-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPulling ZCTA-level ACS data.Rmd
335 lines (252 loc) · 15.9 KB
/
Pulling ZCTA-level ACS data.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
---
title: "FoodPricing2019_NeighborhoodCharacteristics"
author: "Aldo Crossa"
date: "2023-04-27"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
## Survey of food prices in NYC, 2019: Neighborhood Characteristics
This code was writtedn to generate neighborhood-level estimates of various socioeconomic characteristics. This script pulls data from the 2015-2019 American community Survey, using the Census API.
We begin by loading the necessary packages
```{r Load packages}
###load packages###
library(censusapi)
library(data.table)
library(dplyr)
library(stringr)
library(sqldf)
library(xlsx)
setwd("<<insert path here>>")
###API key (sign up for a key here: https://api.census.gov/data/key_signup.html)
mycensuskey <-"<<insert census key here>>"
```
## ACS variables to pull from the census API
Here we define what variables to pull from the Census API in order to calculate the neighborhood level indicators. Define the labels for each variable and group the variables.
```{r Variables to pull, echo=FALSE}
#keep labels for all variables that will be used in the neighborhood-level indicators
varlabels <- c("B25001_001E" , "Total (For housing Units)",
"B25003_001E" , "Total (For housing units by tenure)",
"B25003_002E" , "Total: Owner occupied",
"B25106_024E" , "Total: Renter-occupied housing units:",
"B25106_028E" , "Total: Renter-occupied housing units: Less than $20,000: 30 percent or more",
"B25106_032E" , "Total: Renter-occupied housing units: $20,000 to $34,999: 30 percent or more",
"B25106_036E" , "Total: Renter-occupied housing units: $35,000 to $49,999: 30 percent or more",
"B25106_040E" , "Total: Renter-occupied housing units: $50,000 to $74,999: 30 percent or more",
"B25106_044E" , "Total: Renter-occupied housing units: $75,000 or more: 30 percent or more",
"B25106_045E" , "Total: Renter-occupied housing units: Zero or negative income",
"B25077_001E" , "Median value (dollars)",
"B25076_001E" , "Lower value quartile (dollars)",
"B25078_001E" , "Upper value quartile (dollars)",
"B22001_001E" , "Total: (For SNAP)",
"B22001_002E" , "Total: Household received Food Stamps/SNAP in the past 12 months:",
"C17002_001E" , "Total (for poverty)",
"C17002_002E" , "Total: Ratio income to poverty level, Under .50",
"C17002_003E" , "Total: Ratio income to poverty level, .50 to .99",
"B23025_001E" , "Total (for employment, population 16+)",
"B23025_003E" , "Total: In labor force: Civilian labor force:",
"B23025_004E" , "Total: In labor force: Civilian labor force: Employed",
"B06009_001E" , "Total (For educational attainment)",
"B06009_002E" , "Total: Less than high school graduate",
"B16005_001E" , "Total (For language)",
"B16005_007E" , "Total>Native>Speak Spanish>Speak English \"not well\"",
"B16005_008E" , "Total>Native>Speak Spanish>Speak English \"not at all\"",
"B16005_012E" , "Total>Native>Speak other Indo-European languages>Speak English \"not well\"",
"B16005_013E" , "Total>Native>Speak other Indo-European languages>Speak English \"not at all\"",
"B16005_017E" , "Total>Native>Speak Asian and Pacific Island languages>Speak English \"not well\"",
"B16005_018E" , "Total>Native>Speak Asian and Pacific Island languages>Speak English \"not at all\"",
"B16005_022E" , "Total>Native>Speak other languages>Speak English \"not well\"",
"B16005_023E" , "Total>Native>Speak other languages>Speak English \"not at all\"",
"B16005_029E" , "Total>Foreign born>Speak Spanish>Speak English \"not well\"",
"B16005_030E" , "Total>Foreign born>Speak Spanish>Speak English \"not at all\"",
"B16005_034E" , "Total>Foreign born>Speak other Indo-European languages>Speak English \"not well\"",
"B16005_035E" , "Total>Foreign born>Speak other Indo-European languages>Speak English \"not at all\"",
"B16005_039E" , "Total>Foreign born>Speak Asian and Pacific Island languages>Speak English \"not well\"",
"B16005_040E" , "Total>Foreign born>Speak Asian and Pacific Island languages>Speak English \"not at all\"",
"B16005_044E" , "Total>Foreign born>Speak other languages>Speak English \"not well\"",
"B16005_045E" , "Total>Foreign born>Speak other languages>Speak English \"not at all\"",
"B02001_001E" , "Total (for race)",
"B02009_001E" , "Total:Black or African American",
"B03001_001E" , "Total: (for Hispanic)",
"B03001_003E" , "Total: Hispanic or Latino:",
"B02011_001E" , "Total: Asian ",
"B02013_001E" , "Total: Some other race",
"B27010_002E" , "Total: Under 19 years: ",
"B27010_017E" , "Total: Under 19 years: No health insurance coverage",
"B27010_018E" , "Total: 19 to 34 years: ",
"B27010_033E" , "Total: 19 to 34 years: No health insurance coverage",
"B27010_034E" , "Total: 35 to 64 years: ",
"B27010_050E" , "Total: 35 to 64 years: No health insurance coverage",
"B27010_051E" , "Total: 65 years and over: ",
"B27010_066E" , "Total: 65 years and over: No health insurance coverage",
"B19083_001E" , "Gini Index of income inequality")
varattr <- as.data.frame(matrix(varlabels, byrow = 2, ncol = 2))
names(varattr) <- c("Variable.Name", "Variable.label")
AllVars <- varattr$Variable.Name
#### Group variables to use later in the calcultion of the indicators
# % Owner occupied
homevars <- c("B25001_001E","B25003_002E")
# % Rent burdened
rentvars <- c("B25106_028E","B25106_032E","B25106_036E","B25106_040E","B25106_044E","B25106_024E")
# % Household value
HHvars = "B25077_001E"
# % Cash Assistanceship or SNAP
snapvars = c("B22001_002E", "B22001_001E")
# % Poverty
povertyvars <- c("C17002_002E","C17002_003E","C17002_001E")
# % Employment Status (out of the entire population, not just in the labor force)
employvars <- c("B23025_004E", "B23025_001E")
# % Educational attainment
educvars <- c("B06009_002E","B06009_001E")
# % linguistic isolation?? Use "Ability to speak english"
langvars <- c("B16005_007E", "B16005_008E", "B16005_012E", "B16005_013E", "B16005_017E",
"B16005_018E", "B16005_022E", "B16005_023E", "B16005_029E", "B16005_030E",
"B16005_034E", "B16005_035E", "B16005_039E", "B16005_040E", "B16005_044E",
"B16005_045E", "B16005_001E")
# %%%% % Black/Black American
pblackvars <- c("B02009_001E","B02001_001E")
# %%%% % Hispanic/Latino
platinovars <- c("B03001_003E", "B03001_001E")
paapivar <- c("B02011_001E", "B02001_001E")
# %%%% Other
pothervars <- c("B02013_001E", "B02001_001E")
# % No health insurance
insrvars <- c("B27010_002E","B27010_018E","B27010_034E","B27010_051E",
"B27010_017E","B27010_033E","B27010_050E","B27010_066E")
# % Gini Index
GINIvars <- "B19083_001E"
```
#NYC ZIP codes
These are the ZIP codes for NYC
```{r NYC ZIP codes, echo=FALSE}
ZCTA_2010 <- c("10001", "10002", "10003", "10004", "10005", "10006", "10007", "10009", "10010", "10011", "10012",
"10013", "10014", "10016", "10017", "10018", "10019", "10020", "10021", "10022", "10023", "10024",
"10025", "10026", "10027", "10028", "10029", "10030", "10031", "10032", "10033", "10034", "10035",
"10036", "10037", "10038", "10039", "10040", "10044", "10065", "10069", "10075", "10103", "10110",
"10111", "10112", "10115", "10119", "10128", "10152", "10153", "10154", "10162", "10165", "10167",
"10168", "10169", "10170", "10171", "10172", "10173", "10174", "10177", "10199", "10271", "10278",
"10279", "10280", "10282", "10301", "10302", "10303", "10304", "10305", "10306", "10307", "10308",
"10309", "10310", "10311", "10312", "10314", "10451", "10452", "10453", "10454", "10455", "10456",
"10457", "10458", "10459", "10460", "10461", "10462", "10463", "10464", "10465", "10466", "10467",
"10468", "10469", "10470", "10471", "10472", "10473", "10474", "10475", "11001", "11003", "11004",
"11005", "11040", "11101", "11102", "11103", "11104", "11105", "11106", "11109", "11201", "11203",
"11204", "11205", "11206", "11207", "11208", "11209", "11210", "11211", "11212", "11213", "11214",
"11215", "11216", "11217", "11218", "11219", "11220", "11221", "11222", "11223", "11224", "11225",
"11226", "11228", "11229", "11230", "11231", "11232", "11233", "11234", "11235", "11236", "11237",
"11238", "11239", "11351", "11354", "11355", "11356", "11357", "11358", "11359", "11360", "11361",
"11362", "11363", "11364", "11365", "11366", "11367", "11368", "11369", "11370", "11371", "11372",
"11373", "11374", "11375", "11377", "11378", "11379", "11385", "11411", "11412", "11413", "11414",
"11415", "11416", "11417", "11418", "11419", "11420", "11421", "11422", "11423", "11424", "11425",
"11426", "11427", "11428", "11429", "11430", "11432", "11433", "11434", "11435", "11436", "11451",
"11691", "11692", "11693", "11694", "11697", "99999")
zcta.string <- paste(ZCTA_2010, collapse = ",")
```
#Next, pull the data using the Census API
Data will be pulled from the ACS 2015-2019 5-year estimates using the "getCensus" function within the censusapi package.
```{r Pull data, echo= FALSE}
# Pull the data from the API
acsdata5y_zcta <- getCensus(name = "acs/acs5",
vintage = 2019,
key = mycensuskey,
vars = AllVars,
region = paste0("zip code tabulation area:",zcta.string),
regionin = "state:36")
# Add labels to the variables
for (i in 1:dim(varattr)[1]){
setattr( acsdata5y_zcta[, varattr$Variable.Name[i]],
"label",
varattr$Variable.label[i])
}
```
# Calculating Neighborhood level indicators
```{r Get Indicators, echo = FALSE}
#### Create Indicators ----
acsdata5y_zcta <-
subset(acsdata5y_zcta, subset = (B02001_001E > 0 & !(zip_code_tabulation_area %in% c(10162, 10279, 11430)))) %>%
mutate( percent_owner = B25003_002E/B25001_001E,
percent_rentburdened = (B25106_028E+B25106_032E+B25106_036E+B25106_040E+B25106_044E)/B25106_024E,
HH_value = case_when(B25077_001E >= 0 ~ B25077_001E),
percent_snap = B22001_002E / B22001_001E,
percent_poverty = (C17002_002E+C17002_003E)/C17002_001E,
percent_employed = B23025_004E / B23025_001E,
percent_lths = B06009_002E/B06009_001E,
percent_noenglish =
(B16005_007E + B16005_008E + B16005_012E + B16005_013E + B16005_017E +
B16005_018E + B16005_022E + B16005_023E + B16005_029E + B16005_030E +
B16005_034E + B16005_035E + B16005_039E + B16005_040E + B16005_044E +
B16005_045E) / B16005_001E,
percent_black = B02009_001E/B02001_001E,
percent_latino = B03001_003E/B03001_001E,
percent_aapi = B02011_001E/B02001_001E,
percent_other = B02013_001E/B02001_001E,
percent_noinsurance = (B27010_017E+B27010_033E+B27010_050E+B27010_066E)/
(B27010_002E+B27010_018E+B27010_034E+B27010_051E),
GINI_index = case_when(B19083_001E > 0 ~ B19083_001E)
)
#### Set labels for new variables ----
setattr( acsdata5y_zcta$percent_owner, "label", "% Owner occupied")
setattr( acsdata5y_zcta$percent_rentburdened, "label", "% Rent burdened")
setattr( acsdata5y_zcta$HH_value, "label", "Median home value")
setattr( acsdata5y_zcta$percent_snap, "label", "% SNAP recipients")
setattr( acsdata5y_zcta$percent_poverty, "label", "% Living in poverty")
setattr( acsdata5y_zcta$percent_employed, "label", "% Employed")
setattr( acsdata5y_zcta$percent_lths, "label", "% Less than high school")
setattr( acsdata5y_zcta$percent_noenglish, "label", "% Not english speaker")
setattr( acsdata5y_zcta$percent_black, "label", "% Black or African American")
setattr( acsdata5y_zcta$percent_latino, "label", "% Latino")
setattr( acsdata5y_zcta$percent_aapi, "label", "% AAPI")
setattr( acsdata5y_zcta$percent_other, "label", "% Other Race")
setattr( acsdata5y_zcta$percent_noinsurance, "label", "% No insurance")
setattr( acsdata5y_zcta$GINI_index, "label", "GINI index of income inequality")
```
#Categorizing indicators
```{r Categorizing indicators, echo = FALSE}
#### Generate quartiles for each indicator ----
acsdata5y_zcta <-
acsdata5y_zcta %>%
mutate( qrt_percent_owner = cut(100*percent_owner,
quantile(100*percent_owner, probs =seq(0,1,0.25), na.rm = TRUE, names = T)),
qrt_percent_rentburdened = cut(100*percent_rentburdened,
quantile(100*percent_rentburdened, probs =seq(0,1,0.25), na.rm = TRUE, names = T)),
qrt_HH_value = cut(HH_value,
quantile(HH_value, probs =seq(0,1,0.25), na.rm = TRUE, names = T)),
qrt_percent_snap = cut(100*percent_snap,
quantile(100*percent_snap, probs =seq(0,1,0.25), na.rm = TRUE, names = T)),
qrt_percent_poverty = cut(100*percent_poverty,
quantile(100*percent_poverty, probs =seq(0,1,0.25), na.rm = TRUE, names = T)),
qrt_percent_employed = cut(100*percent_employed,
quantile(100*percent_employed, probs =seq(0,1,0.25), na.rm = TRUE, names = T)),
qrt_percent_lths = cut(100*percent_lths,
quantile(100*percent_lths, probs =seq(0,1,0.25), na.rm = TRUE, names = T)),
qrt_percent_noenglish = cut(100*percent_noenglish,
quantile(100*percent_noenglish, probs =seq(0,1,0.25), na.rm = TRUE, names = T)),
qrt_percent_black = cut(100*percent_black,
quantile(100*percent_black, probs =seq(0,1,0.25), na.rm = TRUE, names = T)),
qrt_percent_latino = cut(100*percent_latino,
quantile(100*percent_latino, probs =seq(0,1,0.25), na.rm = TRUE, names = T)),
qrt_percent_aapi = cut(100*percent_aapi,
quantile(100*percent_aapi, probs =seq(0,1,0.25), na.rm = TRUE, names = T)),
qrt_percent_other = cut(100*percent_other,
quantile(100*percent_other, probs =seq(0,1,0.25), na.rm = TRUE, names = T)),
qrt_percent_noinsurance = cut(100*percent_noinsurance,
quantile(100*percent_noinsurance, probs =seq(0,1,0.25), na.rm = TRUE, names = T)),
qrt_GINI_index = cut(GINI_index,
quantile(GINI_index, probs =seq(0,1,0.25), na.rm = TRUE, names = T))
)
#### Create labels for categorized indicators
setattr( acsdata5y_zcta$qrt_percent_owner, "label", "(Quartiles) % Owner occupied")
setattr( acsdata5y_zcta$qrt_percent_rentburdened, "label", "(Quartiles) % Rent burdened")
setattr( acsdata5y_zcta$qrt_HH_value, "label", "(Quartiles) Median home value")
setattr( acsdata5y_zcta$qrt_percent_snap, "label", "(Quartiles) % SNAP recipients")
setattr( acsdata5y_zcta$qrt_percent_poverty, "label", "(Quartiles) % Living in poverty")
setattr( acsdata5y_zcta$qrt_percent_employed, "label", "(Quartiles) % Employed")
setattr( acsdata5y_zcta$qrt_percent_lths, "label", "(Quartiles) % Less than high school")
setattr( acsdata5y_zcta$qrt_percent_noenglish, "label", "(Quartiles) % Not english speaker")
setattr( acsdata5y_zcta$qrt_percent_black, "label", "(Quartiles) % Black or African American")
setattr( acsdata5y_zcta$qrt_percent_latino, "label", "(Quartiles) % Latino")
setattr( acsdata5y_zcta$qrt_percent_aapi, "label", "(Quartiles) % AAPI")
setattr( acsdata5y_zcta$qrt_percent_other, "label", "(Quartiles) % Other Race")
setattr( acsdata5y_zcta$qrt_percent_noinsurance, "label", "(Quartiles) % No insurance")
setattr( acsdata5y_zcta$qrt_GINI_index, "label", "(Quartiles) GINI Index of income inequality")
```