-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathImageBased.py
78 lines (64 loc) · 2.37 KB
/
ImageBased.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
from PIL import Image
from utils import *
import pickle
import os
import time
from flask import Flask, render_template, request, redirect
"""
Load vectors and path
"""
vectors = pickle.load(open("./results/vectors.pkl","rb"))
paths = pickle.load(open("./results/paths.pkl","rb"))
def clearUpload(path):
data = os.listdir(path)
if len(data) > 0:
for img in data:
os.remove(os.path.join(path, img))
app = Flask(__name__, template_folder='templates')
app.config['SEND_FILE_MAX_AGE_DEFAULT'] = 0
app.config['UPLOAD_DIRECTORY'] = './uploads'
os.environ['KMP_DUPLICATE_LIB_OK']='True'
# app.config['ALLOWED_EXTENSIONS'] = ['.jpg', '.jpeg', '.png', '.gif']
"""No Cache loading
ref: https://stackoverflow.com/questions/45583828/python-flask-not-updating-images
"""
@app.after_request
def add_header(response):
# response.cache_control.no_store = True
response.headers['Cache-Control'] = 'no-store, no-cache, must-revalidate, post-check=0, pre-check=0, max-age=0'
response.headers['Pragma'] = 'no-cache'
response.headers['Expires'] = '-1'
return response
@app.route('/')
def home():
return render_template('home.html')
@app.route('/upload', methods=['POST'])
def upload():
clearUpload('./uploads')
file = request.files['file']
if file:
file.save(os.path.join(app.config['UPLOAD_DIRECTORY'], file.filename))
return redirect('/query')
else:
print("No file selected!")
return redirect('/')
@app.route('/query')
def query():
img_query = os.path.join(app.config['UPLOAD_DIRECTORY'], os.listdir(app.config['UPLOAD_DIRECTORY'])[0])
model = get_extract_model()
# Query image features extraction
search_vector = extract_vector(model, img_query)
# Distance from query's vector to all vector in dataset
distance = np.linalg.norm(vectors - search_vector, axis=1) # L2-Norm
K = 10 # Return top K image same as query image
ids = np.argsort(distance)[:K]
nearest_image = [paths[id] for id in ids]
query_ans = []
for path in nearest_image:
tmp = path.split('/')
version = f'?v={int(round(time.time() * 1000))}'
full_path = os.path.join('static/dataset', tmp[2], tmp[3]) + version
query_ans.append(full_path)
return render_template('home.html', query_img = query_ans)
if __name__ == '__main__':
app.run(host='0.0.0.0',port='8080',debug=True)