PSw8/gBpSMAO9TFqY5D90Y+HJD5bWZUGMAR4MSmS/8S/3njIR4EfhonkT+lIlZLhLTY9Qi8DkO8AyAaBJBgz7JOcSpApuas2L9e0oYDk7EgWAxw8bSH9qkKs7SjT+s75TcymzfNLRs4wMO7DzyX2SDGVfT184Nqr5ZW9rdpbaclHEcUIbMU1M6A2YBAIRRr+tK+6GtdhvB3M65ybrnbY162bsEEOcGVPjhm/KCVa2N7QxEFd3Q6FvkvRaitsOFx0l1kBcsGuf39XJ9FVnujUW0mW4wV7a0N9stGl062dXae4sXX862tDIHWRONYJN+NU4r+dLeYSHMI4BOS6xJo3cAwjEhoVQCqAyYNjP+w+m/xzVdhca2AV3b6l90AWh5k9T1SQ8AAnCsi9jEQ5uynOcZiyQAgxkFEThrXhqwsMqM2lX5u7RBocpTrUtbo51oSBAw/apX43e2q2/2eugjLvTFH8kPy4jSRD2gfj9VOljO9BlHFIPczmdLCQ3zxZG01WGjGcplH+tUcXLU6WV8ku25YB875pAqpxmwME0kheVVeE4Xgb3OMEqH5K5oUwDY1Ijlnki7akcQV16FQxkyDy3KOm5G3Lxxju22LXcuYNuOe57b7pPzPOPy8hr7/QFVEi3jSLXZ++yoVcXyqpoEtawem5IIjiPih9U+IFiP+o5GYewVhgJZz4XgJBrNiIV62MtcTW2qM2iCBkASSqPRlf410HEEUEpvdHIUHVxw5EKs4S6rW5vTJaNKG1s1nntjybNY+eEjVxjB6/Ois3F7fStd7kVHVSWvYBhK4glzTKoO0SjEPnF22SfhP6GtTpqXBcwboy3KuUUekgwGfy5FsvFaqGHljfA79GdkmnahTzvCdlS1NqizZp9WNNmNuKJxpt3rDU/EIkASP/uRXRyD6NjRAgH3tTbFs8HUZiljVATjigGtSE9J56jnvY4GXturPk2e9Er6xZLOpRviCj/VO/cbzod0NpU2geQ06nHCv7/xm3j31Vfg2fntTl0pKOOIOi929Cb3/WqRdrFYCVB6b/hCHgYQT8R2UBj7iU1odJZAuFjZ2w2gEsvu6BBj2x0SGgQnJegiA9M3ez30wKXnQu9C0hUcewq7hijLmqecyqGunOTgo9uLI82wVb8b0I7+YLjisyT33Ait2wREIOTvqbGNIyc35mqkvO3aAjVe8d3gA609ldGy6AMpusaFAAmXRqd4JMTceYEo5LuTLW7dvIFxGNoBdfqQjCDbZm0V1/sD9vu2sZzSlrrX/ok06j3nTaMrJGUzwj32vLSoiLFwdSKxlxhgzcUJ7ypv/ZBLMbrIoCbyS0PbaogYzts4EtO+UueWdm1lCqs5er6rg9OO1ra4cUztCs1J1DIsq9tWVUUQo/zkNsVBwkNPEgwA4XWsnAWWdA+K0N+uoQqqujYz7JDGUoo4SonmSecb2CCvTHMamNkSPdlqFeNtIIGAWZZJFz85ONKgMuPRJgo8k2dCRCfJX3c4ojNN+8ql0VYiGo9iXhW83qCj3kce5YSV19td15/weuNhkPm8+WQHmIU5lSGJ9rn7ba8nUraE1UMxEhH1PtalDhmqHyXpu039RQjAPg1n0sQOYqKG+lsEcLVIiT7n4ByG/gYi/OHZ7wNXwJPTUxixAdB2yaUNAcvcBmPsNVjdHpjprE7njzoet7wTfWRxf2igxqOTUFIFSHrKA3uHBPArkqVv6pNoY9zjHvbNXA8/cHnAlboqaEBww+1fVXR0LI1KHb5aQm1fX2ecU6FhNEOArRiiUF6qSbzuUEL4PWmwPwNkZx99rZo6Tu8BsPp5bTi0bepMAo+OXQpwDFwFgIBFR7rhd/2oHzTKQAFCFMJut8XNm+fYbDbmNOx/Mndc64zr6wOurw7mlAHkXWAjZ8UgQpTSRq1yLx75oIY65RFZgXHahcO5RtpGKduSXjuDTsH4SHnBBMsz2f0aT+1QNE5Lrr1s/d0ddgJxq7X0zgedi09TZFB0kPvOp56cy+pQ2nLheEvvq1ch4xFsl55QYzd4e/DV8jfiDIrzoBlQWD2Rjw76KjM2Y9tNjI1vUWQ9CqFt0SkwpTdG9EyYlCHwZ61+6xDnedPJ2I9uU4joSL6VPhN9tsqi94dvVkgIItvaVReASJKRG93mxM025IiIlOR6Lw5ZadB+d+4EtpC/Ey+2tpE4VIdPnArIsCol87v6W82cnlEPr5G0ACSsTVkvYPdD3lbwILkdbuBYVrIq+FLbpnVYe+UaacCnT/8QLw+fxXv2z+OMz63MYRhBaIneK6aCUMjlNRl/cJKfzO+gYOyts+gSEdhW1kU7FVwPxcgdG+hp21MULEv1vD+0Pq7t/FF0ef9v6nqogUtyyPG3OLrTewEgcPh+zCWnUXe48m/BgjDW5wbpPxrNMaSv0RMHHerkjtHWjzoV+Ohfv5FHL2aI4u/kjqwZtc6wwGU0Da4D8AKQHUV3L9Ydw5c6OozlkjkVTxwtpWB3ssPNG2cYhqHVrXsUKJhgxlwr7t+/xOEwOz+DUTJajP/+jDsUiF6GN4LRT+1BCPuaLovC2siHLdTaQAsZg5nhz0HOCglWWdvvvHEbr0ZSR/5OQ2xz6Lyu3+xG18F2uBzBNyazBEqYvPTlm0iSvM9IUzO2ekMdfHCWgTrjt45iVRaocJKTo1d4QOUoDR7InVaKFpgueBGUnnFn08gTHhOBhqFtrscLZtniv0gCZBIMIyzkfrnndt01w16ggNPIT7oN39QvTKuBvN3GCfut0RNE09pGUr7KoDty4VlabhuBUnze3Xq0Z+ZbOyfLFACPfjZ2xUocYOhXlTF9TiM1Jm9E1sa4lMHBxvrStloUJvFRqop+BGgRGukzCqXERhpIVVugnaHRDBCIalqpqa8fNnt8cvz/4Muv3oMn5iexwSisKBgGzZ/J0XGVAYgOxmRdK74bVFMZoOcZGa/MT7SXl3lp9thsuym0fK7m37SZIMLCbWdfKkBZIoe074773Dd6PdTAJTmbL2rpsl23Ttd7CiyQmZvATqwTQdl13lhG3u0AK9kMKDhUqWhFCychZi+vRwMdQEhgg5N4tXakVU6u0pXVSKokBSegShbb3CF25yHbzKbRoiMmRfuxsexffPm3lFXaJl43brQzh4gIy1JNKc3ACGi5vtpjmppmVCt6LQPiC1dALPIK0BGj9pOP0k3trCFaiPkhB6nBWHOsNMoZIMcdZLElAHEJczXbrWiBjdEJmOn9KNisbWn8UVBt8wV6X5lX3HD5oYhkpRsnKFZFZvAhZVPgnUn5kUFEkifpW5vCJH+tusc9fll9PgURQUob9Rr1sM6KfRbo0ufSodFMaUqpjAVbbDDNM+alYmCdavIcmeR0LeHf6WKp04G7Awqn38uIA4eoiRZ513aa8yUrU4gw+bHVgQGsKLg0EdLTqCXS4+UIEBDmdZlavRvH0ZtSdwMC5H7QGtXAmT/PwfmH/op4wbvb+CySEQBGACqBIIJUZ2DNKgntpLahp7aPQ1RO9bFzHhUs20Eo4GzvtCm2gjIwDJSFNmxowKfO/gCvLJ/Fs/vn8PT8tNBQUAYCoYJ5sQFSjDqxRhpJ7bjyRVserBAF3nDWTbflcswAFfg5c85P9XfViiQAiw9qNNpDKlOtvcRvPeTyUAMXAGsgEBAugNhVq78rUBGuXgFdJ9g6xZTe6FDjmdVDaSToNvraoS7QBjj66Mox2oI3joqUIh/R+B65cnTG+RXnox3YtO9xkz8HOMG5sU89pUTS4FQ9gS07tXEg3Lh5jt12J/6VbSlwM8JthLAsC+7fv7LEXOVx5FoCEhzuy/4cRnMQlQbAYjBYbWVU2NgWRVTivCsEcAaqbNS+Nue9gzFWBCPc23Q3Du0BjVTE92J7bcaes5F02SGP7Qf+AYwKBiqnU2RTfYGmyuw7YgQjqDLEkFWdZirZ6AxVNqPLHCJT3LPtyOUGNxlVtKaZCwtOyB08zGjHUam114AcW7s244DzG+eggXB1cY3r62vM84JhkJwWBMPPngxpUauoFj0rpeNIBTO1MWeRJImKMm7lBLlQmQLZMt1WTnbOx/kZOGI6mX/uLwUD8Rmys6+yA4wJ0JpjY1qoSqrMiihHvX3QrQbKAmfMfKld7rezz7wqQOBblPocgY9+wAeUbosJ7SgAm5BhbZFvgpdta+A7Wt7LYdzjU8Pv4+70Gt5+eA5nyznABBoLtkNp9i9tTggTAtsFJ9p4a68DZqtRd8NVXTB90eZ5dLa3ZKsoP3K01AG3T4nOy//kwCWBECCBkJi7AqR+/ZLKjN+1bGK2XV71csF0ZxPzYFbmR9fly3ut6AyyABcI6/jOEOSwpgMgG52lpZO0el951XZcpDDiy8JOwRFZmxSYcTQ8gR9qMeLvyeBx2tdmsxlw8+YNbLcbJzEYXptr54qrq70tMTU+E0ET7dxJ+/SLO4wQVpX30uHuuiMwuRLbiEpHKNQUXZqR2mfAjfS7FFv9+IX2MCOGa3zlgvSLNl+NmuW1KEMCyWIsktPV/iokEbBWt50FZcZFzyOy0qTMrAWGlbpOVd1wgNR+ZbT9LmKqiuYlZWcteqPREmiULowPX0dhY8QKhJDfQbbjs6+6yMCt8Zjk6CAGhnx4pQ8G3F8OZUCtjIv7l+3k6LMTnJ7ucP9CDmFc9PTepuNGT+qb0PpjBilGFuS756z0ThWZAfEZkb+Y7+WF6vM5mmIhNWaTlchsz80QVyQRGS3NqmKXGYPxAjRMZlLfOXBaWUJXI3lXSlC9DJfs9220qKrEuKHKlMksqoxaQt6fPZt5pLSlvCOE41V0MKDQi3Pd2vZFAGCTDdmuf1mCnSfohoa3N1/A58aX8VXX78Xj85MYMQIYsCkNgS5TtZPJFReyUNt3vdHhCNl6jmBiq13SVnwFmxbb4LoRHUtvF31AwAHQ9JtbvpnroQYu/bVCf8Emm0EPljMZeYRODsYiWVoNozEngSBqCPtYFEOFXac6omdkkAAHrHYYVccaiTVfpv8QrdsXaM3MgRsBFSaiFI5nVaYAgqJttakfjYRwR6NyMv6k9XZATG+enp3g/OwEm3HMPEULzyp4qJVxeXllq4fAAf0HxYq/mZJxU5pCqYKoawYsGBpBoOQw+BhPoSDGHS8o9E/gRc5nieDBQ+4t2mALRGEGUIhNkZuW6r+SaRsBcuwGNxoG3IRODhTEJD2lN7Zu/SmUKU2t1ac6FRTZWyyzZP2o3ec8kpxkvh27MiDP8/TmZuzpNP3GIfG1qpzFKINHOPQ57YdaK66vWrRlGEaUAmy3GxwOE+ZlQbETqNtmdMkGWOn5L4d/o3AqECPTodSr5nYsLiDO0k+wIivOI0tKj1Pjg608JRVtYiINeXrLnC6H92LX2WAH6ewy0pVc1iwdXMj0YUBeapu0Ap/s6khb8dOlwXJZIj9tWW+ATWZPzE27njDDV8PpHe+V2N50J/iaOMUOAGXQ0761DP+0wwZ/dP77+PzyCnbLCZ7dvwPn9QbAhGHTpilrXQB47kyUL7UzykMDI8F0qBrGnLgYiaeONwVuelK+DnTq9gG+IRrdt3A99MCFu78ODoKgx9FyiBasQIz9jq5HQ32dMwfRqoPiNFINBjIqhiXYpsq9W5NT1t/VAGn90Rtp2b1D1/vd91hHWvEU6lNaw802qglGXNmovprM2KgjD3kGaizknbOzU9y8ceaJqtY+nXJqDmauCy4uFLQ43y1JkGVOOfSJ0W70RhrEQEcwgRYOLTpNkUBCNCPORusMcBjtHYluKU3SRgqfTR4Dm6EJeBRyIEJdjaTsJXRPBaubWoTKxDkxRB8hb2fgK8ENnO3CzEBcdsz2vpAgo1ZdoSKmz4VDQVHgX/BBib+R/i92ceBJn4SoBQcNWq1AKsOAeZpRK6MFSzLoI1s9wQ7MlNHcpi55Zml7aQctVpVfsn1TjANqdsLgJZavjkN7WUXRppiPOepmUEw+KD6xAqC9EDSifECRNL99F+F50LlRBoKjbfQ93q0cd4lOPJuk5BiByn909sn2GXf8ivl88oPJs3PU7WTmZJiKYy8j2ke1qXGC3IFgttsOSgLnVaappPpJbQLUNrhMcK1YhHeXdBeXm3u4PbyKbd3hucM7QSh4hB5F4Q2GQQ4CrRXLwg5UhXFeXyjfjFmcJmfLheIqO5BTaB03/1WIgEIYB7HB7R/jSd8dK2f6Fq6HHrisrm702bOKw3MUvwNBeZHfyBJmoCGVHUaGMc9Ds/wTaOprYF6VY1EFoo4uN3CmTF37VwKqz3U2SRXRHKQo7GqqqwRO9c6GYtmdMmpFEQNQC8+3SMspEPY3IfjeLOr8pqltLjdNc6IpRQQod1HsiwhaWJurfEzANUwjBWce+Z6YB7gBIwqJqc1ZtbOYgmkUZvkoEkf3bOKqxxn7nDlYHGpdU9ODakNZbNlBxiQKfaeYwp2+08nhB+V1kSnOmNAd8ZdYs2TgLFyuAEJGqlATSTGilC81mK9r56LRZXUMwW+lZ4DVCJB9D5e6LAAGDKXERuWIDwmQUfSWSGi8GUpBRcVSK4ZSfDNFaXUBPNFT9VMjNMy+8VpqiDvgRoYOjHSH1pKcRdbHjsPUyUnUg1BnyIYCUMThPqgzdGojJAEbbzgrKFQOyFcacZCdTs0KxdylbPFibl8GQ4rlMs/AbCt9dBfd5Bti9QJQqu7HAiAOUlU7ItDU94UTiV+qaoTiAUYOcOqIsBO1IwD6s/AwMPblGn8w/mdUYtxcbqFyxc35Fh5ZHsVSKx6dH20AOuyebCuS1D9F+2dsVeDm9sxtoesbmLGA/GyoBESV/myKU/lv8fofDrgcBSkPAgzhnegMAVcufW6lsv3INHw2OhSwCA09ffH3XHRQjqNg6nWuzmmn37tIhDl/i4KEyBSCAZAvkZ9A2MMoOXhX0oQY1BANBWenO5z+/9r7/mC7rqr+zz7n3Hvfew350YS8NLUpVbGhtGhtJQ0/dEYitWZQgXGwE2tVRgdItaVYCyICw5R0cMYZdRR/jJY/BDp0BlARf5QUwWr6K7alaTWUn+m3JKlQ0qRN3rv3nL2+f+y9fux9zksTmia+9ix4zb337LP32mutvdbaa6+99/RUuPcD+i577d4TmrrBuK4xGdeYTOq0HFJac5t2mWshOWBHsiO420Uq+UHqdKJqREk585xAaOLtsBYvmwwqLbpUzloYO8TLzSPfuB5xMlVL61JjWoeuvfNDdRpkicFbTmtbQlsbNXGxv4nTp+8RmcPOxElTxyJUxWMiy2cxdXQp8hxsNoL213A/cT50CSKjEMqqQjOpw62+PjgaunSkdDzaUrTFIdAgXrio3rD0kXOmpLa460sUPSEbq5FvzuYKkNTN53JYOZZEVO6z4/EdkGYDJgbYHMDnTGTH/ldoyeJpZE3KsQFjJWCMmaVVutyuieZiJ+U9dT0grh+kPxwBkWcmvGv7YHUeO5PsbThzjg2MsSUZ66onCbxsGHe9JU6a9sYrprDxYMHK8oafcO6b1ZuxAesIBdkMFZTk8FT5JByAueopPEZ74YmwxC/BhGqsmrwQQz/CCyZLMWgqND7k9BB5vZ4DfL6cypmkSQuv429kqBnxb+VDGUq4jjDdgv7vccDidlx45pNRgp0Qa4SBBYxZBq7juct+T20a2S+qvqxi9zozkjqNsRM8bV94Fs+/ySwlc4RshAVILzvs6ow1OlldiQPG9fE7QLblMqWXBYKdxWmhsiiw5LRpjEYjlPH+kUQRk5etqN57zM2N5eClZH2b2za/ufx30y95LgM/dMaQVgaudaKEJs7UKc8oqdfxg0SpsytjtZrBTZRvijurW3uYWCpnTC9VNCj0pmiQJsWpB529CzYMZB8Iv1OnF+ZzTm81ykmblL5mDUfqBLCM8ymm6uikb+bQnj1G90RQ5jcLZ7f1ar0OYQZeugKuqsKNznWDsipNMa3P8tY5faYcczHxkMKt0EJDGy3jsZRpkih/zC5KeBCdzMQpV5ePSHMOEprIvWjscFhes/HmQQDjQHKvCGSWxpw+kraEl2YsJeCUJ9ZQq9yb8SFDgfURkE8UonaP50LpkjVTRZs3utj0OtQbHL1w0bRD6Qp4EBpbizM4C2UIErWBjvlEzs1ENqG1fDNjzlxvQfE7Cl5uNnmEbVGBRqpZluQLSnI4UjwFIuDR8hF4eEw30yiowDzNY+34LAyowripsbJeGU83jzbJIxl7qePhzNhlaWUdpHpRdRa/k+rMEwGL23ERDaIgLGRqEYUZTTYTTwwCOwlC4TR4zY7IQs5LrlpbqrbDkFL+TB5Q67fcAeMyYpNi1mFLLIwiU2Vp2jBt2YCAqIjsGesaUSJO6xYd00EMB6CsSpy2ZAZTo2F0EkjfjQO98cF7H8+PcWRuHtR4XWtN+KN00CiEMVjRKUicx+STk1wHSxJWUsZlk8tZuW/sHJCVFUMH5omN/jAhwqySWnJrDYY6fTE8HwmvdOBlhUDwwrl4C622TSZKY7MAQ84K98NcBMcY8gzeUAGwuSashFKDisgflgGdxZnZpaG+GEOwTOVGIY3QdIPTEDrXbfghvGWZTRwQy5VYVxn2l3kflnmKQhOfOfnee10ucdEgExHKwQDwhEldA0ThNmi27rFNuR4gGvkwsVY85LovF5nFHYg0LBzFE0dJk1tNgEHMv4kaJMGnxDlRovKmAqaRlUqRJ9gRgah7KOMtyYnHLAd26S6hu/VjLDYyCGNiM6tN+a8ylPWHdfRTnZwmQ6u+0jZZr9vLQGVpntTB8KajTl6kVF9QHMXWIbWOoji5aZ8p+Q+BPOeJqWIi86aSj/FRemUVRrkFCioxruYFpf83+CZAgIfHt/1+eGpw2uQFWNYsg288Jk2NFzazoW3eDWhzqPj4f+JxHASadUM6sY395ndwYmBxOy4LgAiFnQnzbzDyxsKeTBNc5pU4uJaigwoiWYWRLrVwBKbluCSyTWk0ITO2LK5SJBmsEGFIB7++L10y5dJBY8K8Spa0DBtTGfixWkM2J/9m9ANQDkosfcFpGA2HcI6PLyc5uMgq3XpS4/DhedkeKHUbRyChafycJ/YtaO/EVBkllGho1vrhZ965J7kC0WDJNlB2CFxKj9R3cnKIWctJVrKq42CYEIyAzkrlynojP8wLYvrH6bfNtUr0Pstcomj1kjnuAJNDMYwWNyWlKnk5Zl/pohJnx1j4necV3LuCCZaMzQUZ2VbozvZH+8EGNF9/t2F7Qrhokc8bYV4NBxWqKuS+hET74C4VVYnhIERp6rrG4afmQZ53EVk+BvBE6T1aBpG2jvLiuBnTF3fOKn0oHl5q9VyQFxVp5o+Oz1hba+KiS4cSNXC6LML04PpZjsnQno/0t7adW1XJUJwUIx63QY5cvExLpccsIQHCA+L/qqCa+r06Lw4IBx+09XFw2vSmYx2HATeyiBh8Q/9UmzLOVmBlgoE0+qNqx7X4BAC+8VCda/QVdBinLGQexeK8Hd+MbXGZgsCAHKFAgfniCIgI46l5fJe+Dd80aIjwePG/Qo+xn8cLx2sw8kP4poGrKyxvVkB3a3IHUhoJT6Pdartt3zs8Jx0XBhbSNGMfalUSjwCJkkxVbWokZbcFl8mdhcQRSoHsB/EOOspnTg/FqEpI/gynyjI++dIIGzvuG4cd8xyQJKxpPxv0OJwq1WeDs22O0r4NhwO5c8g5uR9RgMlPRJjUDQ4fnpNzCUSZOEgURepnh8spxjaUrqHl2A4Mb2Rm2R5AHAGQARff0/NeAhIF0t0nRjeogwAjW3BqmLkQK+NM+bDSDXUYB8LKTOLsxn+sFYbKOxvtIjqfDs6IHHtOTDFjdPkYeqal46RQMksTXqgjCaKR/txHF+uzxloQtjSEyR04FhDWt+U/nwi4PBFL8E1pwjzi3YBEhOFwiCVLTkNRlhgMBmh8g2ZSYzye4PBTc5ibm5dlPTt+xLoYXsiYNDhof8w4i92TXBB7xpA2EJ2W3DE075t/w64nUgNu3uKTf9VpNjPn2LDqCoN3axyakZV5MHmb4bPN/oB00H6WJRNw5gXfKh0lLXMqeNRI36MsS9/Y2Jo+BvWayghZRjjFn7/Y8Z8uGJl+8jCNhdNFJE2cFjEQeiLKFCUpBjJcydx6L3IfnD47yeRIkANHWV16S3yks4MLx/SXBUoCJhirbJDD/1bfMnLp8BjtReMbjCbTWNGsCO17ApHHZFJjjT9DnN3CFwCY1seZs7kAPDcdl8wIq3FJFVuiTGyZeGyyfQcUo+525mHaS9pBamPszCbaiExhZ+Xta+lIAgFofFKlKDhBR4qrcrEgDkwcvOn7dmCZQ7mc0xwXvm04Qzy5ih7AYFBhyZLpcIkd7G20PDP0aCi0Xdch0lLXTUqn2HZKFCf8y42UpaF1VsgoKU4uzY/FJkAP7qO0juCEpMYALqTdiSLkZ6zYjeJLE3DZY4EMZljSsXwZJSUPjYLLSQJoFIONcajAQynjkGz1ER2nDdiJmiRZxobS0LQaA+dSWkpbxhbYIUWCX1iKUj4qnXzu5WYgThI775nyd+azhSB7lNAuzR/RPjSNx6FDT+Hw4SMYjUYYDAZ46smnQERo4m6NLqMl1kc+G91j2zG/ydkYttcy2YjLZ4ZbvByllxeqvKgDqXU1dZ04s6F8xCtL7uZxwHITToKNOBDn3MToWtJPJQA75PyopTNZZAySRLzu6eAy3klsmLwcy5BED7ljBm/GXWWW9R2fYA7IMQjG6WK5YqwlWipRMLYvrMva7qPYIDItiwPFdGipZ8iQS5yeWLsHqDARKCu3QgKOlnHdoYGiKJPGHHHUm2IicgGObqmTp04gXNwCTYSJmwMVwJFBgzk8Ke0GHdrggP8OAIJvgNn6DLjaYVW9CgWVKBuTQ/Y9wuJ2XDJjzcKWbJXtUFxcvlWXOCTWGmfrjXbGZA1lMgN2KqwulUxVSFq343KmT2RfsNZS4oOmfzIVs8nBWPDcBVHm3Jb0O0v0Nc5fMEBkpsPqNWmeQ2i7KBxGowGmp6fC7c5MXoiFBVF0ZHyDSe1lyzMEj46wLrecGaaka5YmWEAmuL7EOyIxsnrZXUw/yx2/iJf9nQ+tU5R0zlcoAaTvLcicKHUKckVG6pBks3fBj7WYGDOXeg2WqZmjys4Dy1FuaDk3JtoWhIvnPJITNHmWF/HlGR23J+fBOCR5Kk46GhWtc2h1LiGZGZc8m4u8ax0IiTykrU5X4qgJHionPtbfNHOohuGkUufC0exN4WFWGhJDIQmWxqeyOiKzXy3wzAujT4T28mJ3PSlno7jwchfjYSNyRHCFy2STx6GDKwpULmzzbxpvdGSQ8wIOrnRmp0oYxcanSpw1IO61SWZfoT6ZRED5qs4JiWg7cB6VsQPMd+sMmf8y6IJFdx6VXYKFI5XlDuqK/jP94zYJTumco+Fc9pZiF3BQB0U67CBOpbhOxjFih6ywOFpbZHB2BVD44ICjiFcR8KYJT2gaH+u241HHUPiqfNFdqQV8GaPmA2AfHgV5wrfr/8XKZhXqI02b4McJi9txcQ4t1ncYhXww5yXsFubEWObv28iKZWJsV+pPZsOUSGzi6CRI6fArJHJhME20kFMHokiFU/wbuOTGU3FETJRCyhrNws5K2xyqVndavEWncEbLCKfNTIczMUxtBMgOK84jqKPTUk/qaIDA2iK7pj5U4LLENfMo9ptEmQs/mWbG4TQ6MOmAzRXhsgUgyrDtPIWXOlwRcEQhFbqUsrqR1ShmiQaYRGDupDUZvIuIfRRxEkJha1rsrcJ5bpLmWSHZjSmz4hgVsRE1J81FXoHkzA35hT9nzhIvw4T+644EW1/SpwUgKFhzOV5+EZwJC+aLONw9wUrasdMWPdla+lZPTBSB4MB5Md7czGvaSBAGYDbJWnPHY1IRimWKzDjwM570tGTYxGTYOTHOfxF3b6lNI6FlQK9I8GCjGHb3qSdgz5DR3hhnlWkZeSg1uqR0kCvEU2gd4FCIcy5uArEDYJaVXFYh18lOTxw7HCVXCsooUN/NTEi1g5HuTidRLhUY1QWZnlK8uU9aXusgUalcRz6h4aUfIjJJ9sw44bJUIHLL9GLHjx1fox/CElNMkipMQrLwK57dhBhZZPwpbu0W+fGQs41EqTroskJsr3CYjMbY6x/BpJjgmcLidlyQOiFCOwsdkQyXvBCL2fJmNmI/5zNvW2fSpGmHTOViNKOWlmdmdsgGIcE9tiVGIEG4G7pm9ckAMm3xrMqufWfzGCRW3qJllIgrHE6bmcbMzFQ8DRdMAXACp0Q+KCwPPXUkRloopZW8SVZZZ/zu7LlLnvNYJzLKOZmNs2EKvqAqdW6QkrJcuyeNfAS+QGYtxOEEJ3og9MM5OFfIAWTKZlVmzryTKEuhvcqlXe9nB4cdGbXblou8g4R3A+QzbOtUSWqj1mH+UfkhHSLSrpOCjA/P6BPyinU2hsgMvUC/hQWdbFtMODGAWkc6WFw2rMIBXaCYS+DCtn3LIPJAY1JLhXZifDxka6vhn+dD6Ao1kmp6A7Ic9bMRDG0j5b+6JC7hkzKb8SErvtoRfjuW1WRslVXxNrlqVwifmeiJfuKfHZlorJGJVruMj2Gy9RmEtgEkFwUAb2NOIhjihsT3SCXG6jOCNez6jA0yR/6EdvFZEulhnuVmwPTG/sJOETuPLint0rLxm8++ExFKlqnghQVHwZmRYQkd5URsjeNxajVO+OhRoHCEqiwTzAjmaAWnS0yCGQVeEMJOt6LkK294JwNfZumY2JLILTr2GcLidlyssYcO6YxFsJImDF3A6UD2vDOOaESw/asR5HyWz9PKDBf7Xt687V+OieO+uVztZXjw71ZpWH2fKTsAkgNCXfSM1YRT3oOSqqoSpy2ZxvRohLIs4M3BY6JiiNdAPeqYiDupNWzI6psgY06RTCyaoYlxQtIZBcRZUFXh1L7xzJRChKssClDTSM3q0EGvbTAECjrdsTYR+qlZ0p0hyixIEidHnHiXVWH6lhu5xMciVp66ji3MIctis9TEuEvulmvJmL0sTyrL6Rt5kdDWIkfmeVKZU4aJ45BKs5gxZ2XNZaUyMHcc2UqsD5MIdfpPUNC1h/ceg8FAbneWp8wzhEMRmbiO6SJdc2HWCsglqkSE8aRG0zQoyoFxRBj57CRi248OpUSRp47rIKWjuJgi687QBkm9NpnT5mUlZLVomMgCRx1lm7NiF/+fyqs49+Z9GZ1GblMdlep0Y3mNE6G6JODL/VBnhCmT+EOms6mtz/JfmKc5dSIP2qBjUh22djnGvstuSMqAEeIyjlHJ9XKp0yC5XVnfEAPdPGFifcd6iu1OETtLhmYMsizkjK6geC2GcyCUoqicC6nSPi4tIdZnl+zC8UbsPj7fHReXKjabCCbrwsZxaJ1jApgIhg2XtdcEpV5ARkGnQdfHrc+tQWR/TwwuP6BoD1oqOGmbQ6EJnqy7zHs5rtZ4WkvGA4kVczuEGf7LA6coCyxZMoPhcABPgK8bOcPDhqIBgBqP+fEYc0fm5XrzvH47Y2B+aFJhbN06MVnEyjyQjkfVYpQrxfs2Ap3ruoalItMw0JfpBdidB+F4fsUh3XabuGEQZ4Ox5DGdMUV4nDy3kuOklCYPwup3rcjQzdIyvU9Iy6cOhT5NfpfmAy5cV2g/Ru6M7BlmmI/snXS7JTb68vSQykEaTTnaexQVqiYuM63zseIQZpQNNWGbvicUZYHBQA+Zk9GbTUyo8fKZnyf7aMw4a1nyVi8DYZ2s5ykfLa5swlOHgBFqa4IuLrSLG09FmndZVWQe6s47XZxRB8OuA5M0ZnVVIp2JEwJpW42kzQuzHHC5/lpQuPR9a0cyrFuvJXpY/pOBcfJDr8JyizoTWoEdNz4aeuqkc+xXxDeex6fvGVnm3yz61raRJ9FlRdxdhsJhUJUoilLOuhNnKeJeFg5xLTM4UxR3GPpGrhvgxHGi8N2D4CZml9T3CIvacelWe+q0JGXIDAWebSMTOqt0RCEFsIxfyDHh5/olVWI62CNurPSz962zFV1d48uQ4M/1ErfV4X2T/Z1HFoXf+TwViT6Y8SEKxBwWJtWSGs6qKjEzMxWUuHmTExq5YaIQZRmPx5ibn8SzClIa6qCCGtqs31yQFZIln6VDSE1waSRBjLt6IiFeYh2WqLw4soGU52YSYb6TLBE5WyhzfCXnBWG8ezk5U5V9qmMdYC8aJEDzaVgZpuFxpp8oYK46GjumrXVshebJqLASlnTC/MQOps2Liiam9RrLINOVTB+57/yBazkmz0XeYd6Zn7p6EB/G6ISzt5A7Hh7mTTVfReHgm1BzIdtOXWe9fON0MehQsdH57bL5C3bZWjdkcgJrohhbfckM+ygb7Ya6ms0dHpc8cKaA4qX4xE+JowXD2yAFUmuLb1ZnMW/DX1G4ZCzxc8AaZCtfHb1jJ4knuK2eqwvY6QDb95hGzjg5/MAsGXN/iGXPvAoENJOb041Tw7otTbC1/S4Mf1i+yNBSW3LsTCjacKUe+MDOxnhSo3ANisKhqEpUVSm2Qsq5EOApXAHPETHn4IomOisZ2cla3e8dFrXjorq1HVLOh1NOKnYQbJnwIFVbXDYXMi1kBoaN6mSGV6s3664+dYYszsFG6XPBJ5tSyuzNpTMSEfQs2c4OxgQXFmR2EMj01yDAODjnMBoNMTMzCieFxmverWDyLKhpPCb1BPPzE4zHdXJQR0pbZy65pRbh7Q4xsjTP6Opiv9l4S8gSEIcqjabFBkQRkeSLBNukytUOO/5ZLoJjZ1B4onkw4X2z7EY2TdP00TIKJtIEMjxxidyxvlCcdAnJTtZ4piQWLL/Ujg2S6a9U2uEFuOyT/W9rbEVlyDNtNVgtC6z9fVpIjZv+HGiTj9/8VQegLEsQIDuFEgMQaclDwi7nubIwhBfPK8iH93GJSJW96ogUdXlfBKsTW418dNrgDj2R1JR+YkfEVraQnjy+H/P6SJ1jSktYWbEDPc+1Y5pYvRPGJ2CdWxvfBFh9EHSXs/KAHRbRr0aHMHZmFEfxJ03cz3Rt8q7TZIWknHXKuQ9mMqbLx+beKcFLP1uuJbrQx+R55zSRnE/4zN0yMpQ3OoedJmcmnR5hOdXVHk3VYGpqFGSfQn6Lcx6+CFl24RW9M8C5Aq4KCfQ8iBz4XJdnBovacRHbZgRA1wpTBifj3pTRuoitlP7Gjdjoiw1RWoWUzXrJMD/NBcgcFTZ0heYOcH3JcgipkCXqQfR/Zsgtrtw+pclRRdZfO/NwrbYUXOEwPTUMFyUWZbhh1+ks0+JDRBiPa8zNjzEZ59nkzDNIqLOlsg0TmX8SQBKH1cksgXkkR/MbMrBK0EvWjNxYjGLERu2IKWsNkOOtzrZLmqQpM0tTOc+ChL65tekywgYvJoaJ1ejOsvRFUdi5mhXfBc7c5mxe4S7Zap3SMzGCiaE1kpk7O60K+T1nm285LF09y/speFhr59ofW5VSkOWBK+F9VMRx9xSHxBHlJRjTkGjb8I24lgoUb9+Nt4KXVRl3ZRg6KNUTOrR63DHw0rPRFnIaOhye2GLWbRgrbIQwJQ+AdGdfd+ghbWwBzPJ6ud+tXBIy2+3bL8WKWP7aOrXVtjjQmVMVxy8IIapcpPkimvUCxTLXtRZzaxfMoHYm1ywUY0clJydLscnLiTvm9MwptxCJg25vOME8nrdSmKskyNLLtejFjl6S7G4wIxB83eDIkTkM4mnSYVcfQE2NogxXJ/imga8bkHMYDAfhIt0ilvMecEW3GB0nLHLHJfckU1WaCLJTx8D6oEkZE21I2GzrNQ6CVUjWGbEOSDrbMoPD1pP1JQ/9A5AJUqL/O3Rc2h/ITIGNpGxjjMa7Pdgzxy2Doiwxc9oUpkfh+H6be8KRDO0Loa4bzM1lB8vlLXY5LK3OoMMIkZwe2QodG8ePHYcwIeETQjW6IktlpknjL0Udp8aacymCM0RyBHoXPbvoy4myYYcAd54ywhhKWefCem5Z7V20DarQOhxal3VCtHQbHFKF2tGbDB9WfmaUWaeio12pwYy/pwXiqoNgUM5Al33P8Jbt065AUWbG25kkYlLKFUUFQpPe8QSlclEWZlwYjmSOWwvXvF9cJu/sAnRJ02AtXm0I0TjDE2eSUzP1ZnUmR5Q5wbuFGj9PPOB8EasLX8tzE0cRG5pbeXYnbGwm0/3G8eymiUZ3isLWkS/V6DKo46dMr1y82cGV6IkqLCWZJvDK1m1FPwFxWISUalMcQj5K4cIdb6LPPIFcOultV5/ZHiEMdZRNoWk8yE8wGdfRMQ/V8OTVFUW4bT3e+SX48vkwRO3dud8DLGrHxW5v5e9s9HP1mCwlPG3FudLI6goVxt9cYsDz9lSgdQCK8cuiMLZfXBfZAhZx64Gzw9DCmJ20uDvGCKyLyiKhE2srg6NtuhpUmJmZCncOFS65OM7zspfpU1M3ODI3j8mkSTqQZi9YB9HSIl/OaQOvn3oARcEKg7uotE4vi4zKKbEpSgi5TjAzGnn6s+zMZOJlijVR/PKaLWPWwfUteRY7IU/Sjms/+LF0h9Lf0xZyxdzCMAHmvkkpPkq5rhq7lGdeCy3wdWEjbVu2q/hHHdgudd+kDfZfYgYiPyvKAlW8u0jaIgAjoPFeqCg8bOJ5Fl2dyQaxGoo2mpZ+eZHurB91mzq73dGCOvnW2DtTU0ongiY9OxcPKosEdznhbTQagEZQ1Dnh2X3Lp4udJ3agjP/DUYSCDX6mb1X/Gb7EJpxDPOE4xVG/svtQGCdCOZGP/thBcUS0Du4GOximKfM5mfNydYxXRs/WMpZRLBQj6D6xI5RF55xpL5Mo20+jK1JdonaA9amPS1NN0wS5KRyci8m9VYGqLEPEsdRt1IUr4H0T6n4avX4scFyLTe973/vESPPf+vXr5fnc3By2bt2KlStXYsmSJXjjG9+I/fv3J3Xs2bMHmzdvxszMDFavXo3rrrsOdV0/444A6PQYrWFu/W493vjd1uPMe2Tf42dxtizP4nKMTa5N2qd08Ei9LnV+YmhE22EBo7b4cWZ5IrwUQ9YGH3Gkingug+AdsbBKAlYRBEU1Gg2x9AUzmBoO4jZgChdyNU08TVUHsPeEubkxDh46gvH8xIzesFCS5WulTlJUIi4rwMtJKZLhj5Vn7mzaE4WRvJqM7ORz3kTACcnSXyR5vFVWv+sfGdrnzzKIzHR5x9qasqVw80f6p1n8ROkf31tvo2JJBYlb051pko+FvDutJ8aP6qJvq6wUivxb8C990TokNolQqo1GT6JcavXyr/A+3LkyGdeYjBtMJjXqOmxvhic0TYgm1nWNpm7gEPIpiiIbx0wPG4HpEISFZMN2F87JkkZR2L9C2tWy8b3CoSwdqqpAVZWoBhWqQYnhsMJwNIh/QwwHA1RVFcsVKEOEPzoKliVFdNCKqLcKwacsi1hHiSo6fmVVoawqVGWJQUzwHAzCv1VVoCzDXxXfL+KESJZuhG5hfDcE1D5svfWNl+VpHwcjTyTLIvRjOCgxrApMDUuMhhVGgwrD4UD+BsNAg9FwiOFwgNFwgNFogNFoiNGownBYYjgIuJdlibKsUBZFPJ+niEvlJcqilN/K6GQ5xzRyKTONvOq3IJuFyAh7dSYXxqnN8RTOH6r5cDjjIRGQjm8yzRrwfHVCbM86K92DO61EdF2MrnhPQgvxEWIqAchLuaMrgGOD4464vPSlL8XnPvc5raDSKt7+9rfjH//xH3HLLbdg2bJluOqqq/CGN7wB//Ef/wEgJMBt3rwZa9aswX/+539i7969+OVf/mUMBgN88IMfPG7kc88wfMy8RPCAc8iTXbmc3WVif7f1db5nvttt1BJhsY5KV+jO4JMvD7X6xdVEIQ7JUOwgCRKyfAEEr9RTW2o19z1rL36yg6lwDsOpIU6bmZIkXCAIfViztMMv0GAyqXHkyDwaueGZsmgKtxL39Bhvn6D8kh8dzKqDg4SfMx5zmJZnlDbqkcwQo3G3IV3mARv+1tjqiIIljtCC39ovWJzU0Kkhdoxn7IMnaIie/YyokFRO1EkKxz6Q1NWa6bHcFc6KjqEzpeVNjyj5ZaHoTTb2Ogin8mAfZG89nYJr+XcF0lHJF8rZaAJEkfPOM7YpRLobjmKyIydb8/1cjK33HvWklolDNYhJuD6cu6F1FHAxpF8YngoPEU1NPCE1NBeNmtPvHF0s4n8YDx0HAbngl4Y7CDhPy975xOV9vNdCLlE1Trnli0ZbIi4Ur0CIFPaG74kukrq6+GvB6GQyImJeyzdBuby80b2JPCTvtZ62Kg1RaJvn1xIwo5JJl8XSSiAa1oVrIbIXtV8WTec6+mAGLpcU/Q+5Z4ijUfnSFH8l3iRgiMJyIJIR/5Nvvc6ppuPZyAzrIiKM58bwVYFqUMU8m+CKeUEGsinlmcBxOy5VVWHNmjWt35944gn89V//NT72sY/hJ3/yJwEAN910E17ykpfgjjvuwCWXXIJ//dd/xUMPPYTPfe5zmJ2dxY/8yI/gAx/4AK6//nq8733vw3A4PC5cFup+cq5HhwMCMGM7nAUck76UAWMZa50LVoipB6tOBOW/oy0kCcZRQNnAdpWzRpgHQ76rCDzYRFHpQLC5HoSwbjmaGmJmeiTrmURxlpNQKgiu903MaRkbp4UNXKo4uUtBAaji49C8TWKzt6OyMtZlwpQIuUwUIImMaJSLl2l8oiwZqXyJKle9Ob/VMHarxxYQ4nUMADWEDvWnijR/QOroWUOqkRYk/E7kAVJxpI1BiP8xnoZGCC0HtQzZdzOQ9qzn4oIxhjhmjGM6Jpj+TxsOjoTyZMaELNcExkaSQXd0qQJtWAZErQcONk2DuvGoyjCj5k3zyrcYbRlPhD5FqWevOheWHOrGo/AeVVXBA2hM34j4zh/E9X/OBxDUFQw/GzMRISC5l8saPHXStLzkijjmKJPRxXujNKPDSvnRZFpkgIW2JQ7U/S3hdZrAyjg5x5cALoBAl89g62l9TiWW5UFUM38j1jGhlMqlIqKTAYu7h/NR78pE2UEiLVFGWYZ4gqE6Meto1NXBnpjcIa+0s0tJBMDFySTjH2TECRrcV+Fzbn/yybJr2xsIvmriJCpEhHoSdL8rShSOULoifI54Fm4haTp2OG7H5eGHH8batWsxNTWFjRs3Ytu2bVi3bh127tyJyWSCTZs2Sdn169dj3bp12LFjBy655BLs2LEDF1xwAWZnZ6XMpZdeire+9a148MEHceGFF3a2OT8/j/n5efl+8OBBAG1nxM4aOPUK6FatlP1rPVl2SnJIDhGSGW133c5oH/6eCwZX0FYVaX8UJ6ik8LAznroNTed5CXawsv5KtgWbmQZRSDKcnh5iajRKIhPSDBshCgqZGo/5+Qnm5+bDDg3yWrdzcDxNBG8rNbOAOGNABy7Sn0gAc/xL2mfpqNJFFNlRxknbYYgWte2dpIErw0dxssRGJJqv1Q7YaDMdMwWbc9FGQxKZzz0qg2f7rA4nzxwgSwzqmHC37NKS9lVvc1aFrt10WotTJyB1maJBIKBwpNynlDZkDEXd7ROZHqVyIgbIDJhQnzztqMPZL/A+OC7kCZOmgYvnWLh4qq4ux7hYt4dz4ebloqpQlVU478V7AJVsjVYHUmfGzjnUjUdJMfIGgAojHHaMGmeF8XYgEDv15MEXm0N0QuQuBWOKOOFwnuBZBwgnCE1KjU6XhfWHyKmZYHCJwoz7pxt/Cz2mTAekThlTQOtoFczZnQ5eU9xYc/5uFEdH7wGQypiVrThOmK7hDUpk3LrJHA1UJ6PQ/onXYJox1HKg5DgN/kCWOXLnG8F5SLScpyHcRKpzwn9FPUXkrP2wTkv4as6biY5TU3tMMEY1qOAGA/CyEXxzVHk4Vjgux2XDhg34yEc+gnPPPRd79+7F+9//frz61a/Grl27sG/fPgyHQyxfvjx5Z3Z2Fvv27QMA7Nu3L3Fa+Dk/Wwi2bduG97///Z3PWpGUhKjtZF0uY50Fyj7bWYq8A70Zl5nHZZ35LPUkIUJnBMSIoMsVhbaVbCsWXOIgMOG8kHSm+QwODq6EeLfWuDNtvM32turfe3jnUJXhULnhcJBk3MeIbBy0jF/Ypz+pa4zHk7DLpgAKlEawebAgO4uF/yUdSB2Q8E9mjc44LVaJRZeNyxzHIEkGp/k1UWFiHbVPFlF2ydTAI9XO1P7XdkUbV9xdfisi/2MUTgpOnZeMBNxO0wQDLW90IBtyBdhpNSjHO1MkgiUPo6I0PO4igXeKI+LsVAcOCcOflnV2CmklgMUCQI6JJa+qcJFOFK7AcDiUNfumadA0Hr4mKQMg5mAAbKl841FVBO8bNA3FI869RjRjXhiZHSCDqgI7asRR4iYoft94jTaSkWnud/xXaEohz6OIM/2Gw4wuGKyi4m2ymlxLBEmqB0giqeJ6eh8NjtI51QE6diU0QggHkQmOyh6H9gFrLAOpAla7zaATMRPdNEO8pbdzpW+g5Y7YsybEZqg8pUnXUcYtGxAcWI5ki2Mv7fEE0QWZAOXdBZl+yfgFZbXYcQpph2KbpB4OOHIUyBJr5fVGHndSb+S6nDulB3eS67BRXVFpdpaZv95jMgmRyaH3GA4HjAxOBByX43LZZZfJ55e97GXYsGEDzj77bHziE5/A9PT0CUGoC971rnfh2muvle8HDx7EWWedBatgAZioQB7azkWVBV8FPdnJY5jSiupwO1y1/W4HjlHqhWvzyzLaOjzWu1UDT8hntSTZ+mRuCTYOEusCo+ysE6MzQCP0AAaDCjPTo5i7ZGar0Xh5Ikn8DWdfhJB33TTx7BTXMjpBN7LT10EM6OWnT2utMiVu+5REzJhuyAZfpvxTxxBC01zp8W9ajxpFkYWOrrEiQqYM02+dHU3fN5/kTP1co+S2wkGiZZ31k8qeLRJki+JFmapiyb7qVUEHA+vQNEFzpsbEKM64VRixPXac7NH5cm6IS/5ZGJL7ikKfrBvT/Q4/16UR2e7qACInW03LknNPwjhr6iYm6FpXKXyq68ZMbpzklzkuUbiwkuUdyqoEeY/ShSMGiqrAZBISfcsqXHrnGw9qvExwQs4NzG3buv02XIRXyw3VGm1x8D5EfMpBBTQxIZPfd9EZcA5lWcpZHDzhChGmEAnwcWdO4eLSWBSckBekSUCso9jLidMpEKA5QwAcZ+N5XvZ14myx7Fg+Orjo9OrvXpaZI9cXNIzdEiF0MgM7nSda885yZmtjOhXibDCunW0zL7l+I4tcMhlnzrzNzmNWMtE7ccVSruKwuGT6QqaLUi87/cx3Y+V4UDN/2SnKyJrotDhuxvNjkKdw9gtnez9DeEbboZcvX44f+qEfwle+8hX81E/9FMbjMQ4cOJBEXfbv3y85MWvWrMFdd92V1MG7jrryZhhGoxFGo1HHEzXC8gsbNuaVNVDme6s8VGASA88F7Uy/Zei0fllhZ8fAsaNB8n5ieFuWriNA61QZe/IgE23jbX4iVy7dKSVOjw29Mi3sV+cwqCpMjQYgIkzGk+ikhFmnKERW4oY4mRuHNthhvrBZCY5W9+9xPC3YQuLAdPzeepJa6jb28Ut+hoSN3wl/hZf8bpQ5T5F3pMqJ7at1TGI7CT9YIWopqcviqrLutP5MbdrQPcXoAIHEAHlS+RFDHvld103YKVGW6pN7j7r28E1tCSXlwqw60KXxjZwiW0YDxnz0zoW7f2L76lBYWEjJqWFWfgSHLlX0qSOXVu30DB6he8SPEELsRpFTQWicRqnI1Mt6JRj/DtxMyMoVhW4ndSFiCQ8MBkOURREiJg5oaj3zQnYTReNCMeGW5c+jkT7ZvpPwMubTlLrl1/uwM4f1Bueb2HHQ1A1ANcCOXFWJ4eWIlCscipJ3kuQcgoq9PCc0tdk+buxqmq+TjlpORnWwAR4SB8kuqYkjlGBjHQiuPv7usmIthWGRpOx3yv5dGOyIdi4m75KNaKa6xcX2Evnl8cJtGdkSRfl0YPWEVGO+s/wYGgf9bOgl8hLono6vqEeA4NQVLpzxUhZofINnCs/o7N0nn3wSX/3qV3HGGWfgoosuwmAwwPbt2+X57t27sWfPHmzcuBEAsHHjRjzwwAN47LHHpMytt96KpUuX4rzzzjvu9u02OA5ns2K0hluclux7LJDcqxOcEHUAAFVKNknUmfq4jD33xNafz/Jz6EoGlXdtVbEOxo3DvPbgVHbEwp8aToszDK6Ml0M4n+Lw4Xk89eQcnnpqDocPz+PI3DzGkzokI8aoiuy8YI89xbDjK+k/bQ8CrCxtkbxWwb3La+lo/hiGbgLOfBD6OWctkzTS6oaL50rIYI4/x+UEDc/HP7uTCEh/j1tcXdziyvkVfG6OhO7j55AbUWjbHGozfzxO6shHnqG7wiUsUmUZt3rGY+0ndW0kCDHyFm6/ZuNH3sdDqJzMwnwcW0UZtorCASXncsQk76IslXWd8nF0nrHTwCyyRzUg/9e8yfQsygI8B5Y6TDm2A4TowLOhz9uPM1wXnbeyqjAYlpiaGWFqZoRqWKEsYzmhGUdLCeSBZjxB4QoUZYlBWaAaDFBUJYoiLN+GU5p9SHgsXKRlJvRsxDm6E3lKBLkfrICTy/TIh2WluvFxe7c3u6JI9CXFyQtf6Eo+XEyKeLN6UejyE8sciJLAIE+pqlJPFRYZNjItf1DeIH4uovNbQMuFvpFGkngIsF7nyE84vhWQCwF52SZ+pwRZQGSKP5PqhUBYg6+RCbUc2b9ofZcdjaYhW4fIpvlfERWhlVOZIHO98h/IpEh4go7Dtom0r8b/Egcp4kZRockSZ9xF571HU/sQkaz1mAxqPOrxBPNH5jA3N4fx/BiTSX6C+vHDcUVcfvu3fxuve93rcPbZZ+Nb3/oW3vve96IsS1x++eVYtmwZ3vzmN+Paa6/F6aefjqVLl+I3f/M3sXHjRlxyySUAgNe+9rU477zzcMUVV+BDH/oQ9u3bh9/7vd/D1q1bF4iodAM7C5M6EIDD4boTJTCKLxHUERWBGZlW2u1YcJREZmXq3efiye3Ydgu+8ps0zOolKpTWa1u3dcsMjstTVPwNiXGUA5acOsxhMBnxdmbZgGllZirUaJuMg6WTy763SAUkh6WKv8KDukUwtGjYpunRcbLANE0jJG3HEIj05kG5EO+P0ttOPB3SC+VMYVZ+lMdWYY0t8zu+xKIrXAy9Z6Vs21cHpAPf6Gg0TYOqqsKR9ZYHkh9F0ZFQDdbUNbwnTJqwrbFpGtSTOsiLmbGjiTQtXbjLxMcbcCVHpgBqh3FUuE3TgC3rOL9wU/9zFDCK3fCR+0XpfxIaMbsLJjilOWrBUNfwdTh3IkQtnEY5pJ6wM6QsCxTk0BDg6klM5CVMzQwxGDh4qkCuCrRsGkyaSdxNFpbJ5JZ0EFw9QTWs4BHyXIoyLKj4pkZT13AxCbeMXpOPvIW5XoCi4xJ0kZPchrqZYNBUgT9A3GLtpe9edGiIhGn+S5TDBqjrCaqyBIoCk6ZGhQKTuNRjl715clNGZ9bufppgAnLBkSpjgrhleT7fsTqtazg28Zj5ElWa3JxW0SE9+qmdTNBR1ugJ1bFpW85lnciqlfLRwfNg3a96o3tp12BDgWtFUrnqBsGH9a/1x4x6krIEk5OptoMr8JS3k3csx9e0YIvPjeEcoY52++j9fBqg44A3velNdMYZZ9BwOKQzzzyT3vSmN9FXvvIVeX7kyBF629veRitWrKCZmRl6/etfT3v37k3q+MY3vkGXXXYZTU9P06pVq+gd73gHTSaT40GDvvrVr/LcrP/r//q//q//6//6v0X298gjjxyX3bfgiJ6J23Nq4MCBA1ixYgX27NmDZcuWnWp0npfACdKPPPIIli5deqrReV5Cz4NTDz0PTj30PDj1cDw8ICIcOnQIa9eulfPBjhcW5V1F3Nlly5b1gnqKYenSpT0PTjH0PDj10PPg1EPPg1MPx8qDZxpweEbJuT300EMPPfTQQw8nE3rHpYceeuihhx56WDSwKB2X0WiE9773vce1E6mHEws9D0499Dw49dDz4NRDz4NTDyebB4syObeHHnrooYceenh+wqKMuPTQQw899NBDD89P6B2XHnrooYceeuhh0UDvuPTQQw899NBDD4sGeselhx566KGHHnpYNNA7Lj300EMPPfTQw6KBRem4/Omf/ile9KIXYWpqChs2bMBdd911qlF6TsC2bdvwYz/2Y3jBC16A1atX4+d//uexe/fupMzc3By2bt2KlStXYsmSJXjjG9+I/fv3J2X27NmDzZs3Y2ZmBqtXr8Z1110XbpLt4bjhxhtvhHMO11xzjfzW8+DZh0cffRS/9Eu/hJUrV2J6ehoXXHAB7rnnHnlORPj93/99nHHGGZiensamTZvw8MMPJ3U8/vjj2LJlC5YuXYrly5fjzW9+M5588smT3ZVFCU3T4D3veQ/OOeccTE9P4wd+4AfwgQ98ILmYr+fBiYUvfvGLeN3rXoe1a9fCOYdPf/rTyfMTRe8vfelLePWrX42pqSmcddZZ+NCHPnT8yH7PtxydIrj55ptpOBzS3/zN39CDDz5Iv/7rv07Lly+n/fv3n2rUFj1ceumldNNNN9GuXbvovvvuo5/5mZ+hdevW0ZNPPill3vKWt9BZZ51F27dvp3vuuYcuueQSesUrXiHP67qm888/nzZt2kT33nsvffazn6VVq1bRu971rlPRpUUNd911F73oRS+il73sZXT11VfL7z0Pnl14/PHH6eyzz6Zf+ZVfoTvvvJO+9rWv0b/8y78kF8reeOONtGzZMvr0pz9N999/P/3sz/4snXPOOXTkyBEp89M//dP0wz/8w3THHXfQv//7v9MP/uAP0uWXX34qurTo4IYbbqCVK1fSZz7zGfr6179Ot9xyCy1ZsoT+6I/+SMr0PDix8NnPfpbe/e530yc/+UkCQJ/61KeS5yeC3k888QTNzs7Sli1baNeuXfTxj3+cpqen6S/+4i+OC9dF57i8/OUvp61bt8r3pmlo7dq1tG3btlOI1XMTHnvsMQJAX/jCF4iI6MCBAzQYDOiWW26RMv/93/9NAGjHjh1EFIS/KArat2+flPnwhz9MS5cupfn5+ZPbgUUMhw4dohe/+MV066230k/8xE+I49Lz4NmH66+/nl71qlct+Nx7T2vWrKE/+IM/kN8OHDhAo9GIPv7xjxMR0UMPPUQA6O6775Yy//RP/0TOOXr00UefPeSfI7B582b6tV/7teS3N7zhDbRlyxYi6nnwbEPuuJwoev/Zn/0ZrVixItFD119/PZ177rnHhd+iWioaj8fYuXMnNm3aJL8VRYFNmzZhx44dpxCz5yY88cQTAIDTTz8dALBz505MJpOE/uvXr8e6deuE/jt27MAFF1yA2dlZKXPppZfi4MGDePDBB08i9osbtm7dis2bNye0BnoenAz4+7//e1x88cX4hV/4BaxevRoXXngh/uqv/kqef/3rX8e+ffsSHixbtgwbNmxIeLB8+XJcfPHFUmbTpk0oigJ33nnnyevMIoVXvOIV2L59O7785S8DAO6//37cfvvtuOyyywD0PDjZcKLovWPHDvz4j/84hsOhlLn00kuxe/dufPe73z1mfBbV7dDf/va30TRNopABYHZ2Fv/zP/9zirB6boL3Htdccw1e+cpX4vzzzwcA7Nu3D8PhEMuXL0/Kzs7OYt++fVKmiz/8rIenh5tvvhn/9V//hbvvvrv1rOfBsw9f+9rX8OEPfxjXXnstfvd3fxd33303fuu3fgvD4RBXXnml0LCLxpYHq1evTp5XVYXTTz+958ExwDvf+U4cPHgQ69evR1mWaJoGN9xwA7Zs2QIAPQ9OMpwoeu/btw/nnHNOqw5+tmLFimPCZ1E5Lj2cPNi6dSt27dqF22+//VSj8ryCRx55BFdffTVuvfVWTE1NnWp0npfgvcfFF1+MD37wgwCACy+8ELt27cKf//mf48orrzzF2D0/4BOf+AQ++tGP4mMf+xhe+tKX4r777sM111yDtWvX9jzoYXHtKlq1ahXKsmztoNi/fz/WrFlzirB67sFVV12Fz3zmM/j85z+P7/u+75Pf16xZg/F4jAMHDiTlLf3XrFnTyR9+1sPRYefOnXjsscfwoz/6o6iqClVV4Qtf+AL++I//GFVVYXZ2tufBswxnnHEGzjvvvOS3l7zkJdizZw8ApeHR9NCaNWvw2GOPJc/rusbjjz/e8+AY4LrrrsM73/lO/OIv/iIuuOACXHHFFXj729+Obdu2Aeh5cLLhRNH7ROmmReW4DIdDXHTRRdi+fbv85r3H9u3bsXHjxlOI2XMDiAhXXXUVPvWpT+G2225rhfQuuugiDAaDhP67d+/Gnj17hP4bN27EAw88kAjwrbfeiqVLl7aMQQ9teM1rXoMHHngA9913n/xdfPHF2LJli3zuefDswitf+crWMQBf/vKXcfbZZwMAzjnnHKxZsybhwcGDB3HnnXcmPDhw4AB27twpZW677TZ477Fhw4aT0IvFDYcPH0ZRpOapLEt47wH0PDjZcKLovXHjRnzxi1/EZDKRMrfeeivOPffcY14mArA4t0OPRiP6yEc+Qg899BD9xm/8Bi1fvjzZQdHD9wZvfetbadmyZfRv//ZvtHfvXvk7fPiwlHnLW95C69ato9tuu43uuece2rhxI23cuFGe81bc1772tXTffffRP//zP9MLX/jCfivuMwC7q4io58GzDXfddRdVVUU33HADPfzww/TRj36UZmZm6G//9m+lzI033kjLly+nv/u7v6MvfelL9HM/93OdW0MvvPBCuvPOO+n222+nF7/4xf1W3GOEK6+8ks4880zZDv3JT36SVq1aRb/zO78jZXoenFg4dOgQ3XvvvXTvvfcSAPrDP/xDuvfee+mb3/wmEZ0Yeh84cIBmZ2fpiiuuoF27dtHNN99MMzMzz/3t0EREf/Inf0Lr1q2j4XBIL3/5y+mOO+441Sg9JwBA599NN90kZY4cOUJve9vbaMWKFTQzM0Ovf/3rae/evUk93/jGN+iyyy6j6elpWrVqFb3jHe+gyWRyknvz3IHccel58OzDP/zDP9D5559Po9GI1q9fT3/5l3+ZPPfe03ve8x6anZ2l0WhEr3nNa2j37t1Jme985zt0+eWX05IlS2jp0qX0q7/6q3To0KGT2Y1FCwcPHqSrr76a1q1bR1NTU/T93//99O53vzvZRtvz4MTC5z//+U79f+WVVxLRiaP3/fffT6961atoNBrRmWeeSTfeeONx4+qIzFGEPfTQQw899NBDD/+HYVHluPTQQw899NBDD89v6B2XHnrooYceeuhh0UDvuPTQQw899NBDD4sGeselhx566KGHHnpYNNA7Lj300EMPPfTQw6KB3nHpoYceeuihhx4WDfSOSw899NBDDz30sGigd1x66KGHHnrooYdFA73j0kMPPfTQQw89LBroHZceeuihhx566GHRQO+49NBDDz300EMPiwb+P+uEnRTU8CIPAAAAAElFTkSuQmCC",
+ "text/plain": [
+ "