-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathparse_deepposekit_dataset.py
180 lines (151 loc) · 6.1 KB
/
parse_deepposekit_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# Copyright (c) OpenMMLab. All rights reserved.
import json
import os
import time
import cv2
import h5py
import numpy as np
np.random.seed(0)
def save_coco_anno(keypoints_all,
annotated_all,
imgs_all,
keypoints_info,
skeleton_info,
dataset,
img_root,
save_path,
start_img_id=0,
start_ann_id=0):
"""Save annotations in coco-format.
:param keypoints_all: keypoint annotations.
:param annotated_all: images annotated or not.
:param imgs_all: the array of images.
:param keypoints_info: information about keypoint name.
:param skeleton_info: information about skeleton connection.
:param dataset: information about dataset name.
:param img_root: the path to save images.
:param save_path: the path to save transformed annotation file.
:param start_img_id: the starting point to count the image id.
:param start_ann_id: the starting point to count the annotation id.
"""
images = []
annotations = []
img_id = start_img_id
ann_id = start_ann_id
num_annotations, keypoints_num, _ = keypoints_all.shape
for i in range(num_annotations):
img = imgs_all[i]
keypoints = np.concatenate(
[keypoints_all[i], annotated_all[i][:, None] * 2], axis=1)
min_x, min_y = np.min(keypoints[keypoints[:, 2] > 0, :2], axis=0)
max_x, max_y = np.max(keypoints[keypoints[:, 2] > 0, :2], axis=0)
anno = {}
anno['keypoints'] = keypoints.reshape(-1).tolist()
anno['image_id'] = img_id
anno['id'] = ann_id
anno['num_keypoints'] = int(sum(keypoints[:, 2] > 0))
anno['bbox'] = [
float(min_x),
float(min_y),
float(max_x - min_x + 1),
float(max_y - min_y + 1)
]
anno['iscrowd'] = 0
anno['area'] = anno['bbox'][2] * anno['bbox'][3]
anno['category_id'] = 1
annotations.append(anno)
ann_id += 1
image = {}
image['id'] = img_id
image['file_name'] = f'{img_id}.jpg'
image['height'] = img.shape[0]
image['width'] = img.shape[1]
images.append(image)
img_id += 1
cv2.imwrite(os.path.join(img_root, image['file_name']), img)
skeleton = np.concatenate(
[np.arange(keypoints_num)[:, None], skeleton_info[:, 0][:, None]],
axis=1) + 1
skeleton = skeleton[skeleton.min(axis=1) > 0]
cocotype = {}
cocotype['info'] = {}
cocotype['info'][
'description'] = 'DeepPoseKit-Data Generated by MMPose Team'
cocotype['info']['version'] = '1.0'
cocotype['info']['year'] = time.strftime('%Y', time.localtime())
cocotype['info']['date_created'] = time.strftime('%Y/%m/%d',
time.localtime())
cocotype['images'] = images
cocotype['annotations'] = annotations
cocotype['categories'] = [{
'supercategory': 'animal',
'id': 1,
'name': dataset,
'keypoints': keypoints_info,
'skeleton': skeleton.tolist()
}]
os.makedirs(os.path.dirname(save_path), exist_ok=True)
json.dump(cocotype, open(save_path, 'w'), indent=4)
print('number of images:', img_id)
print('number of annotations:', ann_id)
print(f'done {save_path}')
for dataset in ['fly', 'locust', 'zebra']:
keypoints_info = []
if dataset == 'fly':
keypoints_info = [
'head', 'eyeL', 'eyeR', 'neck', 'thorax', 'abdomen', 'forelegR1',
'forelegR2', 'forelegR3', 'forelegR4', 'midlegR1', 'midlegR2',
'midlegR3', 'midlegR4', 'hindlegR1', 'hindlegR2', 'hindlegR3',
'hindlegR4', 'forelegL1', 'forelegL2', 'forelegL3', 'forelegL4',
'midlegL1', 'midlegL2', 'midlegL3', 'midlegL4', 'hindlegL1',
'hindlegL2', 'hindlegL3', 'hindlegL4', 'wingL', 'wingR'
]
elif dataset == 'locust':
keypoints_info = [
'head', 'neck', 'thorax', 'abdomen1', 'abdomen2', 'anttipL',
'antbaseL', 'eyeL', 'forelegL1', 'forelegL2', 'forelegL3',
'forelegL4', 'midlegL1', 'midlegL2', 'midlegL3', 'midlegL4',
'hindlegL1', 'hindlegL2', 'hindlegL3', 'hindlegL4', 'anttipR',
'antbaseR', 'eyeR', 'forelegR1', 'forelegR2', 'forelegR3',
'forelegR4', 'midlegR1', 'midlegR2', 'midlegR3', 'midlegR4',
'hindlegR1', 'hindlegR2', 'hindlegR3', 'hindlegR4'
]
elif dataset == 'zebra':
keypoints_info = [
'snout', 'head', 'neck', 'forelegL1', 'forelegR1', 'hindlegL1',
'hindlegR1', 'tailbase', 'tailtip'
]
else:
NotImplementedError()
dataset_dir = f'data/DeepPoseKit-Data/datasets/{dataset}'
with h5py.File(
os.path.join(dataset_dir, 'annotation_data_release.h5'), 'r') as f:
# List all groups
annotations = np.array(f['annotations'])
annotated = np.array(f['annotated'])
images = np.array(f['images'])
skeleton_info = np.array(f['skeleton'])
annotation_num, kpt_num, _ = annotations.shape
data_list = np.arange(0, annotation_num)
np.random.shuffle(data_list)
val_data_num = annotation_num // 10
train_data_num = annotation_num - val_data_num
train_list = data_list[0:train_data_num]
val_list = data_list[train_data_num:]
img_root = os.path.join(dataset_dir, 'images')
os.makedirs(img_root, exist_ok=True)
save_coco_anno(
annotations[train_list], annotated[train_list], images[train_list],
keypoints_info, skeleton_info, dataset, img_root,
os.path.join(dataset_dir, 'annotations', f'{dataset}_train.json'))
save_coco_anno(
annotations[val_list],
annotated[val_list],
images[val_list],
keypoints_info,
skeleton_info,
dataset,
img_root,
os.path.join(dataset_dir, 'annotations', f'{dataset}_test.json'),
start_img_id=train_data_num,
start_ann_id=train_data_num)