-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
421 lines (344 loc) · 17.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
#!/usr/bin/env python
from __future__ import division
import os, sys, shutil, time, random
import argparse
# from distutils.dir_util import copy_tree
# from shutil import rmtree
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
import torchvision.datasets as dset
import torchvision.transforms as transforms
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt
import sys
if sys.version_info[0] < 3:
import cPickle as pickle
else:
import _pickle as pickle
import numpy as np
from utils import *
import models
from collections import OrderedDict, Counter
from load_data import *
from helpers import *
from plots import *
from analytical_helper_script import run_test_with_mixup
from attacks import run_test_adversarial, fgsm, pgd
from mixup import training_method, get_extra_hp_for_mixup_plus
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
parser = argparse.ArgumentParser(description='Trains ResNeXt on CIFAR or ImageNet', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--dataset', type=str, default='cifar10', choices=['cifar10', 'cifar100', 'imagenet', 'svhn', 'stl10', 'mnist', 'tiny-imagenet-200'],
help='Choose between Cifar10/100 and ImageNet.')
parser.add_argument('--data_dir', type = str, default = '~/data/cifar10',
help='file where results are to be written')
parser.add_argument('--root_dir', type = str, default = './experiments',
help='folder where results are to be stored')
parser.add_argument('--labels_per_class', type=int, default=5000, metavar='NL',
help='labels_per_class')
parser.add_argument('--valid_labels_per_class', type=int, default=0, metavar='NL',
help='validation labels_per_class')
parser.add_argument('--arch', metavar='ARCH', default='resnext29_8_64', choices=model_names, help='model architecture: ' + ' | '.join(model_names) + ' (default: resnext29_8_64)')
parser.add_argument('--initial_channels', type=int, default=64, choices=(16,64))
# Optimization options
parser.add_argument('--epochs', type=int, default=300, help='Number of epochs to train.')
parser.add_argument('--train', type=str, default = 'vanilla', choices =['vanilla','mixup', 'mixup_hidden','mixupe','cutout', 'mixup_plus'])
parser.add_argument('--adv_gen', type=str, default = 'vanilla', choices =['vanilla','mixup', 'mixup_hidden','cutout', 'none'])
parser.add_argument('--adv_train', type=str, default = 'vanilla', choices =['vanilla','mixup', 'mixup_hidden','cutout', 'none'])
parser.add_argument('--mixup_alpha', type=float, default=0.0, help='alpha parameter for mixup')
# Mixup new version params ###
parser.add_argument('--mixupe_version', type=int, default=1, choices=[1, 2, 3, 4],
help='mixupe_version, accurate vs faster version')
parser.add_argument('--mixup_eta', type=float, default=1.0)
parser.add_argument('--threshold', type=float, default=-1.0)
#####
parser.add_argument('--cutout', type=int, default=16, help='size of cut out')
parser.add_argument('--dropout', action='store_true', default=False,
help='whether to use dropout or not in final layer')
#parser.add_argument('--batch_size', type=int, default=128, help='Batch size.')
parser.add_argument('--batch_size', type=int, default=100, help='Batch size.')
parser.add_argument('--learning_rate', type=float, default=0.1, help='The Learning Rate.')
parser.add_argument('--momentum', type=float, default=0.9, help='Momentum.')
parser.add_argument('--data_aug', type=int, default=1)
parser.add_argument('--adv_unpre', action='store_true', default=False,
help= 'the adversarial examples will be calculated on real input space (not preprocessed)')
#parser.add_argument('--decay', type=float, default=0.0005, help='Weight decay (L2 penalty).')
parser.add_argument('--decay', type=float, default=0.0001, help='Weight decay (L2 penalty).')
parser.add_argument('--schedule', type=int, nargs='+', default=[10, 150, 225], help='Decrease learning rate at these epochs.')
parser.add_argument('--gammas', type=float, nargs='+', default=[0.01, 0.1, 0.1], help='LR is multiplied by gamma on schedule, number of gammas should be equal to schedule')
# Checkpoints
parser.add_argument('--print_freq', default=100, type=int, metavar='N', help='print frequency (default: 200)')
parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='manual epoch number (useful on restarts)')
parser.add_argument('--evaluate', dest='evaluate', action='store_true', help='evaluate model on validation set')
# Acceleration
parser.add_argument('--ngpu', type=int, default=1, help='0 = CPU.')
parser.add_argument('--workers', type=int, default=2, help='number of data loading workers (default: 2)')
# random seed
parser.add_argument('--manualSeed', type=int, help='manual seed')
parser.add_argument('--add_name', type=str, default='')
parser.add_argument('--job_id', type=str, default='')
args = parser.parse_args()
args.use_cuda = args.ngpu>0 and torch.cuda.is_available()
out_str = str(args)
print(out_str)
"""
if args.manualSeed is None:
args.manualSeed = random.randint(1, 10000)
random.seed(args.manualSeed)
torch.manual_seed(args.manualSeed)
if args.use_cuda:
torch.cuda.manual_seed_all(args.manualSeed)
"""
cudnn.benchmark = True
def experiment_name_non_mnist(dataset='cifar10',
arch='',
epochs=400,
dropout=True,
batch_size=64,
lr=0.01,
momentum=0.5,
decay=0.0005,
data_aug=1,
train = 'vanilla',
mixup_alpha=0.0,
mixupe_version = None,
mixup_eta = 1.0,
thershold = 1.0,
job_id=None,
add_name=''):
exp_name = dataset
exp_name += '_arch_'+str(arch)
exp_name += '_train_'+str(train)
if train == 'mixup_new':
exp_name += '_v' + str(mixupe_version)
exp_name += '_eta_' + str(mixup_eta)
exp_name += '_t_' + str(thershold)
exp_name += '_m_alpha_'+str(mixup_alpha)
if dropout:
exp_name+='_do_'+'true'
else:
exp_name+='_do_'+'False'
exp_name += '_eph_'+str(epochs)
exp_name +='_bs_'+str(batch_size)
exp_name += '_lr_'+str(lr)
exp_name += '_mom_'+str(momentum)
exp_name +='_decay_'+str(decay)
exp_name += '_data_aug_'+str(data_aug)
if job_id!=None:
exp_name += '_job_id_'+str(job_id)
if add_name!='':
exp_name += '_add_name_'+str(add_name)
# exp_name += strftime("_%Y-%m-%d_%H:%M:%S", gmtime())
print('experiement name: ' + exp_name)
return exp_name
def print_log(print_string, log):
print("{}".format(print_string))
log.write('{}\n'.format(print_string))
log.flush()
def save_checkpoint(state, is_best, save_path, filename):
filename = os.path.join(save_path, filename)
torch.save(state, filename)
if is_best:
bestname = os.path.join(save_path, 'model_best.pth.tar')
shutil.copyfile(filename, bestname)
def adjust_learning_rate(optimizer, epoch, gammas, schedule):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = args.learning_rate
assert len(gammas) == len(schedule), "length of gammas and schedule should be equal"
"warm up"
if epoch <= schedule[0]:
lr = gammas[0] + epoch*(args.learning_rate / schedule[0]) #gammas[0] + (args.learning_rate-gammas[0]) /step[0]
for (gamma, step) in zip(gammas[1:], schedule[1:]):
if (epoch >= step):
lr = lr * gamma
else:
break
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
criterion = nn.CrossEntropyLoss().cuda()
def train(train_loader, model, optimizer, epoch, args, log):#, x_mean, lamba_mod_mean):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to train mode
model.train()
end = time.time()
for i, (input, target) in enumerate(train_loader):
target = target.long()
input, target = input.cuda(), target.cuda()
data_time.update(time.time() - end)
### clean training####
output, loss = training_method(args, input, target, model, criterion)
# measure accuracy and record loss
prec1, prec5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
top5.update(prec5.item(), input.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print_log(' Epoch: [{:03d}][{:03d}/{:03d}] '
'Time {batch_time.val:.3f} ({batch_time.avg:.3f}) '
'Data {data_time.val:.3f} ({data_time.avg:.3f}) '
'Loss {loss.val:.4f} ({loss.avg:.4f}) '
'Prec@1 {top1.val:.3f} ({top1.avg:.3f}) '
'Prec@5 {top5.val:.3f} ({top5.avg:.3f}) '.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, top5=top5) + time_string(), log)
print_log(' **Train** Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f} Error@1 {error1:.3f}'.format(top1=top1, top5=top5, error1=100-top1.avg), log)
return top1.avg, top5.avg, losses.avg
def validate(val_loader, model, log):
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
for i, (input, target) in enumerate(val_loader):
if args.use_cuda:
target = target.cuda()#async=True)
input = input.cuda()
# compute output
output = model(input)
loss = criterion(output, target)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
losses.update(loss.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
top5.update(prec5.item(), input.size(0))
print_log(' **Test** Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f} Error@1 {error1:.3f} Loss: {losses.avg:.3f} '.format(top1=top1, top5=top5, error1=100-top1.avg, losses=losses), log)
return top1.avg, losses.avg
best_acc = 0
def main():
### set up the experiment directories########
exp_name=experiment_name_non_mnist(dataset=args.dataset,
arch=args.arch,
epochs=args.epochs,
dropout=args.dropout,
batch_size=args.batch_size,
lr=args.learning_rate,
momentum=args.momentum,
decay= args.decay,
data_aug=args.data_aug,
train = args.train,
mixup_alpha = args.mixup_alpha,
mixupe_version = args.mixupe_version,
mixup_eta = args.mixup_eta,
thershold = args.threshold,
job_id=args.job_id,
add_name=args.add_name)
exp_dir = args.root_dir+exp_name
if not os.path.exists(exp_dir):
os.makedirs(exp_dir)
copy_script_to_folder(os.path.abspath(__file__), exp_dir)
result_png_path = os.path.join(exp_dir, 'results.png')
global best_acc
log = open(os.path.join(exp_dir, 'log.txt'.format(args.manualSeed)), 'w')
print_log('save path : {}'.format(exp_dir), log)
state = {k: v for k, v in args._get_kwargs()}
print_log(state, log)
print_log("Random Seed: {}".format(args.manualSeed), log)
print_log("python version : {}".format(sys.version.replace('\n', ' ')), log)
print_log("torch version : {}".format(torch.__version__), log)
print_log("cudnn version : {}".format(torch.backends.cudnn.version()), log)
if args.adv_unpre:
per_img_std = True
train_loader, valid_loader, _ , test_loader, num_classes = load_data_subset_unpre(args.data_aug, args.batch_size, args.workers ,args.dataset, args.data_dir, labels_per_class = args.labels_per_class, valid_labels_per_class = args.valid_labels_per_class)
else:
per_img_std = False
train_loader, valid_loader, _ , test_loader, num_classes = load_data_subset(args.data_aug, args.batch_size, args.workers ,args.dataset, args.data_dir, labels_per_class = args.labels_per_class, valid_labels_per_class = args.valid_labels_per_class)
if args.dataset == 'tiny-imagenet-200':
stride = 2
else:
stride = 1
#train_loader, valid_loader, _ , test_loader, num_classes = load_data_subset(args.data_aug, args.batch_size, 2, args.dataset, args.data_dir, 0.0, labels_per_class=5000)
print_log("=> creating model '{}'".format(args.arch), log)
net = models.__dict__[args.arch](num_classes,args.dropout,per_img_std, stride).cuda()
print_log("=> network :\n {}".format(net), log)
args.num_classes = num_classes
#net = torch.nn.DataParallel(net, device_ids=list(range(args.ngpu)))
optimizer = torch.optim.SGD(net.parameters(), state['learning_rate'], momentum=state['momentum'],
weight_decay=state['decay'], nesterov=True)
recorder = RecorderMeter(args.epochs)
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print_log("=> loading checkpoint '{}'".format(args.resume), log)
checkpoint = torch.load(args.resume)
recorder = checkpoint['recorder']
args.start_epoch = checkpoint['epoch']
net.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
best_acc = recorder.max_accuracy(False)
print_log("=> loaded checkpoint '{}' accuracy={} (epoch {})" .format(args.resume, best_acc, checkpoint['epoch']), log)
else:
print_log("=> no checkpoint found at '{}'".format(args.resume), log)
else:
print_log("=> do not use any checkpoint for {} model".format(args.arch), log)
if args.evaluate:
validate(test_loader, net, criterion, log)
return
# Main loop
start_time = time.time()
epoch_time = AverageMeter()
# Main loop
train_loss = []
train_acc=[]
test_loss=[]
test_acc=[]
get_extra_hp_for_mixup_plus(args, train_loader)
##############################
for epoch in range(args.start_epoch, args.epochs):
current_learning_rate = adjust_learning_rate(optimizer, epoch, args.gammas, args.schedule)
need_hour, need_mins, need_secs = convert_secs2time(epoch_time.avg * (args.epochs-epoch))
need_time = '[Need: {:02d}:{:02d}:{:02d}]'.format(need_hour, need_mins, need_secs)
print_log('\n==>>{:s} [Epoch={:03d}/{:03d}] {:s} [learning_rate={:6.4f}]'.format(time_string(), epoch, args.epochs, need_time, current_learning_rate) \
+ ' [Best : Accuracy={:.2f}, Error={:.2f}]'.format(recorder.max_accuracy(False), 100-recorder.max_accuracy(False)), log)
# train for one epoch
tr_acc, tr_acc5, tr_los = train(train_loader, net, optimizer, epoch, args, log)#, x_mean, lamba_mod_mean)
# import pdb; pdb.set_trace()
# evaluate on validation set
val_acc, val_los = validate(test_loader, net, log)
train_loss.append(tr_los)
train_acc.append(tr_acc)
test_loss.append(val_los)
test_acc.append(val_acc)
dummy = recorder.update(epoch, tr_los, tr_acc, val_los, val_acc)
is_best = False
if val_acc > best_acc:
is_best = True
best_acc = val_acc
save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': net.state_dict(),
'recorder': recorder,
'optimizer' : optimizer.state_dict(),
}, is_best, exp_dir, 'checkpoint.pth.tar')
# measure elapsed time
epoch_time.update(time.time() - start_time)
start_time = time.time()
recorder.plot_curve(result_png_path)
#import pdb; pdb.set_trace()
train_log = OrderedDict()
train_log['train_loss'] = train_loss
train_log['train_acc']=train_acc
train_log['test_loss']=test_loss
train_log['test_acc']=test_acc
pickle.dump(train_log, open( os.path.join(exp_dir,'log.pkl'), 'wb'))
plotting(exp_dir)
log.close()
if __name__ == '__main__':
main()