-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcamera.py
308 lines (216 loc) · 9.13 KB
/
camera.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
'''
A simple application of opencv for Background removal / blurring
github.com/nmakes/back-blur
'''
import cv2
import numpy as np
from time import time
import argparse
class StableFaceCapture:
'''
Notes:
# A part of this class is taken from: github.com/nmakes/spoof/camera.py
# This class originally contained Forehead detection and other dlib utils. We will not be using it.
1. OpenCV considers x & y to be horizontal (left-right) and vertical (top-bottom)
directions, while numpy considers x to be axis-0 (top-bottom) and y to be axis-1.
2. We set a threshold to avoid unstable detection. We create a region of interest (ROI) which
is slighly bigger than the detected face's bounding box. If face is detected again inside
the ROI, we do not change it. If the face is not detected inside the ROI, we look for the face
again in the whole image.
3. We assume that only one face will be detected in the frame.
'''
def __init__(self, video=0, threshold=0.025, camHeight=480, camWidth=640, rescale=8, noDetectionLimit=0, cvArgs={'scaleFactor':1.1, 'minNeighbors':5, 'minSize':(30, 30),'flags':cv2.CASCADE_SCALE_IMAGE}):
'''
- threshold: this will ensure that if the captured face is within
5% of the previously captured position, then the Fx,Fy,Fw,Fh
will not be altered
- noDetectionLimit: if face is not detected for these many frames inside the ROI,
we look for the face in the whole image
- cvArgs={...}: arguments to opencv's detectMultiScale function
'''
# Inherit parameters
self.threshold = threshold
self.cvArgs = cvArgs
self.camWidth = camWidth
self.camHeight = camHeight
# self.rescale = rescale
# Initialize camera parameters
self.cam = cv2.VideoCapture(video)
self.cam.set(3,camWidth)
self.cam.set(4,camHeight)
self.camDiag = np.sqrt(self.camWidth**2 + self.camHeight**2)
self.faceCascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
# Region of Interest
self.ROI = None # np.array([0,0,0,0]) # (x,y,w,h)
# Face capture
self.F = None # np.array([0,0,0,0]) # (x,y,w,h)
# Counters for stable face detection
self.noDetectionLimit = noDetectionLimit
self.noDetectionCounter = 0
# Utils for GrabCut
# self.bgdModel = np.zeros((1,65),np.float64)
# self.fgdModel = np.zeros((1,65),np.float64)
# self.mm = np.zeros((int(self.camWidth/self.rescale),int(self.camHeight/self.rescale)))
def getCamDims(self):
# For openCV like dimensions
return (int(self.camWidth), int(self.camHeight))
def getCamShape(self):
# For numpy like shape
return (int(self.camHeight), int(self.camWidth))
def withinThreshold(self, loc):
dF = np.abs(self.F - np.array(loc)) / self.camDiag
if np.all(dF <= self.threshold):
return True
else:
return False
def getCapture(self, returnSuccess=False):
if returnSuccess==False:
ret_val, img = self.cam.read()
if(img.shape[:2] != (self.camHeight, self.camWidth)):
img = cv2.resize(img, (self.camWidth, self.camHeight), cv2.INTER_CUBIC)
return img
else:
ret_val, img = self.cam.read()
if(img.shape[:2] != (self.camHeight, self.camWidth)):
img = cv2.resize(img, (self.camWidth, self.camHeight), cv2.INTER_CUBIC)
return ret_val, img
def getFace(self, img=None):
if img is None:
img = self.getCapture()
if self.ROI is None: # First detection attempt
self.ROI = (0, 0, self.camWidth, self.camHeight) # (x,y,w,h)
# Get the image inside the ROI
roiImg = img[ int(self.ROI[1]) : int(self.ROI[1]) + int(self.ROI[3]),
int(self.ROI[0]) : int(self.ROI[0]) + int(self.ROI[2])]
# Get the gray image (for haar cascade classification)
grayRoiImg = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Get the faces
faces = self.faceCascade.detectMultiScale(
grayRoiImg,
scaleFactor=self.cvArgs['scaleFactor'],
minNeighbors=self.cvArgs['minNeighbors'],
minSize=self.cvArgs['minSize'],
flags=self.cvArgs['flags']
)
# If no faces are found, we need to increase the noDetectionCounter, but return the previous
# detected face region so as to avoid spikes in the estimation
if len(faces) == 0:
self.noDetectionCounter += 1
if(self.noDetectionCounter>=self.noDetectionLimit):
# self.noDetectionCounter = 0
return None
self.ROI = (0, 0, self.camWidth, self.camHeight)
return self.F
# Otherwise, reset the noDetectionCounter & continue the execution
else:
self.noDetectionCounter = 0
# For the captured face(s), get the position of the face
# Note: x, y are with respect to the image fed to the classifier. Thus,
# these will be relative to the region of interest, and hence we add
# ROI values to the x & y values.
for (x,y,w,h) in faces:
# If it is the first detection of a face, simply set the variables
if(self.F is None):
self.F = np.array([self.ROI[0] + x, self.ROI[1] + y, w, h])
# self.ROI = np.array([self.F[0] - 40, self.F[1] - 40, self.F[2]+80, self.F[3] + 80])
return self.F
# Otherwise, check the threshold
else:
# If the new region is within the threshold, return the old value
if( self.withinThreshold((x,y,w,h)) ):
return self.F
# Otherwise, return the new region, while setting it to be the face region
else:
self.F = np.array([self.ROI[0] + x, self.ROI[1] + y, w, h])
# self.ROI = np.array([self.F[0] - 40, self.F[1] - 40, self.F[2]+80, self.F[3] + 80])
return self.F
class BackgroundHandler:
def __init__(self, camWidth, camHeight, rescale=8, mode='blur', alt_image_path='back.jpg', blur_kernel_size=9, mask_smooth_kernel_size=11, mask_smooth_iters=2, update_iters=10):
self.camWidth = camWidth
self.camHeight = camHeight
self.rescale = rescale
self.mode = mode
self.alt_image_path = alt_image_path
self.alt_image = cv2.imread(alt_image_path)
self.alt_image = cv2.resize(self.alt_image, (self.camWidth,self.camHeight), cv2.INTER_CUBIC)
# Counters for updating only after a few iterations
self.update_iters = update_iters
self.update_counter = -1
# GrabCut runs on rescaled dimensions
self.sW = int(self.camWidth / self.rescale)
self.sH = int(self.camHeight / self.rescale)
# Smoothing kernels
self.blur_kernel_size = b = blur_kernel_size
self.mask_smooth_kernel_size = k = mask_smooth_kernel_size
self.mask_smooth_iters = mask_smooth_iters
self.bgblur_kernel = np.ones((b,b), np.float32)/(b**2)
self.mask_smooth_kernel = np.ones((k,k), np.float32)/(k**2)
# Grabcut parameters
self.bgdModel = np.zeros((1,65),np.float64)
self.fgdModel = np.zeros((1,65),np.float64)
self.mm = np.zeros((int(self.camWidth/self.rescale),int(self.camHeight/self.rescale)))
self.mask = self.mm
def get_mask(self, img, face_location):
self.update_counter += 1
x,y,w,h = face_location
X,Y,W,H = [int(a/self.rescale) for a in (x,y,w,h)]
if (img.shape[:2] != (self.camHeight, self.camWidth)):
print('WARNING::BackgroundHandler::get_mask(): image shape does not match (camWidth, camHeight)')
smallimg = cv2.resize(img, (self.sW, self.sH), interpolation=cv2.INTER_LINEAR)
rect = (max(1,X-int(W)),max(1,Y-int(H)),min(int(3*W),self.sW),smallimg.shape[0]-(Y-int(H)))
if (self.update_counter % self.update_iters == 0):
self.mm, self.bgdModel, self.fgdModel = cv2.grabCut(smallimg,self.mm,rect,self.bgdModel,self.fgdModel,5,cv2.GC_INIT_WITH_RECT)
self.mask = np.where((self.mm==2)|(self.mm==0),0,1).astype('uint8')
self.mask = cv2.resize(self.mask, (self.camWidth,self.camHeight), interpolation=cv2.INTER_LINEAR)
for _ in range(self.mask_smooth_iters):
self.mask = cv2.filter2D(self.mask,-1,self.mask_smooth_kernel)
self.mask = self.mask[:, :, np.newaxis]
return self.mask
def apply_background(self, img, mask):
if(self.mode==None):
return img
elif(self.mode=='remove'):
return img * self.mask + self.alt_image * (1-self.mask)
elif(self.mode=='blur'):
alt_image = cv2.resize(img, (int(self.camWidth/4), int(self.camHeight/4)))
alt_image = cv2.filter2D(alt_image,-1,self.bgblur_kernel)
alt_image = cv2.resize(alt_image, (self.camWidth,self.camHeight))
return img * self.mask + alt_image * (1-self.mask)
# DEMO
if __name__=='__main__':
mode = 'blur' # 'remove', 'blur', None
wid, hei = (640,480)
scale = 8
update_iters = 10
blur_kernel_size = 9
mask_smooth_kernel_size = 15
mask_smooth_iters = 5
bg_path = 'back.jpg'
cap = StableFaceCapture(threshold=0.1, camHeight=hei, camWidth=wid, rescale=scale)
backhandle = BackgroundHandler(camWidth=wid, camHeight=hei, rescale=scale,
mode=mode, alt_image_path=bg_path,
blur_kernel_size=blur_kernel_size, mask_smooth_kernel_size=mask_smooth_kernel_size,
mask_smooth_iters=mask_smooth_iters, update_iters=update_iters)
c = -1
T = time()
timer = 0
timer_steps = 10 # To calculate FPS
while(True):
c+=1
img = cap.getCapture()
loc = cap.getFace(img)
if loc is not None:
mask = backhandle.get_mask(img, loc)
img = backhandle.apply_background(img, mask)
cv2.imshow('camera', img)
else:
cv2.imshow('camera', img)
if cv2.waitKey(1) == 27:
break # esc to quit
t = time()
timer += t-T
if(c%timer_steps==0):
print("TIME: {} | FPS: {}".format(timer/timer_steps, timer_steps/timer))
timer = 0
T = t