-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathem_model.py
58 lines (50 loc) · 2.08 KB
/
em_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from __future__ import division, absolute_import
import re
import sys
import random
import tflearn
import numpy as np
from os.path import isfile, join
from tflearn.layers.merge_ops import merge
from tflearn.layers.estimator import regression
from tflearn.layers.conv import conv_2d, max_pool_2d, avg_pool_2d
from tflearn.layers.normalization import local_response_normalization
from tflearn.layers.core import input_data, dropout, fully_connected, flatten
class EMR:
def __init__(self):
self.target_classes = ['angry', 'disgusted', 'fearful', 'happy', 'sad', 'surprised', 'neutral']
def build_network(self):
print("---> Starting Neural Network")
self.network = input_data(shape = [None, 48, 48, 1])
self.network = conv_2d(self.network, 64, 5, activation = 'relu')
self.network = max_pool_2d(self.network, 3, strides = 2)
self.network = conv_2d(self.network, 64, 5, activation = 'relu')
self.network = max_pool_2d(self.network, 3, strides = 2)
self.network = conv_2d(self.network, 128, 4, activation = 'relu')
self.network = dropout(self.network, 0.3)
self.network = fully_connected(self.network, 3072, activation = 'relu')
self.network = fully_connected(self.network, len(self.target_classes), activation = 'softmax')
self.network = regression(self.network,
optimizer = 'momentum',
loss = 'categorical_crossentropy')
self.model = tflearn.DNN(
self.network,
checkpoint_path = 'model_1_nimish',
max_checkpoints = 1,
tensorboard_verbose = 2
)
self.load_model()
def predict(self, image):
if image is None:
return None
image = image.reshape([-1, 48, 48, 1])
return self.model.predict(image)
def load_model(self):
if isfile("model_1_nimish.tflearn.meta"):
self.model.load("model_1_nimish.tflearn")
print('---> Loading moodel from:- model_1_nimish.tflearn')
else:
print("---> Couldn't find model model_1_nimish.tflearn")
if __name__ == "__main__":
network = EMR()
import run