forked from PaddlePaddle/PaddleClas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpaddleclas.py
831 lines (756 loc) · 34.1 KB
/
paddleclas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import Union, Generator
import argparse
import shutil
import textwrap
import tarfile
import requests
from functools import partial
from difflib import SequenceMatcher
import cv2
import numpy as np
from tqdm import tqdm
from prettytable import PrettyTable
import paddle
from .ppcls.arch import backbone
from .ppcls.utils import logger
from .deploy.python.predict_cls import ClsPredictor
from .deploy.python.predict_system import SystemPredictor
from .deploy.python.build_gallery import GalleryBuilder
from .deploy.utils.get_image_list import get_image_list
from .deploy.utils import config
# for the PaddleClas Project
from . import deploy
from . import ppcls
# for building model with loading pretrained weights from backbone
logger.init_logger()
__all__ = ["PaddleClas"]
BASE_DIR = os.path.expanduser("~/.paddleclas/")
BASE_INFERENCE_MODEL_DIR = os.path.join(BASE_DIR, "inference_model")
BASE_IMAGES_DIR = os.path.join(BASE_DIR, "images")
IMN_MODEL_BASE_DOWNLOAD_URL = "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/{}_infer.tar"
IMN_MODEL_SERIES = {
"AlexNet": ["AlexNet"],
"ConvNeXt": ["ConvNeXt_tiny"],
"CSPNet": ["CSPDarkNet53"],
"CSWinTransformer": [
"CSWinTransformer_tiny_224", "CSWinTransformer_small_224",
"CSWinTransformer_base_224", "CSWinTransformer_base_384",
"CSWinTransformer_large_224", "CSWinTransformer_large_384"
],
"DarkNet": ["DarkNet53"],
"DeiT": [
"DeiT_base_distilled_patch16_224", "DeiT_base_distilled_patch16_384",
"DeiT_base_patch16_224", "DeiT_base_patch16_384",
"DeiT_small_distilled_patch16_224", "DeiT_small_patch16_224",
"DeiT_tiny_distilled_patch16_224", "DeiT_tiny_patch16_224"
],
"DenseNet": [
"DenseNet121", "DenseNet161", "DenseNet169", "DenseNet201",
"DenseNet264"
],
"DLA": [
"DLA46_c", "DLA60x_c", "DLA34", "DLA60", "DLA60x", "DLA102", "DLA102x",
"DLA102x2", "DLA169"
],
"DPN": ["DPN68", "DPN92", "DPN98", "DPN107", "DPN131"],
"EfficientNet": [
"EfficientNetB0", "EfficientNetB0_small", "EfficientNetB1",
"EfficientNetB2", "EfficientNetB3", "EfficientNetB4", "EfficientNetB5",
"EfficientNetB6", "EfficientNetB7"
],
"ESNet": ["ESNet_x0_25", "ESNet_x0_5", "ESNet_x0_75", "ESNet_x1_0"],
"GhostNet":
["GhostNet_x0_5", "GhostNet_x1_0", "GhostNet_x1_3", "GhostNet_x1_3_ssld"],
"HarDNet": ["HarDNet39_ds", "HarDNet68_ds", "HarDNet68", "HarDNet85"],
"HRNet": [
"HRNet_W18_C", "HRNet_W30_C", "HRNet_W32_C", "HRNet_W40_C",
"HRNet_W44_C", "HRNet_W48_C", "HRNet_W64_C", "HRNet_W18_C_ssld",
"HRNet_W48_C_ssld"
],
"Inception": ["GoogLeNet", "InceptionV3", "InceptionV4"],
"LeViT":
["LeViT_128S", "LeViT_128", "LeViT_192", "LeViT_256", "LeViT_384"],
"MixNet": ["MixNet_S", "MixNet_M", "MixNet_L"],
"MobileNetV1": [
"MobileNetV1_x0_25", "MobileNetV1_x0_5", "MobileNetV1_x0_75",
"MobileNetV1", "MobileNetV1_ssld"
],
"MobileNetV2": [
"MobileNetV2_x0_25", "MobileNetV2_x0_5", "MobileNetV2_x0_75",
"MobileNetV2", "MobileNetV2_x1_5", "MobileNetV2_x2_0",
"MobileNetV2_ssld"
],
"MobileNetV3": [
"MobileNetV3_small_x0_35", "MobileNetV3_small_x0_5",
"MobileNetV3_small_x0_75", "MobileNetV3_small_x1_0",
"MobileNetV3_small_x1_25", "MobileNetV3_large_x0_35",
"MobileNetV3_large_x0_5", "MobileNetV3_large_x0_75",
"MobileNetV3_large_x1_0", "MobileNetV3_large_x1_25",
"MobileNetV3_small_x1_0_ssld", "MobileNetV3_large_x1_0_ssld"
],
"MobileViT": ["MobileViT_XXS", "MobileViT_XS", "MobileViT_S"],
"PeleeNet": ["PeleeNet"],
"PPHGNet": [
"PPHGNet_tiny",
"PPHGNet_small",
"PPHGNet_tiny_ssld",
"PPHGNet_small_ssld",
],
"PPLCNet": [
"PPLCNet_x0_25", "PPLCNet_x0_35", "PPLCNet_x0_5", "PPLCNet_x0_75",
"PPLCNet_x1_0", "PPLCNet_x1_5", "PPLCNet_x2_0", "PPLCNet_x2_5"
],
"PPLCNetV2": ["PPLCNetV2_base"],
"PVTV2": [
"PVT_V2_B0", "PVT_V2_B1", "PVT_V2_B2", "PVT_V2_B2_Linear", "PVT_V2_B3",
"PVT_V2_B4", "PVT_V2_B5"
],
"RedNet": ["RedNet26", "RedNet38", "RedNet50", "RedNet101", "RedNet152"],
"RegNet": ["RegNetX_4GF"],
"Res2Net": [
"Res2Net50_14w_8s", "Res2Net50_26w_4s", "Res2Net50_vd_26w_4s",
"Res2Net200_vd_26w_4s", "Res2Net101_vd_26w_4s",
"Res2Net50_vd_26w_4s_ssld", "Res2Net101_vd_26w_4s_ssld",
"Res2Net200_vd_26w_4s_ssld"
],
"ResNeSt": ["ResNeSt50", "ResNeSt50_fast_1s1x64d"],
"ResNet": [
"ResNet18", "ResNet18_vd", "ResNet34", "ResNet34_vd", "ResNet50",
"ResNet50_vc", "ResNet50_vd", "ResNet50_vd_v2", "ResNet101",
"ResNet101_vd", "ResNet152", "ResNet152_vd", "ResNet200_vd",
"ResNet34_vd_ssld", "ResNet50_vd_ssld", "ResNet50_vd_ssld_v2",
"ResNet101_vd_ssld", "Fix_ResNet50_vd_ssld_v2", "ResNet50_ACNet_deploy"
],
"ResNeXt": [
"ResNeXt50_32x4d", "ResNeXt50_vd_32x4d", "ResNeXt50_64x4d",
"ResNeXt50_vd_64x4d", "ResNeXt101_32x4d", "ResNeXt101_vd_32x4d",
"ResNeXt101_32x8d_wsl", "ResNeXt101_32x16d_wsl",
"ResNeXt101_32x32d_wsl", "ResNeXt101_32x48d_wsl",
"Fix_ResNeXt101_32x48d_wsl", "ResNeXt101_64x4d", "ResNeXt101_vd_64x4d",
"ResNeXt152_32x4d", "ResNeXt152_vd_32x4d", "ResNeXt152_64x4d",
"ResNeXt152_vd_64x4d"
],
"ReXNet":
["ReXNet_1_0", "ReXNet_1_3", "ReXNet_1_5", "ReXNet_2_0", "ReXNet_3_0"],
"SENet": [
"SENet154_vd", "SE_HRNet_W64_C_ssld", "SE_ResNet18_vd",
"SE_ResNet34_vd", "SE_ResNet50_vd", "SE_ResNeXt50_32x4d",
"SE_ResNeXt50_vd_32x4d", "SE_ResNeXt101_32x4d"
],
"ShuffleNetV2": [
"ShuffleNetV2_swish", "ShuffleNetV2_x0_25", "ShuffleNetV2_x0_33",
"ShuffleNetV2_x0_5", "ShuffleNetV2_x1_0", "ShuffleNetV2_x1_5",
"ShuffleNetV2_x2_0"
],
"SqueezeNet": ["SqueezeNet1_0", "SqueezeNet1_1"],
"SwinTransformer": [
"SwinTransformer_large_patch4_window7_224_22kto1k",
"SwinTransformer_large_patch4_window12_384_22kto1k",
"SwinTransformer_base_patch4_window7_224_22kto1k",
"SwinTransformer_base_patch4_window12_384_22kto1k",
"SwinTransformer_base_patch4_window12_384",
"SwinTransformer_base_patch4_window7_224",
"SwinTransformer_small_patch4_window7_224",
"SwinTransformer_tiny_patch4_window7_224"
],
"Twins": [
"pcpvt_small", "pcpvt_base", "pcpvt_large", "alt_gvt_small",
"alt_gvt_base", "alt_gvt_large"
],
"TNT": ["TNT_small"],
"VAN": ["VAN_B0"],
"VGG": ["VGG11", "VGG13", "VGG16", "VGG19"],
"VisionTransformer": [
"ViT_base_patch16_224", "ViT_base_patch16_384", "ViT_base_patch32_384",
"ViT_large_patch16_224", "ViT_large_patch16_384",
"ViT_large_patch32_384", "ViT_small_patch16_224"
],
"Xception": [
"Xception41", "Xception41_deeplab", "Xception65", "Xception65_deeplab",
"Xception71"
]
}
PULC_MODEL_BASE_DOWNLOAD_URL = "https://paddleclas.bj.bcebos.com/models/PULC/inference/{}_infer.tar"
PULC_MODELS = [
"car_exists", "language_classification", "person_attribute",
"person_exists", "safety_helmet", "text_image_orientation",
"image_orientation", "textline_orientation", "traffic_sign",
"vehicle_attribute", "table_attribute"
]
SHITU_MODEL_BASE_DOWNLOAD_URL = "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/{}_infer.tar"
SHITU_MODELS = [
# "picodet_PPLCNet_x2_5_mainbody_lite_v1.0", # ShiTuV1(V2)_mainbody_det
# "general_PPLCNet_x2_5_lite_v1.0" # ShiTuV1_general_rec
# "PP-ShiTuV2/general_PPLCNetV2_base_pretrained_v1.0", # ShiTuV2_general_rec TODO(hesensen): add lite model
"PP-ShiTuV2"
]
class ImageTypeError(Exception):
"""ImageTypeError.
"""
def __init__(self, message=""):
super().__init__(message)
class InputModelError(Exception):
"""InputModelError.
"""
def __init__(self, message=""):
super().__init__(message)
def init_config(model_type, model_name, inference_model_dir, **kwargs):
if kwargs.get("build_gallery", False):
cfg_path = "deploy/configs/inference_general.yaml"
elif model_type == "pulc":
cfg_path = f"deploy/configs/PULC/{model_name}/inference_{model_name}.yaml"
elif model_type == "shitu":
cfg_path = "deploy/configs/inference_general.yaml"
else:
cfg_path = "deploy/configs/inference_cls.yaml"
__dir__ = os.path.dirname(__file__)
cfg_path = os.path.join(__dir__, cfg_path)
cfg = config.get_config(
cfg_path, overrides=kwargs.get("override", None), show=False)
if cfg.Global.get("inference_model_dir"):
cfg.Global.inference_model_dir = inference_model_dir
else:
cfg.Global.rec_inference_model_dir = os.path.join(
inference_model_dir,
"PP-ShiTuV2/general_PPLCNetV2_base_pretrained_v1.0")
cfg.Global.det_inference_model_dir = os.path.join(
inference_model_dir, "picodet_PPLCNet_x2_5_mainbody_lite_v1.0")
if "batch_size" in kwargs and kwargs["batch_size"]:
cfg.Global.batch_size = kwargs["batch_size"]
if "use_gpu" in kwargs and kwargs["use_gpu"] is not None:
cfg.Global.use_gpu = kwargs["use_gpu"]
if cfg.Global.use_gpu and not paddle.device.is_compiled_with_cuda():
msg = "The current running environment does not support the use of GPU. CPU has been used instead."
logger.warning(msg)
cfg.Global.use_gpu = False
if "infer_imgs" in kwargs and kwargs["infer_imgs"]:
cfg.Global.infer_imgs = kwargs["infer_imgs"]
if "index_dir" in kwargs and kwargs["index_dir"]:
cfg.IndexProcess.index_dir = kwargs["index_dir"]
if "data_file" in kwargs and kwargs["data_file"]:
cfg.IndexProcess.data_file = kwargs["data_file"]
if "enable_mkldnn" in kwargs and kwargs["enable_mkldnn"] is not None:
cfg.Global.enable_mkldnn = kwargs["enable_mkldnn"]
if "cpu_num_threads" in kwargs and kwargs["cpu_num_threads"]:
cfg.Global.cpu_num_threads = kwargs["cpu_num_threads"]
if "use_fp16" in kwargs and kwargs["use_fp16"] is not None:
cfg.Global.use_fp16 = kwargs["use_fp16"]
if "use_tensorrt" in kwargs and kwargs["use_tensorrt"] is not None:
cfg.Global.use_tensorrt = kwargs["use_tensorrt"]
if "gpu_mem" in kwargs and kwargs["gpu_mem"]:
cfg.Global.gpu_mem = kwargs["gpu_mem"]
if "resize_short" in kwargs and kwargs["resize_short"]:
cfg.PreProcess.transform_ops[0]["ResizeImage"][
"resize_short"] = kwargs["resize_short"]
if "crop_size" in kwargs and kwargs["crop_size"]:
cfg.PreProcess.transform_ops[1]["CropImage"]["size"] = kwargs[
"crop_size"]
# TODO(gaotingquan): not robust
if cfg.get("PostProcess"):
if "Topk" in cfg.PostProcess:
if "topk" in kwargs and kwargs["topk"]:
cfg.PostProcess.Topk.topk = kwargs["topk"]
if "class_id_map_file" in kwargs and kwargs["class_id_map_file"]:
cfg.PostProcess.Topk.class_id_map_file = kwargs[
"class_id_map_file"]
else:
class_id_map_file_path = os.path.relpath(
cfg.PostProcess.Topk.class_id_map_file, "../")
cfg.PostProcess.Topk.class_id_map_file = os.path.join(
__dir__, class_id_map_file_path)
if "ThreshOutput" in cfg.PostProcess:
if "thresh" in kwargs and kwargs["thresh"]:
cfg.PostProcess.ThreshOutput.thresh = kwargs["thresh"]
if "class_id_map_file" in kwargs and kwargs["class_id_map_file"]:
cfg.PostProcess.ThreshOutput["class_id_map_file"] = kwargs[
"class_id_map_file"]
elif "class_id_map_file" in cfg.PostProcess.ThreshOutput:
class_id_map_file_path = os.path.relpath(
cfg.PostProcess.ThreshOutput.class_id_map_file, "../")
cfg.PostProcess.ThreshOutput.class_id_map_file = os.path.join(
__dir__, class_id_map_file_path)
if "VehicleAttribute" in cfg.PostProcess:
if "color_threshold" in kwargs and kwargs["color_threshold"]:
cfg.PostProcess.VehicleAttribute.color_threshold = kwargs[
"color_threshold"]
if "type_threshold" in kwargs and kwargs["type_threshold"]:
cfg.PostProcess.VehicleAttribute.type_threshold = kwargs[
"type_threshold"]
if "TableAttribute" in cfg.PostProcess:
if "source_threshold" in kwargs and kwargs["source_threshold"]:
cfg.PostProcess.VehicleAttribute.color_threshold = kwargs[
"source_threshold"]
if "number_threshold" in kwargs and kwargs["number_threshold"]:
cfg.PostProcess.VehicleAttribute.color_threshold = kwargs[
"number_threshold"]
if "color_threshold" in kwargs and kwargs["color_threshold"]:
cfg.PostProcess.VehicleAttribute.color_threshold = kwargs[
"color_threshold"]
if "clarity_threshold" in kwargs and kwargs["clarity_threshold"]:
cfg.PostProcess.VehicleAttribute.color_threshold = kwargs[
"clarity_threshold"]
if "obstruction_threshold" in kwargs and kwargs[
"obstruction_threshold"]:
cfg.PostProcess.VehicleAttribute.color_threshold = kwargs[
"obstruction_threshold"]
if "angle_threshold" in kwargs and kwargs["angle_threshold"]:
cfg.PostProcess.VehicleAttribute.color_threshold = kwargs[
"angle_threshold"]
if "save_dir" in kwargs and kwargs["save_dir"]:
cfg.PostProcess.SavePreLabel.save_dir = kwargs["save_dir"]
return cfg
def args_cfg():
def str2bool(v):
return v.lower() in ("true", "t", "1")
parser = argparse.ArgumentParser()
parser.add_argument(
"--infer_imgs",
type=str,
required=False,
help="The image(s) to be predicted.")
parser.add_argument(
"--model_name", type=str, help="The model name to be used.")
parser.add_argument(
"--predict_type",
type=str,
default="cls",
help="The predict type to be selected.")
parser.add_argument(
"--inference_model_dir",
type=str,
help="The directory of model files. Valid when model_name not specifed."
)
parser.add_argument(
"--index_dir",
type=str,
required=False,
help="The index directory path.")
parser.add_argument(
"--data_file", type=str, required=False, help="The label file path.")
parser.add_argument("--use_gpu", type=str2bool, help="Whether use GPU.")
parser.add_argument(
"--gpu_mem",
type=int,
help="The memory size of GPU allocated to predict.")
parser.add_argument(
"--enable_mkldnn",
type=str2bool,
help="Whether use MKLDNN. Valid when use_gpu is False")
parser.add_argument(
"--cpu_num_threads",
type=int,
help="The threads number when predicting on CPU.")
parser.add_argument(
"--use_tensorrt",
type=str2bool,
help="Whether use TensorRT to accelerate.")
parser.add_argument(
"--use_fp16", type=str2bool, help="Whether use FP16 to predict.")
parser.add_argument("--batch_size", type=int, help="Batch size.")
parser.add_argument(
"--topk",
type=int,
help="Return topk score(s) and corresponding results when Topk postprocess is used."
)
parser.add_argument(
"--class_id_map_file",
type=str,
help="The path of file that map class_id and label.")
parser.add_argument(
"--threshold",
type=float,
help="The threshold of ThreshOutput when postprocess is used.")
parser.add_argument("--color_threshold", type=float, help="")
parser.add_argument("--type_threshold", type=float, help="")
parser.add_argument(
"--save_dir",
type=str,
help="The directory to save prediction results as pre-label.")
parser.add_argument(
"--resize_short", type=int, help="Resize according to short size.")
parser.add_argument("--crop_size", type=int, help="Centor crop size.")
parser.add_argument(
"--build_gallery",
type=str2bool,
default=False,
help="Whether build gallery.")
parser.add_argument(
'-o',
'--override',
action='append',
default=[],
help='config options to be overridden')
args = parser.parse_args()
return vars(args)
def print_info():
"""Print list of supported models in formatted.
"""
imn_table = PrettyTable(["IMN Model Series", "Model Name"])
pulc_table = PrettyTable(["PULC Models"])
shitu_table = PrettyTable(["PP-ShiTu Models"])
try:
sz = os.get_terminal_size()
total_width = sz.columns
first_width = 30
second_width = total_width - first_width if total_width > 50 else 10
except OSError:
total_width = 100
second_width = 100
for series in IMN_MODEL_SERIES:
names = textwrap.fill(
" ".join(IMN_MODEL_SERIES[series]), width=second_width)
imn_table.add_row([series, names])
table_width = len(str(imn_table).split("\n")[0])
pulc_table.add_row([
textwrap.fill(
" ".join(PULC_MODELS), width=total_width).center(table_width - 4)
])
shitu_table.add_row([
textwrap.fill(
" ".join(SHITU_MODELS), width=total_width).center(table_width - 4)
])
print("{}".format("-" * table_width))
print("Models supported by PaddleClas".center(table_width))
print(imn_table)
print(pulc_table)
print(shitu_table)
print("Powered by PaddlePaddle!".rjust(table_width))
print("{}".format("-" * table_width))
def get_imn_model_names():
"""Get the model names list.
"""
model_names = []
for series in IMN_MODEL_SERIES:
model_names += (IMN_MODEL_SERIES[series])
return model_names
def similar_model_names(name="", names=[], thresh=0.1, topk=5):
"""Find the most similar topk model names.
"""
scores = []
for idx, n in enumerate(names):
if n.startswith("__"):
continue
score = SequenceMatcher(None, n.lower(), name.lower()).quick_ratio()
if score > thresh:
scores.append((idx, score))
scores.sort(key=lambda x: x[1], reverse=True)
similar_names = [names[s[0]] for s in scores[:min(topk, len(scores))]]
return similar_names
def download_with_progressbar(url, save_path):
"""Download from url with progressbar.
"""
if os.path.isfile(save_path):
os.remove(save_path)
response = requests.get(url, stream=True)
total_size_in_bytes = int(response.headers.get("content-length", 0))
block_size = 1024 # 1 Kibibyte
progress_bar = tqdm(total=total_size_in_bytes, unit="iB", unit_scale=True)
with open(save_path, "wb") as file:
for data in response.iter_content(block_size):
progress_bar.update(len(data))
file.write(data)
progress_bar.close()
if total_size_in_bytes == 0 or progress_bar.n != total_size_in_bytes or not os.path.isfile(
save_path):
raise Exception(
f"Something went wrong while downloading file from {url}")
def check_model_file(model_type, model_name):
"""Check the model files exist and download and untar when no exist.
"""
if model_type == "pulc":
storage_directory = partial(os.path.join, BASE_INFERENCE_MODEL_DIR,
"PULC", model_name)
url = PULC_MODEL_BASE_DOWNLOAD_URL.format(model_name)
elif model_type == "shitu":
storage_directory = partial(os.path.join, BASE_INFERENCE_MODEL_DIR,
"PP-ShiTu", model_name)
url = SHITU_MODEL_BASE_DOWNLOAD_URL.format(model_name)
else:
storage_directory = partial(os.path.join, BASE_INFERENCE_MODEL_DIR,
"IMN", model_name)
url = IMN_MODEL_BASE_DOWNLOAD_URL.format(model_name)
tar_file_name_list = [
"inference.pdiparams", "inference.pdiparams.info", "inference.pdmodel"
]
model_file_path = storage_directory("inference.pdmodel")
params_file_path = storage_directory("inference.pdiparams")
if not os.path.exists(model_file_path) or not os.path.exists(
params_file_path):
tmp_path = storage_directory(url.split("/")[-1])
logger.info(f"download {url} to {tmp_path}")
os.makedirs(storage_directory(), exist_ok=True)
download_with_progressbar(url, tmp_path)
with tarfile.open(tmp_path, "r") as tarObj:
for member in tarObj.getmembers():
filename = None
for tar_file_name in tar_file_name_list:
if tar_file_name in member.name:
filename = tar_file_name
if filename is None:
continue
file = tarObj.extractfile(member)
with open(storage_directory(filename), "wb") as f:
f.write(file.read())
os.remove(tmp_path)
if not os.path.exists(model_file_path) or not os.path.exists(
params_file_path):
raise Exception(
f"Something went wrong while praparing the model[{model_name}] files!"
)
return storage_directory()
class PaddleClas(object):
"""PaddleClas.
"""
def __init__(self,
build_gallery: bool=False,
gallery_image_root: str=None,
gallery_data_file: str=None,
index_dir: str=None,
model_name: str=None,
inference_model_dir: str=None,
**kwargs):
"""Init PaddleClas with config.
Args:
model_name (str, optional): The model name supported by PaddleClas. If specified, override config. Defaults to None.
inference_model_dir (str, optional): The directory that contained model file and params file to be used. If specified, override config. Defaults to None.
use_gpu (bool, optional): Whether use GPU. If specified, override config. Defaults to True.
batch_size (int, optional): The batch size to pridict. If specified, override config. Defaults to 1.
topk (int, optional): Return the top k prediction results with the highest score. Defaults to 5.
"""
super().__init__()
if build_gallery:
self.model_type, inference_model_dir = self._check_input_model(
model_name
if model_name else "PP-ShiTuV2", inference_model_dir)
self._config = init_config(self.model_type, model_name
if model_name else "PP-ShiTuV2",
inference_model_dir, **kwargs)
if gallery_image_root:
self._config.IndexProcess.image_root = gallery_image_root
if gallery_data_file:
self._config.IndexProcess.data_file = gallery_data_file
if index_dir:
self._config.IndexProcess.index_dir = index_dir
logger.info("Building Gallery...")
GalleryBuilder(self._config)
else:
self.model_type, inference_model_dir = self._check_input_model(
model_name, inference_model_dir)
self._config = init_config(self.model_type, model_name,
inference_model_dir, **kwargs)
if self.model_type == "shitu":
if index_dir:
self._config.IndexProcess.index_dir = index_dir
self.predictor = SystemPredictor(self._config)
else:
self.predictor = ClsPredictor(self._config)
def get_config(self):
"""Get the config.
"""
return self._config
def _check_input_model(self, model_name, inference_model_dir):
"""Check input model name or model files.
"""
all_imn_model_names = get_imn_model_names()
all_pulc_model_names = PULC_MODELS
all_shitu_model_names = SHITU_MODELS
if model_name:
if model_name in all_imn_model_names:
inference_model_dir = check_model_file("imn", model_name)
return "imn", inference_model_dir
elif model_name in all_pulc_model_names:
inference_model_dir = check_model_file("pulc", model_name)
return "pulc", inference_model_dir
elif model_name in all_shitu_model_names:
inference_model_dir = check_model_file(
"shitu",
"PP-ShiTuV2/general_PPLCNetV2_base_pretrained_v1.0")
inference_model_dir = check_model_file(
"shitu", "picodet_PPLCNet_x2_5_mainbody_lite_v1.0")
inference_model_dir = os.path.abspath(
os.path.dirname(inference_model_dir))
return "shitu", inference_model_dir
else:
similar_imn_names = similar_model_names(model_name,
all_imn_model_names)
similar_pulc_names = similar_model_names(model_name,
all_pulc_model_names)
similar_names_str = ", ".join(similar_imn_names +
similar_pulc_names)
err = f"{model_name} is not provided by PaddleClas. \nMaybe you want the : [{similar_names_str}]. \nIf you want to use your own model, please specify inference_model_dir!"
raise InputModelError(err)
elif inference_model_dir:
model_file_path = os.path.join(inference_model_dir,
"inference.pdmodel")
params_file_path = os.path.join(inference_model_dir,
"inference.pdiparams")
if not os.path.isfile(model_file_path) or not os.path.isfile(
params_file_path):
err = f"There is no model file or params file in this directory: {inference_model_dir}"
raise InputModelError(err)
return "custom", inference_model_dir
else:
err = "Please specify the model name supported by PaddleClas or directory contained model files(inference.pdmodel, inference.pdiparams)."
raise InputModelError(err)
return None
def predict_cls(self,
input_data: Union[str, np.array],
print_pred: bool=False) -> Generator[list, None, None]:
"""Predict input_data.
Args:
input_data (Union[str, np.array]):
When the type is str, it is the path of image, or the directory containing images, or the URL of image from Internet.
When the type is np.array, it is the image data whose channel order is RGB.
print_pred (bool, optional): Whether print the prediction result. Defaults to False.
Raises:
ImageTypeError: Illegal input_data.
Yields:
Generator[list, None, None]:
The prediction result(s) of input_data by batch_size. For every one image,
prediction result(s) is zipped as a dict, that includs topk "class_ids", "scores" and "label_names".
The format of batch prediction result(s) is as follow: [{"class_ids": [...], "scores": [...], "label_names": [...]}, ...]
"""
if isinstance(input_data, np.ndarray):
yield self.predictor.predict(input_data)
elif isinstance(input_data, str):
if input_data.startswith("http") or input_data.startswith("https"):
image_storage_dir = partial(os.path.join, BASE_IMAGES_DIR)
if not os.path.exists(image_storage_dir()):
os.makedirs(image_storage_dir())
image_save_path = image_storage_dir("tmp.jpg")
download_with_progressbar(input_data, image_save_path)
logger.info(
f"Image to be predicted from Internet: {input_data}, has been saved to: {image_save_path}"
)
input_data = image_save_path
image_list = get_image_list(input_data)
batch_size = self._config.Global.get("batch_size", 1)
img_list = []
img_path_list = []
cnt = 0
for idx_img, img_path in enumerate(image_list):
img = cv2.imread(img_path)
if img is None:
logger.warning(
f"Image file failed to read and has been skipped. The path: {img_path}"
)
continue
img = img[:, :, ::-1]
img_list.append(img)
img_path_list.append(img_path)
cnt += 1
if cnt % batch_size == 0 or (idx_img + 1) == len(image_list):
preds = self.predictor.predict(img_list)
if preds:
for idx_pred, pred in enumerate(preds):
pred["filename"] = img_path_list[idx_pred]
if print_pred:
logger.info(", ".join(
[f"{k}: {pred[k]}" for k in pred]))
img_list = []
img_path_list = []
yield preds
else:
err = "Please input legal image! The type of image supported by PaddleClas are: NumPy.ndarray and string of local path or Ineternet URL"
raise ImageTypeError(err)
return
def predict_shitu(self,
input_data: Union[str, np.array],
print_pred: bool=False) -> Generator[list, None, None]:
"""Predict input_data.
Args:
input_data (Union[str, np.array]):
When the type is str, it is the path of image, or the directory containing images, or the URL of image from Internet.
When the type is np.array, it is the image data whose channel order is RGB.
print_pred (bool, optional): Whether print the prediction result. Defaults to False.
Raises:
ImageTypeError: Illegal input_data.
Yields:
Generator[list, None, None]:
The prediction result(s) of input_data by batch_size. For every one image,
prediction result(s) is zipped as a dict, that includs topk "class_ids", "scores" and "label_names".
The format of batch prediction result(s) is as follow: [{"class_ids": [...], "scores": [...], "label_names": [...]}, ...]
"""
if input_data is None and self._config.Global.infer_imgs:
input_data = self._config.Global.infer_imgs
if isinstance(input_data, np.ndarray):
yield self.predictor.predict(input_data)
elif isinstance(input_data, str):
if input_data.startswith("http") or input_data.startswith("https"):
image_storage_dir = partial(os.path.join, BASE_IMAGES_DIR)
if not os.path.exists(image_storage_dir()):
os.makedirs(image_storage_dir())
image_save_path = image_storage_dir("tmp.jpg")
download_with_progressbar(input_data, image_save_path)
logger.info(
f"Image to be predicted from Internet: {input_data}, has been saved to: {image_save_path}"
)
input_data = image_save_path
image_list = get_image_list(input_data)
cnt = 0
for idx_img, img_path in enumerate(image_list):
img = cv2.imread(img_path)
if img is None:
logger.warning(
f"Image file failed to read and has been skipped. The path: {img_path}"
)
continue
img = img[:, :, ::-1]
cnt += 1
preds = self.predictor.predict(
img) # [dict1, dict2, ..., dictn]
if preds:
if print_pred:
logger.info(f"{preds}, filename: {img_path}")
yield preds
else:
err = "Please input legal image! The type of image supported by PaddleClas are: NumPy.ndarray and string of local path or Ineternet URL"
raise ImageTypeError(err)
return
def predict(self,
input_data: Union[str, np.array],
print_pred: bool=False,
predict_type="cls"):
assert predict_type in ["cls", "shitu"
], "Predict type should be 'cls' or 'shitu'."
if predict_type == "cls":
return self.predict_cls(input_data, print_pred)
elif predict_type == "shitu":
assert not isinstance(input_data, (
list, tuple
)), "PP-ShiTu predictor only support single image as input now."
return self.predict_shitu(input_data, print_pred)
else:
raise ModuleNotFoundError
# for CLI
def main():
"""Function API used for commad line.
"""
print_info()
cfg = args_cfg()
clas_engine = PaddleClas(**cfg)
if cfg["build_gallery"] == False:
res = clas_engine.predict(
cfg["infer_imgs"],
print_pred=True,
predict_type=cfg["predict_type"])
for _ in res:
pass
logger.info("Predict complete!")
return
if __name__ == "__main__":
main()