Skip to content

Latest commit

 

History

History
267 lines (197 loc) · 7.32 KB

README_redis.md

File metadata and controls

267 lines (197 loc) · 7.32 KB

Dataprep Microservice with Redis

We have provided dataprep microservice for multimodal data input (e.g., text and image) here.

For dataprep microservice for text input, we provide here two frameworks: Langchain and LlamaIndex. We also provide Langchain_ray which uses ray to parallel the data prep for multi-file performance improvement(observed 5x - 15x speedup by processing 1000 files/links.).

We organized these two folders in the same way, so you can use either framework for dataprep microservice with the following constructions.

🚀1. Start Microservice with Python(Option 1)

1.1 Install Requirements

  • option 1: Install Single-process version (for 1-10 files processing)
apt update
apt install default-jre
apt-get install tesseract-ocr -y
apt-get install libtesseract-dev -y
apt-get install poppler-utils -y
# for langchain
cd langchain
# for llama_index
cd llama_index
pip install -r requirements.txt
  • option 2: Install multi-process version (for >10 files processing)
cd langchain_ray; pip install -r requirements_ray.txt

1.2 Start Redis Stack Server

Please refer to this readme.

1.3 Setup Environment Variables

export REDIS_URL="redis://${your_ip}:6379"
export INDEX_NAME=${your_index_name}
export PYTHONPATH=${path_to_comps}

1.4 Start Embedding Service

First, you need to start a TEI service.

your_port=6006
model="BAAI/bge-base-en-v1.5"
docker run -p $your_port:80 -v ./data:/data --name tei_server -e http_proxy=$http_proxy -e https_proxy=$https_proxy --pull always ghcr.io/huggingface/text-embeddings-inference:cpu-1.5 --model-id $model

Then you need to test your TEI service using the following commands:

curl localhost:$your_port/embed \
    -X POST \
    -d '{"inputs":"What is Deep Learning?"}' \
    -H 'Content-Type: application/json'

After checking that it works, set up environment variables.

export TEI_ENDPOINT="http://localhost:$your_port"

1.4 Start Document Preparation Microservice for Redis with Python Script

Start document preparation microservice for Redis with below command.

  • option 1: Start single-process version (for 1-10 files processing)
cd langchain
python prepare_doc_redis.py
  • option 2: Start multi-process version (for >10 files processing)
cd langchain_ray
python prepare_doc_redis_on_ray.py

🚀2. Start Microservice with Docker (Option 2)

2.1 Start Redis Stack Server

Please refer to this readme.

2.2 Setup Environment Variables

export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
export TEI_ENDPOINT="http://${your_ip}:6006"
export REDIS_URL="redis://${your_ip}:6379"
export INDEX_NAME=${your_index_name}
export HUGGINGFACEHUB_API_TOKEN=${your_hf_api_token}

2.3 Build Docker Image

cd ../../
docker build -t opea/dataprep:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/dataprep/src/Dockerfile .

2.4 Run Docker with CLI (Option A)

docker run -d --name="dataprep-redis-server" -p 6007:6007 --runtime=runc --ipc=host -e http_proxy=$http_proxy -e https_proxy=$https_proxy -e REDIS_URL=$REDIS_URL -e INDEX_NAME=$INDEX_NAME -e TEI_ENDPOINT=$TEI_ENDPOINT -e HUGGINGFACEHUB_API_TOKEN=$HUGGINGFACEHUB_API_TOKEN opea/dataprep:latest

2.5 Run with Docker Compose (Option B - deprecated, will move to genAIExample in future)

cd comps/deployment/docker_compose
docker compose -f compose_redis.yaml up -d

🚀3. Status Microservice

docker container logs -f dataprep-redis-server

🚀4. Consume Microservice

4.1 Consume Upload API

Once document preparation microservice for Redis is started, user can use below command to invoke the microservice to convert the document to embedding and save to the database.

Make sure the file path after files=@ is correct.

  • Single file upload
curl -X POST \
    -H "Content-Type: multipart/form-data" \
    -F "files=@./file1.txt" \
    http://localhost:6007/v1/dataprep/ingest

You can specify chunk_size and chunk_size by the following commands.

curl -X POST \
    -H "Content-Type: multipart/form-data" \
    -F "files=@./file1.txt" \
    -F "chunk_size=1500" \
    -F "chunk_overlap=100" \
    http://localhost:6007/v1/dataprep/ingest

We support table extraction from pdf documents. You can specify process_table and table_strategy by the following commands. "table_strategy" refers to the strategies to understand tables for table retrieval. As the setting progresses from "fast" to "hq" to "llm," the focus shifts towards deeper table understanding at the expense of processing speed. The default strategy is "fast".

Note: If you specify "table_strategy=llm", You should first start TGI Service, please refer to 1.2.1, 1.3.1 in https://github.com/opea-project/GenAIComps/tree/main/comps/llms/README.md, and then export TGI_LLM_ENDPOINT="http://${your_ip}:8008".

curl -X POST \
    -H "Content-Type: multipart/form-data" \
    -F "files=@./your_file.pdf" \
    -F "process_table=true" \
    -F "table_strategy=hq" \
    http://localhost:6007/v1/dataprep/ingest
  • Multiple file upload
curl -X POST \
    -H "Content-Type: multipart/form-data" \
    -F "files=@./file1.txt" \
    -F "files=@./file2.txt" \
    -F "files=@./file3.txt" \
    http://localhost:6007/v1/dataprep/ingest
  • Links upload (not supported for llama_index now)
curl -X POST \
    -F 'link_list=["https://www.ces.tech/"]' \
    http://localhost:6007/v1/dataprep/ingest

or

import requests
import json

proxies = {"http": ""}
url = "http://localhost:6007/v1/dataprep/ingest"
urls = [
    "https://towardsdatascience.com/no-gpu-no-party-fine-tune-bert-for-sentiment-analysis-with-vertex-ai-custom-jobs-d8fc410e908b?source=rss----7f60cf5620c9---4"
]
payload = {"link_list": json.dumps(urls)}

try:
    resp = requests.post(url=url, data=payload, proxies=proxies)
    print(resp.text)
    resp.raise_for_status()  # Raise an exception for unsuccessful HTTP status codes
    print("Request successful!")
except requests.exceptions.RequestException as e:
    print("An error occurred:", e)

4.2 Consume get API

To get uploaded file structures, use the following command:

curl -X POST \
    -H "Content-Type: application/json" \
    http://localhost:6007/v1/dataprep/get

Then you will get the response JSON like this:

[
  {
    "name": "uploaded_file_1.txt",
    "id": "uploaded_file_1.txt",
    "type": "File",
    "parent": ""
  },
  {
    "name": "uploaded_file_2.txt",
    "id": "uploaded_file_2.txt",
    "type": "File",
    "parent": ""
  }
]

4.3 Consume delete API

To delete uploaded file/link, use the following command.

The file_path here should be the id get from /v1/dataprep/get API.

# delete link
curl -X POST \
    -H "Content-Type: application/json" \
    -d '{"file_path": "https://www.ces.tech/.txt"}' \
    http://localhost:6007/v1/dataprep/delete

# delete file
curl -X POST \
    -H "Content-Type: application/json" \
    -d '{"file_path": "uploaded_file_1.txt"}' \
    http://localhost:6007/v1/dataprep/delete

# delete all files and links
curl -X POST \
    -H "Content-Type: application/json" \
    -d '{"file_path": "all"}' \
    http://localhost:6007/v1/dataprep/delete