You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
2024/05/02 19:45:57 - mmengine - INFO -
------------------------------------------------------------
System environment:
sys.platform: win32
Python: 3.10.9 (tags/v3.10.9:1dd9be6, Dec 6 2022, 20:01:21) [MSC v.1934 64 bit (AMD64)]
CUDA available: True
MUSA available: False
numpy_random_seed: 0
GPU 0: Tesla V100-SXM2-16GB
CUDA_HOME: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2
NVCC: Cuda compilation tools, release 11.2, V11.2.152
MSVC: Microsoft (R) C/C++ Optimizing Compiler Version 19.16.27051 for x64
GCC: n/a
PyTorch: 1.11.0+cu113
PyTorch compiling details: PyTorch built with:
- C++ Version: 199711
- MSVC 192829337
- Intel(R) Math Kernel Library Version 2020.0.2 Product Build 20200624 for Intel(R) 64 architecture applications
- Intel(R) MKL-DNN v2.5.2 (Git Hash a9302535553c73243c632ad3c4c80beec3d19a1e)
- OpenMP 2019
- LAPACK is enabled (usually provided by MKL)
- CPU capability usage: AVX2
- CUDA Runtime 11.3
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37
- CuDNN 8.2
- Magma 2.5.4
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.3, CUDNN_VERSION=8.2.0, CXX_COMPILER=C:/actions-runner/_work/pytorch/pytorch/builder/windows/tmp_bin/sccache-cl.exe, CXX_FLAGS=/DWIN32 /D_WINDOWS /GR /EHsc /w /bigobj -DUSE_PTHREADPOOL -openmp:experimental -IC:/actions-runner/_work/pytorch/pytorch/builder/windows/mkl/include -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOCUPTI -DUSE_FBGEMM -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.11.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=OFF, USE_MPI=OFF, USE_NCCL=OFF, USE_NNPACK=OFF, USE_OPENMP=ON, USE_ROCM=OFF,
TorchVision: 0.12.0+cu113
OpenCV: 4.8.1
MMEngine: 0.10.3
Runtime environment:
cudnn_benchmark: False
mp_cfg: {'mp_start_method': 'fork', 'opencv_num_threads': 0}
dist_cfg: {'backend': 'nccl'}
seed: 0
Distributed launcher: none
Distributed training: False
GPU number: 1
------------------------------------------------------------
2024/05/02 19:45:57 - mmengine - INFO - Config:
auto_scale_lr = dict(base_batch_size=16)
data_root = None
default_hooks = dict(
checkpoint=dict(
interval=5,
rule='greater',
save_best='icdar/hmean',
type='CheckpointHook'),
logger=dict(interval=5, type='LoggerHook'),
param_scheduler=dict(type='ParamSchedulerHook'),
sampler_seed=dict(type='DistSamplerSeedHook'),
sync_buffer=dict(type='SyncBuffersHook'),
timer=dict(type='IterTimerHook'),
visualization=dict(
draw_gt=False,
draw_pred=False,
enable=False,
interval=1,
show=False,
type='VisualizationHook'))
default_scope = 'mmocr'
det_test = dict(
ann_file='test.json',
data_prefix=dict(img_path='test_imgs/'),
data_root=None,
pipeline=None,
test_mode=True,
type='OCRDataset')
det_train = dict(
ann_file='train.json',
data_prefix=dict(img_path='train_imgs/'),
data_root=None,
filter_cfg=dict(filter_empty_gt=True, min_size=32),
pipeline=None,
type='OCRDataset')
det_val = dict(
ann_file='train.json',
data_prefix=dict(img_path='train_imgs/'),
data_root=None,
pipeline=None,
test_mode=True,
type='OCRDataset')
env_cfg = dict(
cudnn_benchmark=False,
dist_cfg=dict(backend='nccl'),
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
find_unused_parameters = True
load_from = None
log_level = 'INFO'
log_processor = dict(by_epoch=True, type='LogProcessor', window_size=10)
model = dict(
backbone=dict(
depth=50,
frozen_stages=-1,
init_cfg=dict(checkpoint='torchvision://resnet50', type='Pretrained'),
norm_cfg=dict(requires_grad=True, type='BN'),
norm_eval=False,
num_stages=4,
out_indices=(
1,
2,
3,
),
style='pytorch',
type='mmdet.ResNet'),
data_preprocessor=dict(
bgr_to_rgb=True,
mean=[
123.675,
116.28,
103.53,
],
pad_size_divisor=32,
std=[
58.395,
57.12,
57.375,
],
type='TextDetDataPreprocessor'),
det_head=dict(
fourier_degree=5,
in_channels=256,
module_loss=dict(num_sample=50, type='FCEModuleLoss'),
postprocessor=dict(
alpha=1.2,
beta=1.0,
num_reconstr_points=50,
scales=(
8,
16,
32,
),
score_thr=0.3,
text_repr_type='quad',
type='FCEPostprocessor'),
type='FCEHead'),
neck=dict(
act_cfg=None,
add_extra_convs='on_output',
in_channels=[
512,
1024,
2048,
],
num_outs=3,
out_channels=256,
relu_before_extra_convs=True,
type='mmdet.FPN'),
type='FCENet')
optim_wrapper = dict(
optimizer=dict(lr=1e-05, momentum=0.9, type='SGD', weight_decay=0.0005),
type='OptimWrapper')
param_scheduler = None
randomness = dict(seed=0)
resume = False
test_cfg = dict(type='TestLoop')
test_dataloader = dict(
batch_size=1,
dataset=dict(
datasets=[
dict(
ann_file='test.json',
data_prefix=dict(img_path='test_imgs/'),
data_root='C:/Data/detection',
pipeline=None,
test_mode=True,
type='OCRDataset'),
],
pipeline=[
dict(
color_type='color_ignore_orientation',
type='LoadImageFromFile'),
dict(keep_ratio=True, scale=(
2260,
2260,
), type='Resize'),
dict(
type='LoadOCRAnnotations',
with_bbox=True,
with_label=True,
with_polygon=True),
dict(
meta_keys=(
'img_path',
'ori_shape',
'img_shape',
'scale_factor',
),
type='PackTextDetInputs'),
],
type='ConcatDataset'),
num_workers=1,
persistent_workers=True,
pin_memory=True,
sampler=dict(shuffle=False, type='DefaultSampler'))
test_evaluator = dict(type='HmeanIOUMetric')
test_list = [
dict(
ann_file='test.json',
data_prefix=dict(img_path='test_imgs/'),
data_root=None,
pipeline=None,
test_mode=True,
type='OCRDataset'),
]
test_pipeline = [
dict(color_type='color_ignore_orientation', type='LoadImageFromFile'),
dict(keep_ratio=True, scale=(
1280,
960,
), type='Resize'),
dict(
type='LoadOCRAnnotations',
with_bbox=True,
with_label=True,
with_polygon=True),
dict(type='FixInvalidPolygon'),
dict(
meta_keys=(
'img_path',
'ori_shape',
'img_shape',
'scale_factor',
),
type='PackTextDetInputs'),
]
train_cfg = dict(max_epochs=1500, type='EpochBasedTrainLoop', val_interval=1)
train_dataloader = dict(
batch_size=10,
dataset=dict(
datasets=[
dict(
ann_file='train.json',
data_prefix=dict(img_path='train_imgs/'),
data_root='C:/Data/detection',
pipeline=None,
test_mode=False,
type='OCRDataset'),
],
pipeline=[
dict(
color_type='color_ignore_orientation',
type='LoadImageFromFile'),
dict(
type='LoadOCRAnnotations',
with_bbox=True,
with_label=True,
with_polygon=True),
dict(
keep_ratio=True,
ratio_range=(
0.75,
2.5,
),
scale=(
800,
800,
),
type='RandomResize'),
dict(
crop_ratio=0.5,
iter_num=1,
min_area_ratio=0.2,
type='TextDetRandomCropFlip'),
dict(
prob=0.8,
transforms=[
dict(min_side_ratio=0.3, type='RandomCrop'),
],
type='RandomApply'),
dict(
prob=0.5,
transforms=[
dict(
max_angle=30,
pad_with_fixed_color=False,
type='RandomRotate',
use_canvas=True),
],
type='RandomApply'),
dict(
prob=[
0.6,
0.4,
],
transforms=[
[
dict(keep_ratio=True, scale=800, type='Resize'),
dict(target_scale=800, type='SourceImagePad'),
],
dict(keep_ratio=False, scale=800, type='Resize'),
],
type='RandomChoice'),
dict(direction='horizontal', prob=0.5, type='RandomFlip'),
dict(
brightness=0.12549019607843137,
contrast=0.5,
op='ColorJitter',
saturation=0.5,
type='TorchVisionWrapper'),
dict(
meta_keys=(
'img_path',
'ori_shape',
'img_shape',
'scale_factor',
),
type='PackTextDetInputs'),
],
type='ConcatDataset'),
num_workers=8,
persistent_workers=True,
pin_memory=True,
sampler=dict(shuffle=True, type='DefaultSampler'))
train_list = [
dict(
ann_file='train.json',
data_prefix=dict(img_path='train_imgs/'),
data_root=None,
filter_cfg=dict(filter_empty_gt=True, min_size=32),
pipeline=None,
type='OCRDataset'),
]
train_pipeline = [
dict(color_type='color_ignore_orientation', type='LoadImageFromFile'),
dict(
type='LoadOCRAnnotations',
with_bbox=True,
with_label=True,
with_polygon=True),
dict(type='FixInvalidPolygon'),
dict(
keep_ratio=True,
ratio_range=(
0.75,
2.5,
),
scale=(
800,
800,
),
type='RandomResize'),
dict(
crop_ratio=0.5,
iter_num=1,
min_area_ratio=0.2,
type='TextDetRandomCropFlip'),
dict(
prob=0.8,
transforms=[
dict(min_side_ratio=0.3, type='RandomCrop'),
],
type='RandomApply'),
dict(
prob=0.5,
transforms=[
dict(
max_angle=30,
pad_with_fixed_color=False,
type='RandomRotate',
use_canvas=True),
],
type='RandomApply'),
dict(
prob=[
0.6,
0.4,
],
transforms=[
[
dict(keep_ratio=True, scale=800, type='Resize'),
dict(target_scale=800, type='SourceImagePad'),
],
dict(keep_ratio=False, scale=800, type='Resize'),
],
type='RandomChoice'),
dict(direction='horizontal', prob=0.5, type='RandomFlip'),
dict(
brightness=0.12549019607843137,
contrast=0.5,
op='ColorJitter',
saturation=0.5,
type='TorchVisionWrapper'),
dict(
meta_keys=(
'img_path',
'ori_shape',
'img_shape',
'scale_factor',
),
type='PackTextDetInputs'),
]
val_cfg = dict(type='ValLoop')
val_dataloader = dict(
batch_size=1,
dataset=dict(
datasets=[
dict(
ann_file='val.json',
data_prefix=dict(img_path='val_imgs/'),
data_root='C:/Data/detection',
pipeline=None,
test_mode=False,
type='OCRDataset'),
],
pipeline=[
dict(
color_type='color_ignore_orientation',
type='LoadImageFromFile'),
dict(keep_ratio=True, scale=(
2260,
2260,
), type='Resize'),
dict(
type='LoadOCRAnnotations',
with_bbox=True,
with_label=True,
with_polygon=True),
dict(
meta_keys=(
'img_path',
'ori_shape',
'img_shape',
'scale_factor',
),
type='PackTextDetInputs'),
],
type='ConcatDataset'),
num_workers=1,
persistent_workers=True,
pin_memory=True,
sampler=dict(shuffle=False, type='DefaultSampler'))
val_evaluator = dict(type='HmeanIOUMetric')
val_list = [
dict(
ann_file='train.json',
data_prefix=dict(img_path='train_imgs/'),
data_root=None,
pipeline=None,
test_mode=True,
type='OCRDataset'),
]
vis_backends = [
dict(type='LocalVisBackend'),
dict(type='TensorboardVisBackend'),
]
visualizer = dict(
name=
'time.struct_time(tm_year=2024, tm_mon=5, tm_mday=2, tm_hour=19, tm_min=45, tm_sec=54, tm_wday=3, tm_yday=123, tm_isdst=0)',
type='TextDetLocalVisualizer',
vis_backends=[
dict(type='LocalVisBackend'),
dict(type='TensorboardVisBackend'),
])
work_dir = 'work_dirs/fcenet_resnet50_fpn_1500e_totaltext/'
2024/05/02 19:46:05 - mmengine - INFO - Distributed training is not used, all SyncBatchNorm (SyncBN) layers in the model will be automatically reverted to BatchNormXd layers if they are used.
2024/05/02 19:46:05 - mmengine - INFO - Hooks will be executed in the following order:
before_run:
(VERY_HIGH ) RuntimeInfoHook
(BELOW_NORMAL) LoggerHook
--------------------
before_train:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(VERY_LOW ) CheckpointHook
--------------------
before_train_epoch:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(NORMAL ) DistSamplerSeedHook
--------------------
before_train_iter:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
--------------------
after_train_iter:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(BELOW_NORMAL) LoggerHook
(LOW ) ParamSchedulerHook
(VERY_LOW ) CheckpointHook
--------------------
after_train_epoch:
(NORMAL ) IterTimerHook
(NORMAL ) SyncBuffersHook
(LOW ) ParamSchedulerHook
(VERY_LOW ) CheckpointHook
--------------------
before_val:
(VERY_HIGH ) RuntimeInfoHook
--------------------
before_val_epoch:
(NORMAL ) IterTimerHook
(NORMAL ) SyncBuffersHook
--------------------
before_val_iter:
(NORMAL ) IterTimerHook
--------------------
after_val_iter:
(NORMAL ) IterTimerHook
(NORMAL ) VisualizationHook
(BELOW_NORMAL) LoggerHook
--------------------
after_val_epoch:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(BELOW_NORMAL) LoggerHook
(LOW ) ParamSchedulerHook
(VERY_LOW ) CheckpointHook
--------------------
after_val:
(VERY_HIGH ) RuntimeInfoHook
--------------------
after_train:
(VERY_HIGH ) RuntimeInfoHook
(VERY_LOW ) CheckpointHook
--------------------
before_test:
(VERY_HIGH ) RuntimeInfoHook
--------------------
before_test_epoch:
(NORMAL ) IterTimerHook
--------------------
before_test_iter:
(NORMAL ) IterTimerHook
--------------------
after_test_iter:
(NORMAL ) IterTimerHook
(NORMAL ) VisualizationHook
(BELOW_NORMAL) LoggerHook
--------------------
after_test_epoch:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(BELOW_NORMAL) LoggerHook
--------------------
after_test:
(VERY_HIGH ) RuntimeInfoHook
--------------------
after_run:
(BELOW_NORMAL) LoggerHook
--------------------
2024/05/02 19:46:08 - mmengine - INFO - load model from: torchvision://resnet50
2024/05/02 19:46:08 - mmengine - INFO - Loads checkpoint by torchvision backend from path: torchvision://resnet50
2024/05/02 19:46:08 - mmengine - WARNING - The model and loaded state dict do not match exactly
unexpected key in source state_dict: fc.weight, fc.bias
Name of parameter - Initialization information
backbone.conv1.weight - torch.Size([64, 3, 7, 7]):
PretrainedInit: load from torchvision://resnet50
backbone.bn1.weight - torch.Size([64]):
PretrainedInit: load from torchvision://resnet50
backbone.bn1.bias - torch.Size([64]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.0.conv1.weight - torch.Size([64, 64, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.0.bn1.weight - torch.Size([64]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.0.bn1.bias - torch.Size([64]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.0.conv2.weight - torch.Size([64, 64, 3, 3]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.0.bn2.weight - torch.Size([64]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.0.bn2.bias - torch.Size([64]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.0.conv3.weight - torch.Size([256, 64, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.0.bn3.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.0.bn3.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.0.downsample.0.weight - torch.Size([256, 64, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.0.downsample.1.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.0.downsample.1.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.1.conv1.weight - torch.Size([64, 256, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.1.bn1.weight - torch.Size([64]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.1.bn1.bias - torch.Size([64]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.1.conv2.weight - torch.Size([64, 64, 3, 3]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.1.bn2.weight - torch.Size([64]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.1.bn2.bias - torch.Size([64]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.1.conv3.weight - torch.Size([256, 64, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.1.bn3.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.1.bn3.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.2.conv1.weight - torch.Size([64, 256, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.2.bn1.weight - torch.Size([64]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.2.bn1.bias - torch.Size([64]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.2.conv2.weight - torch.Size([64, 64, 3, 3]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.2.bn2.weight - torch.Size([64]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.2.bn2.bias - torch.Size([64]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.2.conv3.weight - torch.Size([256, 64, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.2.bn3.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.2.bn3.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.0.conv1.weight - torch.Size([128, 256, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.0.bn1.weight - torch.Size([128]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.0.bn1.bias - torch.Size([128]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.0.conv2.weight - torch.Size([128, 128, 3, 3]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.0.bn2.weight - torch.Size([128]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.0.bn2.bias - torch.Size([128]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.0.conv3.weight - torch.Size([512, 128, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.0.bn3.weight - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.0.bn3.bias - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.0.downsample.0.weight - torch.Size([512, 256, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.0.downsample.1.weight - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.0.downsample.1.bias - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.1.conv1.weight - torch.Size([128, 512, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.1.bn1.weight - torch.Size([128]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.1.bn1.bias - torch.Size([128]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.1.conv2.weight - torch.Size([128, 128, 3, 3]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.1.bn2.weight - torch.Size([128]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.1.bn2.bias - torch.Size([128]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.1.conv3.weight - torch.Size([512, 128, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.1.bn3.weight - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.1.bn3.bias - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.2.conv1.weight - torch.Size([128, 512, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.2.bn1.weight - torch.Size([128]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.2.bn1.bias - torch.Size([128]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.2.conv2.weight - torch.Size([128, 128, 3, 3]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.2.bn2.weight - torch.Size([128]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.2.bn2.bias - torch.Size([128]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.2.conv3.weight - torch.Size([512, 128, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.2.bn3.weight - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.2.bn3.bias - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.3.conv1.weight - torch.Size([128, 512, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.3.bn1.weight - torch.Size([128]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.3.bn1.bias - torch.Size([128]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.3.conv2.weight - torch.Size([128, 128, 3, 3]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.3.bn2.weight - torch.Size([128]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.3.bn2.bias - torch.Size([128]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.3.conv3.weight - torch.Size([512, 128, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.3.bn3.weight - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.3.bn3.bias - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.0.conv1.weight - torch.Size([256, 512, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.0.bn1.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.0.bn1.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.0.conv2.weight - torch.Size([256, 256, 3, 3]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.0.bn2.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.0.bn2.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.0.conv3.weight - torch.Size([1024, 256, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.0.bn3.weight - torch.Size([1024]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.0.bn3.bias - torch.Size([1024]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.0.downsample.0.weight - torch.Size([1024, 512, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.0.downsample.1.weight - torch.Size([1024]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.0.downsample.1.bias - torch.Size([1024]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.1.conv1.weight - torch.Size([256, 1024, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.1.bn1.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.1.bn1.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.1.conv2.weight - torch.Size([256, 256, 3, 3]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.1.bn2.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.1.bn2.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.1.conv3.weight - torch.Size([1024, 256, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.1.bn3.weight - torch.Size([1024]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.1.bn3.bias - torch.Size([1024]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.2.conv1.weight - torch.Size([256, 1024, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.2.bn1.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.2.bn1.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.2.conv2.weight - torch.Size([256, 256, 3, 3]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.2.bn2.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.2.bn2.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.2.conv3.weight - torch.Size([1024, 256, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.2.bn3.weight - torch.Size([1024]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.2.bn3.bias - torch.Size([1024]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.3.conv1.weight - torch.Size([256, 1024, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.3.bn1.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.3.bn1.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.3.conv2.weight - torch.Size([256, 256, 3, 3]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.3.bn2.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.3.bn2.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.3.conv3.weight - torch.Size([1024, 256, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.3.bn3.weight - torch.Size([1024]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.3.bn3.bias - torch.Size([1024]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.4.conv1.weight - torch.Size([256, 1024, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.4.bn1.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.4.bn1.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.4.conv2.weight - torch.Size([256, 256, 3, 3]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.4.bn2.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.4.bn2.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.4.conv3.weight - torch.Size([1024, 256, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.4.bn3.weight - torch.Size([1024]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.4.bn3.bias - torch.Size([1024]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.5.conv1.weight - torch.Size([256, 1024, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.5.bn1.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.5.bn1.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.5.conv2.weight - torch.Size([256, 256, 3, 3]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.5.bn2.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.5.bn2.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.5.conv3.weight - torch.Size([1024, 256, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.5.bn3.weight - torch.Size([1024]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.5.bn3.bias - torch.Size([1024]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.0.conv1.weight - torch.Size([512, 1024, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.0.bn1.weight - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.0.bn1.bias - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.0.conv2.weight - torch.Size([512, 512, 3, 3]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.0.bn2.weight - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.0.bn2.bias - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.0.conv3.weight - torch.Size([2048, 512, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.0.bn3.weight - torch.Size([2048]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.0.bn3.bias - torch.Size([2048]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.0.downsample.0.weight - torch.Size([2048, 1024, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.0.downsample.1.weight - torch.Size([2048]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.0.downsample.1.bias - torch.Size([2048]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.1.conv1.weight - torch.Size([512, 2048, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.1.bn1.weight - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.1.bn1.bias - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.1.conv2.weight - torch.Size([512, 512, 3, 3]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.1.bn2.weight - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.1.bn2.bias - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.1.conv3.weight - torch.Size([2048, 512, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.1.bn3.weight - torch.Size([2048]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.1.bn3.bias - torch.Size([2048]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.2.conv1.weight - torch.Size([512, 2048, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.2.bn1.weight - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.2.bn1.bias - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.2.conv2.weight - torch.Size([512, 512, 3, 3]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.2.bn2.weight - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.2.bn2.bias - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.2.conv3.weight - torch.Size([2048, 512, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.2.bn3.weight - torch.Size([2048]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.2.bn3.bias - torch.Size([2048]):
PretrainedInit: load from torchvision://resnet50
neck.lateral_convs.0.conv.weight - torch.Size([256, 512, 1, 1]):
XavierInit: gain=1, distribution=uniform, bias=0
neck.lateral_convs.0.conv.bias - torch.Size([256]):
The value is the same before and after calling `init_weights` of FCENet
neck.lateral_convs.1.conv.weight - torch.Size([256, 1024, 1, 1]):
XavierInit: gain=1, distribution=uniform, bias=0
neck.lateral_convs.1.conv.bias - torch.Size([256]):
The value is the same before and after calling `init_weights` of FCENet
neck.lateral_convs.2.conv.weight - torch.Size([256, 2048, 1, 1]):
XavierInit: gain=1, distribution=uniform, bias=0
neck.lateral_convs.2.conv.bias - torch.Size([256]):
The value is the same before and after calling `init_weights` of FCENet
neck.fpn_convs.0.conv.weight - torch.Size([256, 256, 3, 3]):
XavierInit: gain=1, distribution=uniform, bias=0
neck.fpn_convs.0.conv.bias - torch.Size([256]):
The value is the same before and after calling `init_weights` of FCENet
neck.fpn_convs.1.conv.weight - torch.Size([256, 256, 3, 3]):
XavierInit: gain=1, distribution=uniform, bias=0
neck.fpn_convs.1.conv.bias - torch.Size([256]):
The value is the same before and after calling `init_weights` of FCENet
neck.fpn_convs.2.conv.weight - torch.Size([256, 256, 3, 3]):
XavierInit: gain=1, distribution=uniform, bias=0
neck.fpn_convs.2.conv.bias - torch.Size([256]):
The value is the same before and after calling `init_weights` of FCENet
det_head.out_conv_cls.weight - torch.Size([4, 256, 3, 3]):
NormalInit: mean=0, std=0.01, bias=0
det_head.out_conv_cls.bias - torch.Size([4]):
NormalInit: mean=0, std=0.01, bias=0
det_head.out_conv_reg.weight - torch.Size([22, 256, 3, 3]):
NormalInit: mean=0, std=0.01, bias=0
det_head.out_conv_reg.bias - torch.Size([22]):
NormalInit: mean=0, std=0.01, bias=0
2024/05/02 19:46:08 - mmengine - WARNING - "FileClient" will be deprecated in future. Please use io functions in https://mmengine.readthedocs.io/en/latest/api/fileio.html#file-io
2024/05/02 19:46:08 - mmengine - WARNING - "HardDiskBackend" is the alias of "LocalBackend" and the former will be deprecated in future.
2024/05/02 19:46:08 - mmengine - INFO - Checkpoints will be saved to D:\AlignProjects\almarkocr\research\mmocr\trainer_det\work_dirs\fcenet_resnet50_fpn_1500e_totaltext.
2024/05/02 19:46:38 - mmengine - INFO - Epoch(train) [1][5/8] lr: 1.0000e-05 eta: 19:44:55 time: 5.9271 data_time: 4.9296 memory: 11810 loss: 7.8055 loss_text: 2.1384 loss_center: 2.1940 loss_reg_x: 1.6825 loss_reg_y: 1.7907
2024/05/02 19:46:39 - mmengine - INFO - Exp name: fcenet_resnet50_fpn_1500e_totaltext_20240502_194554
Reproduces the problem - command or script
My images are 1024x1024. There is no data issue for sure. I have tried different batch size, like 1, 2, 4, 8, but faced the same issue. DBNetPP model works fine on the same machine with the same data and have a good accuracy.
Prerequisite
Task
I have modified the scripts/configs, or I'm working on my own tasks/models/datasets.
Branch
main branch https://github.com/open-mmlab/mmocr
Environment
System environment:
sys.platform: win32
Python: 3.10.9 (tags/v3.10.9:1dd9be6, Dec 6 2022, 20:01:21) [MSC v.1934 64 bit (AMD64)]
CUDA available: True
MUSA available: False
numpy_random_seed: 0
GPU 0: Tesla V100-SXM2-16GB
CUDA_HOME: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2
NVCC: Cuda compilation tools, release 11.2, V11.2.152
MSVC: Microsoft (R) C/C++ Optimizing Compiler Version 19.16.27051 for x64
GCC: n/a
PyTorch: 1.11.0+cu113
PyTorch compiling details: PyTorch built with:
C++ Version: 199711
MSVC 192829337
Intel(R) Math Kernel Library Version 2020.0.2 Product Build 20200624 for Intel(R) 64 architecture applications
Intel(R) MKL-DNN v2.5.2 (Git Hash a9302535553c73243c632ad3c4c80beec3d19a1e)
OpenMP 2019
LAPACK is enabled (usually provided by MKL)
CPU capability usage: AVX2
CUDA Runtime 11.3
NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37
CuDNN 8.2
Magma 2.5.4
Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.3, CUDNN_VERSION=8.2.0, CXX_COMPILER=C:/actions-runner/_work/pytorch/pytorch/builder/windows/tmp_bin/sccache-cl.exe, CXX_FLAGS=/DWIN32 /D_WINDOWS /GR /EHsc /w /bigobj -DUSE_PTHREADPOOL -openmp:experimental -IC:/actions-runner/_work/pytorch/pytorch/builder/windows/mkl/include -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOCUPTI -DUSE_FBGEMM -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.11.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=OFF, USE_MPI=OFF, USE_NCCL=OFF, USE_NNPACK=OFF, USE_OPENMP=ON, USE_ROCM=OFF,
TorchVision: 0.12.0+cu113
OpenCV: 4.8.1
MMEngine: 0.10.3
Runtime environment:
cudnn_benchmark: False
mp_cfg: {'mp_start_method': 'fork', 'opencv_num_threads': 0}
dist_cfg: {'backend': 'nccl'}
seed: 0
Distributed launcher: none
Distributed training: False
GPU number: 1
Reproduces the problem - code sample
Here is my config:
Reproduces the problem - command or script
My images are 1024x1024. There is no data issue for sure. I have tried different batch size, like 1, 2, 4, 8, but faced the same issue. DBNetPP model works fine on the same machine with the same data and have a good accuracy.
Reproduces the problem - error message
There is no error. The process gets stuck.
EDIT: After 14 hours, here are additional logs:
Additional information
No response
The text was updated successfully, but these errors were encountered: