Skip to content

Latest commit

 

History

History
130 lines (94 loc) · 3.13 KB

README_elasticsearch.md

File metadata and controls

130 lines (94 loc) · 3.13 KB

Dataprep Microservice with Elasticsearch

🚀1. Start Microservice with Python(Option 1)

1.1 Install Requirements

pip install -r requirements.txt

1.2 Setup Environment Variables

export ES_CONNECTION_STRING=http://localhost:9200
export INDEX_NAME=${your_index_name}

1.3 Start Elasticsearch

Please refer to this readme.

1.4 Start Document Preparation Microservice for Elasticsearch with Python Script

Start document preparation microservice for Elasticsearch with below command.

python prepare_doc_elastic.py

🚀2. Start Microservice with Docker (Option 2)

2.1 Start Elasticsearch

Please refer to this readme.

2.2 Setup Environment Variables

export ES_CONNECTION_STRING=http://localhost:9200
export INDEX_NAME=${your_index_name}

2.3 Build Docker Image

cd GenAIComps
docker build -t opea/dataprep:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/dataprep/src/Dockerfile .

2.4 Run Docker with CLI (Option A)

docker run  --name="dataprep-elasticsearch" -p 6011:6011 --ipc=host -e http_proxy=$http_proxy -e https_proxy=$https_proxy -e ES_CONNECTION_STRING=$ES_CONNECTION_STRING  -e INDEX_NAME=$INDEX_NAME -e TEI_ENDPOINT=$TEI_ENDPOINT -e DATAPREP_COMPONENT_NAME="OPEA_DATAPREP_ELASTICSEARCH" opea/dataprep:latest

2.5 Run with Docker Compose (Option B)

cd comps/dataprep/deployment/docker_compose/
docker compose -f compose_elasticsearch.yaml up -d

🚀3. Consume Microservice

3.1 Consume Upload API

Once document preparation microservice for Elasticsearch is started, user can use below command to invoke the microservice to convert the document to embedding and save to the database.

curl -X POST \
    -H "Content-Type: application/json" \
    -d '{"path":"/path/to/document"}' \
    http://localhost:6011/v1/dataprep/ingest

3.2 Consume get API

To get uploaded file structures, use the following command:

curl -X POST \
    -H "Content-Type: application/json" \
    http://localhost:6011/v1/dataprep/get

Then you will get the response JSON like this:

[
  {
    "name": "uploaded_file_1.txt",
    "id": "uploaded_file_1.txt",
    "type": "File",
    "parent": ""
  },
  {
    "name": "uploaded_file_2.txt",
    "id": "uploaded_file_2.txt",
    "type": "File",
    "parent": ""
  }
]

4.3 Consume delete API

To delete uploaded file/link, use the following command.

The file_path here should be the id get from /v1/dataprep/get API.

# delete link
curl -X POST \
    -H "Content-Type: application/json" \
    -d '{"file_path": "https://www.ces.tech/.txt"}' \
    http://localhost:6011/v1/dataprep/delete

# delete file
curl -X POST \
    -H "Content-Type: application/json" \
    -d '{"file_path": "uploaded_file_1.txt"}' \
    http://localhost:6011/v1/dataprep/delete

# delete all files and links
curl -X POST \
    -H "Content-Type: application/json" \
    -d '{"file_path": "all"}' \
    http://localhost:6011/v1/dataprep/delete