forked from ematvey/hierarchical-attention-networks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHAN_model.py
219 lines (179 loc) · 7.08 KB
/
HAN_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import tensorflow as tf
import tensorflow.contrib.layers as layers
import numpy as np
import data_util
from model_components import task_specific_attention, bidirectional_rnn
class HANClassifierModel():
""" Implementation of document classification model described in
`Hierarchical Attention Networks for Document Classification (Yang et al., 2016)`
(https://www.cs.cmu.edu/~diyiy/docs/naacl16.pdf)"""
def __init__(self,
vocab_size,
embedding_size,
classes,
word_cell,
sentence_cell,
word_output_size,
sentence_output_size,
max_grad_norm,
dropout_keep_proba,
is_training=None,
learning_rate=1e-4,
device='/cpu:0',
scope=None):
self.vocab_size = vocab_size
self.embedding_size = embedding_size
self.classes = classes
self.word_cell = word_cell
self.word_output_size = word_output_size
self.sentence_cell = sentence_cell
self.sentence_output_size = sentence_output_size
self.max_grad_norm = max_grad_norm
self.dropout_keep_proba = dropout_keep_proba
with tf.variable_scope(scope or 'tcm') as scope:
self.global_step = tf.Variable(0, name='global_step', trainable=False)
if is_training is not None:
self.is_training = is_training
else:
self.is_training = tf.placeholder(dtype=tf.bool, name='is_training')
self.sample_weights = tf.placeholder(shape=(None,), dtype=tf.float32, name='sample_weights')
# [document x sentence x word]
self.inputs = tf.placeholder(shape=(None, None, None), dtype=tf.int32, name='inputs')
# [document x sentence]
self.word_lengths = tf.placeholder(shape=(None, None), dtype=tf.int32, name='word_lengths')
# [document]
self.sentence_lengths = tf.placeholder(shape=(None,), dtype=tf.int32, name='sentence_lengths')
# [document]
self.labels = tf.placeholder(shape=(None,), dtype=tf.int32, name='labels')
(self.document_size,
self.sentence_size,
self.word_size) = tf.unstack(tf.shape(self.inputs))
self._init_embedding(scope)
# embeddings cannot be placed on GPU
with tf.device(device):
self._init_body(scope)
with tf.variable_scope('train'):
self.cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=self.labels, logits=self.logits)
self.loss = tf.reduce_mean(tf.multiply(self.cross_entropy, self.sample_weights))
tf.summary.scalar('loss', self.loss)
self.accuracy = tf.reduce_mean(tf.cast(tf.nn.in_top_k(self.logits, self.labels, 1), tf.float32))
tf.summary.scalar('accuracy', self.accuracy)
tvars = tf.trainable_variables()
grads, global_norm = tf.clip_by_global_norm(
tf.gradients(self.loss, tvars),
self.max_grad_norm)
tf.summary.scalar('global_grad_norm', global_norm)
opt = tf.train.AdamOptimizer(learning_rate)
self.train_op = opt.apply_gradients(
zip(grads, tvars), name='train_op',
global_step=self.global_step)
self.summary_op = tf.summary.merge_all()
def _init_embedding(self, scope):
with tf.variable_scope(scope):
with tf.variable_scope("embedding") as scope:
self.embedding_matrix = tf.get_variable(
name="embedding_matrix",
shape=[self.vocab_size, self.embedding_size],
initializer=layers.xavier_initializer(),
dtype=tf.float32)
self.inputs_embedded = tf.nn.embedding_lookup(
self.embedding_matrix, self.inputs)
def _init_body(self, scope):
with tf.variable_scope(scope):
word_level_inputs = tf.reshape(self.inputs_embedded, [
self.document_size * self.sentence_size,
self.word_size,
self.embedding_size
])
word_level_lengths = tf.reshape(
self.word_lengths, [self.document_size * self.sentence_size])
with tf.variable_scope('word') as scope:
word_encoder_output, _ = bidirectional_rnn(
self.word_cell, self.word_cell,
word_level_inputs, word_level_lengths,
scope=scope)
with tf.variable_scope('attention') as scope:
word_level_output = task_specific_attention(
word_encoder_output,
self.word_output_size,
scope=scope)
with tf.variable_scope('dropout'):
word_level_output = layers.dropout(
word_level_output, keep_prob=self.dropout_keep_proba,
is_training=self.is_training,
)
# sentence_level
sentence_inputs = tf.reshape(
word_level_output, [self.document_size, self.sentence_size, self.word_output_size])
with tf.variable_scope('sentence') as scope:
sentence_encoder_output, _ = bidirectional_rnn(
self.sentence_cell, self.sentence_cell, sentence_inputs, self.sentence_lengths, scope=scope)
with tf.variable_scope('attention') as scope:
sentence_level_output = task_specific_attention(
sentence_encoder_output, self.sentence_output_size, scope=scope)
with tf.variable_scope('dropout'):
sentence_level_output = layers.dropout(
sentence_level_output, keep_prob=self.dropout_keep_proba,
is_training=self.is_training,
)
with tf.variable_scope('classifier'):
self.logits = layers.fully_connected(
sentence_level_output, self.classes, activation_fn=None)
self.prediction = tf.argmax(self.logits, axis=-1)
def get_feed_data(self, x, y=None, class_weights=None, is_training=True):
x_m, doc_sizes, sent_sizes = data_util.batch(x)
fd = {
self.inputs: x_m,
self.sentence_lengths: doc_sizes,
self.word_lengths: sent_sizes,
}
if y is not None:
fd[self.labels] = y
if class_weights is not None:
fd[self.sample_weights] = [class_weights[yy] for yy in y]
else:
fd[self.sample_weights] = np.ones(shape=[len(x_m)], dtype=np.float32)
fd[self.is_training] = is_training
return fd
if __name__ == '__main__':
try:
from tensorflow.contrib.rnn import LSTMCell, LSTMStateTuple, GRUCell
except ImportError:
LSTMCell = tf.nn.rnn_cell.LSTMCell
LSTMStateTuple = tf.nn.rnn_cell.LSTMStateTuple
GRUCell = tf.nn.rnn_cell.GRUCell
tf.reset_default_graph()
with tf.Session() as session:
model = HANClassifierModel(
vocab_size=10,
embedding_size=5,
classes=2,
word_cell=GRUCell(10),
sentence_cell=GRUCell(10),
word_output_size=10,
sentence_output_size=10,
max_grad_norm=5.0,
dropout_keep_proba=0.5,
)
session.run(tf.global_variables_initializer())
fd = {
model.is_training: False,
model.inputs: [[
[5, 4, 1, 0],
[3, 3, 6, 7],
[6, 7, 0, 0]
],
[
[2, 2, 1, 0],
[3, 3, 6, 7],
[0, 0, 0, 0]
]],
model.word_lengths: [
[3, 4, 2],
[3, 4, 0],
],
model.sentence_lengths: [3, 2],
model.labels: [0, 1],
}
print(session.run(model.logits, fd))
session.run(model.train_op, fd)