-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdeploy.py
261 lines (210 loc) · 10 KB
/
deploy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
from modules import *
class Yolo4(object):
def get_class(self):
classes_path = os.path.expanduser(self.classes_path)
with open(classes_path) as f:
class_names = f.readlines()
class_names = [c.strip() for c in class_names]
return class_names
def get_anchors(self):
anchors_path = os.path.expanduser(self.anchors_path)
with open(anchors_path) as f:
anchors = f.readline()
anchors = [float(x) for x in anchors.split(',')]
return np.array(anchors).reshape(-1, 2)
def load_yolo(self):
model_path = os.path.expanduser(self.model_path)
assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'
self.class_names = self.get_class()
self.anchors = self.get_anchors()
num_anchors = len(self.anchors)
num_classes = len(self.class_names)
# Generate colors for drawing bounding boxes.
hsv_tuples = [(x / len(self.class_names), 1., 1.)
for x in range(len(self.class_names))]
self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
self.colors = list(
map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
self.colors))
self.sess = K.get_session()
# Load model, or construct model and load weights.
self.yolo4_model = yolo4_body(Input(shape=(608, 608, 3)), num_anchors//3, num_classes)
self.yolo4_model.load_weights(model_path)
print('{} model, anchors, and classes loaded.'.format(model_path))
if self.gpu_num>=2:
self.yolo4_model = multi_gpu_model(self.yolo4_model, gpus=self.gpu_num)
self.input_image_shape = K.placeholder(shape=(2, ))
self.boxes, self.scores, self.classes = yolo_eval(self.yolo4_model.output, self.anchors,
len(self.class_names), self.input_image_shape,
score_threshold=self.score)
def __init__(self, score, iou, anchors_path, classes_path, model_path, gpu_num=1):
self.score = score
self.iou = iou
self.anchors_path = anchors_path
self.classes_path = classes_path
self.model_path = model_path
self.gpu_num = gpu_num
self.load_yolo()
def close_session(self):
self.sess.close()
def detect_image(self, image, model_image_size=(608, 608)):
boxed_image = letterbox_image(image, tuple(reversed(model_image_size)))
image_data = np.array(boxed_image, dtype='float32')
print(image_data.shape)
image_data /= 255.
image_data = np.expand_dims(image_data, 0) # Add batch dimension.
out_boxes, out_scores, out_classes = self.sess.run(
[self.boxes, self.scores, self.classes],
feed_dict={
self.yolo4_model.input: image_data,
self.input_image_shape: [image.size[1], image.size[0]],
K.learning_phase(): 0
})
print('Found {} boxes for {}'.format(len(out_boxes), 'img'))
font = ImageFont.truetype(font='font/FiraMono-Medium.otf',
size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32'))
thickness = (image.size[0] + image.size[1]) // 500 # Default is 300
BB_file = open('bb_cor.txt', 'w')
for i, c in list(enumerate(out_classes)):
predicted_class = self.class_names[c]
box = out_boxes[i]
score = out_scores[i]
label = '{} {:.2f}'.format(predicted_class, score)
draw = ImageDraw.Draw(image)
label_size = draw.textsize(label, font)
top, left, bottom, right = box
top = max(0, np.floor(top + 0.5).astype('int32'))
left = max(0, np.floor(left + 0.5).astype('int32'))
bottom = min(image.size[1], np.floor(bottom + 0.5).astype('int32'))
right = min(image.size[0], np.floor(right + 0.5).astype('int32'))
print(label, (left, top), (right, bottom))
BB_file.write(str(c) + ' ' + str(left) + ' ' + str(top) + ' ' + str(right) + ' ' + str(bottom))
if c < len(self.class_names) - 1:
BB_file.write('\n')
if top - label_size[1] >= 0:
text_origin = np.array([left, top - label_size[1]])
else:
text_origin = np.array([left, top + 1])
# My kingdom for a good redistributable image drawing library.
for i in range(thickness):
draw.rectangle(
[left + i, top + i, right - i, bottom - i],
outline=self.colors[c])
draw.rectangle(
[tuple(text_origin), tuple(text_origin + label_size)],
fill=self.colors[c])
draw.text(text_origin, label, fill=(0, 0, 0), font=font)
del draw
BB_file.close()
return image
os.environ['KMP_DUPLICATE_LIB_OK']='True'
ANCHORS = './yolo4_anchors.txt'
CORNER_MODEL = './models/weights/yolo4_corner_weight.h5'
CORNER_CLASSES = './models/classes/yolo_corner.names'
######
CONTENT_MODEL = './models/weights/yolo4_content_weight.h5'
CONTENT_CLASSES = './models/classes/yolo_content.names'
SCORE = 0.5
IOU = 0.5
model_image_size = (608, 608)
yolo4_corner_model = Yolo4(SCORE, IOU, ANCHORS, CORNER_CLASSES, CORNER_MODEL)
yolo4_content_model = Yolo4(SCORE, IOU, ANCHORS, CONTENT_CLASSES, CONTENT_MODEL)
app = Flask(__name__,template_folder='./')
@app.route("/", methods=['GET'])
def show_template():
return render_template("./static/main.html")
UPLOAD_FOLDER = './uploads'
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
graph = tf.get_default_graph()
@app.route("/uploader", methods=['GET', 'POST'])
def upload():
with graph.as_default():
# print(request.files, flush=True)
INPUT_IMG = os.listdir('./uploads')
if INPUT_IMG is not None:
for upload_img in INPUT_IMG:
os.remove(os.path.join('./uploads', upload_img))
if request.method == 'POST':
# Get image from POST request
f = request.files['file']
# Save image to ./uploads
f.save(os.path.join(app.config['UPLOAD_FOLDER'], secure_filename(f.filename)))
INPUT_IMG = os.listdir('./uploads')
if INPUT_IMG is not None:
img = Image.open(os.path.join('./uploads', INPUT_IMG[0]))
else:
print('Cant read image!')
img_origin = img.copy()
result = yolo4_corner_model.detect_image(img, model_image_size=model_image_size)
result.save('./detection.jpg')
total_bb = align.get_bb_cor('bb_cor.txt')
if len(total_bb) < 4:
response = {
"data": "Missing corner! Detection failed!"
}
elif len(total_bb) > 4:
response = {
"data": "Corner noise detected! Detection failed!"
}
return jsonify(response), 404
center_points = list(map(align.get_center_point, total_bb))
# Temporary fixing
c2, c3 = center_points[2], center_points[3]
c2_fix, c3_fix = (c2[0],c2[1]+30), (c3[0],c3[1]+30)
center_points = [center_points[0], center_points[1], c2_fix, c3_fix]
center_points = np.asarray(center_points)
aligned = align.four_point_transform(img_origin, center_points)
aligned = cv2.cvtColor(aligned, cv2.COLOR_BGR2RGB)
cv2.imwrite('./aligned.jpg', aligned)
aligned_img = Image.open('./aligned.jpg')
aligned_copy = aligned_img.copy()
result2 = yolo4_content_model.detect_image(aligned_img, model_image_size=model_image_size)
bb_cor = open('bb_cor.txt','r')
if len(total_bb) < 10:
response = {
"data": "Missing fields! Detection failed!"
}
elif len(total_bb) > 10:
response = {
"data": "Wrong fields detected! Detection failed!"
}
return jsonify(response), 404
bb_cor = [line.strip() for line in bb_cor]
save_dir = os.path.join('./','static/src')
if not os.path.isdir(save_dir):
os.mkdir(save_dir)
else:
for f in os.listdir(save_dir):
os.remove(os.path.join(save_dir, f))
for line in bb_cor:
cord = line.split(' ')
__, left, top, right, bottom = float(cord[0]), float(cord[1]), float(cord[2]), float(cord[3]), float(cord[4])
cropped_image = aligned_copy.crop((left,top,right,bottom))
cropped_image.save(os.path.join(save_dir, cord[0] + '.jpg'))
""" Recognizion detected parts in ID """
config = Cfg.load_config_from_name('vgg_transformer')
config['weights'] = 'models/weights/transformerocr.pth'
config['cnn']['pretrained']=False
# config['device'] = 'cuda:0' # if using GPU
config['device'] = 'cpu' # if using CPU
config['predictor']['beamsearch']=False
detector = Predictor(config)
FIELDS_DETECTED = [] # Collecting all detected parts
for img_crop in sorted(os.listdir(save_dir)):
img_ = Image.open(os.path.join(save_dir,img_crop))
s = detector.predict(img_)
FIELDS_DETECTED.append(s)
check_parts = [False] * 10
for part in os.listdir(save_dir):
if int(part[:-4]) in range(0,10):
check_parts[int(part[:-4])] = True
if check_parts[7] is True:
FIELDS_DETECTED = FIELDS_DETECTED[:7] + [FIELDS_DETECTED[7] + ' ' + FIELDS_DETECTED[8]] + [FIELDS_DETECTED[9]]
else:
FIELDS_DETECTED.pop(7)
response = {
"data": FIELDS_DETECTED
}
return jsonify(response)
if __name__ == "__main__":
app.run(host='0.0.0.0',port='8080',debug=True)