forked from je-suis-tm/quant-trading
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDual Thrust backtest.py
234 lines (182 loc) · 9.34 KB
/
Dual Thrust backtest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# -*- coding: utf-8 -*-
"""
Created on Mon Mar 19 15:22:38 2018
@author: Administrator
"""
# In[1]:
#dual thrust is an opening range breakout strategy
#it is very similar to London Breakout
#please check London Breakout if u have any questions
# https://github.com/je-suis-tm/quant-trading/blob/master/London%20Breakout%20backtest.py
#Initially we set up upper and lower thresholds based on previous days open, close, high and low
#When the market opens and the price exceeds thresholds, we would take long/short positions prior to upper/lower thresholds
#However, there is no stop long/short position in this strategy
#We clear all positions at the end of the day
#rules of dual thrust can be found in the following link
# https://www.quantconnect.com/tutorials/dual-thrust-trading-algorithm/
import os
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
# In[2]:
os.chdir('D:/')
# In[3]:
#data frequency convertion from minute to intra daily
#as we are doing backtesting, we have already got all the datasets we need
#we can create a table to store all open, close, high and low prices
#and calculate the range before we get to signal generation
#otherwise, we would have to put this part inside the loop
#it would greatly increase the time complexity
#however, in real time trading, we do not have futures price
#we have to store all past information in sql db
#we have to calculate the range from db before the market opens
def min2day(df,column,year,month,rg):
#lets create a dictionary
#we use keys to classify different info we need
memo={'date':[],'open':[],'close':[],'high':[],'low':[]}
#no matter which month
#the maximum we can get is 31 days
#thus, we only need to run a traversal on 31 days
#nevertheless, not everyday is a workday
#assuming our raw data doesnt contain weekend prices
#we use try function to make sure we get the info of workdays without errors
#note that i put date at the end of the loop
#the date appendix doesnt depend on our raw data
#it only relies on the range function above
#we could accidentally append weekend date if we put it at the beginning of try function
#not until the program cant find price in raw data will the program stop
#by that time, we have already appended weekend date
#we wanna make sure the length of all lists in dictionary are the same
#so that we can construct a structured table in the next step
for i in range(1,32):
try:
temp=df['%s-%s-%s 3:00:00'%(year,month,i):'%s-%s-%s 12:00:00'%(year,month,i)][column]
memo['open'].append(temp[0])
memo['close'].append(temp[-1])
memo['high'].append(max(temp))
memo['low'].append(min(temp))
memo['date'].append('%s-%s-%s'%(year,month,i))
except Exception:
pass
intraday=pd.DataFrame(memo)
intraday.set_index(pd.to_datetime(intraday['date']),inplace=True)
#preparation
intraday['range1']=intraday['high'].rolling(rg).max()-intraday['close'].rolling(rg).min()
intraday['range2']=intraday['close'].rolling(rg).max()-intraday['low'].rolling(rg).min()
intraday['range']=np.where(intraday['range1']>intraday['range2'],intraday['range1'],intraday['range2'])
return intraday
#signal generation
#even replace assignment with pandas.at
#it still takes a while for us to get the result
#any optimization suggestion besides using numpy array?
def signal_generation(df,intraday,param,column,rg):
#as the lags of days have been set to 5
#we should start our backtesting after 4 workdays of current month
#cumsum is to control the holding of underlying asset
#sigup and siglo are the variables to store the upper/lower threshold
#upper and lower are for the purpose of tracking sigup and siglo
signals=df[df.index>=intraday['date'].iloc[rg-1]]
signals['signals']=0
signals['cumsum']=0
signals['upper']=0.0
signals['lower']=0.0
sigup=float(0)
siglo=float(0)
#for traversal on time series
#the tricky part is the slicing
#we have to either use [i:i] or pd.Series
#first we set up thresholds at the beginning of london market
#which is est 3am
#if the price exceeds either threshold
#we will take long/short positions
for i in signals.index:
#note that intraday and dataframe have different frequencies
#obviously different metrics for indexes
#we use variable date for index convertion
date='%s-%s-%s'%(i.year,i.month,i.day)
#market opening
#set up thresholds
if (i.hour==3 and i.minute==0):
sigup=float(param*intraday['range'][date]+pd.Series(signals[column])[i])
siglo=float(-(1-param)*intraday['range'][date]+pd.Series(signals[column])[i])
#thresholds got breached
#signals generating
if (sigup!=0 and pd.Series(signals[column])[i]>sigup):
signals.at[i,'signals']=1
if (siglo!=0 and pd.Series(signals[column])[i]<siglo):
signals.at[i,'signals']=-1
#check if signal has been generated
#if so, use cumsum to verify that we only generate one signal for each situation
if pd.Series(signals['signals'])[i]!=0:
signals['cumsum']=signals['signals'].cumsum()
if (pd.Series(signals['cumsum'])[i]>1 or pd.Series(signals['cumsum'])[i]<-1):
signals.at[i,'signals']=0
#if the price goes from below the lower threshold to above the upper threshold during the day
#we reverse our positions from short to long
if (pd.Series(signals['cumsum'])[i]==0):
if (pd.Series(signals[column])[i]>sigup):
signals.at[i,'signals']=2
if (pd.Series(signals[column])[i]<siglo):
signals.at[i,'signals']=-2
#by the end of london market, which is est 12pm
#we clear all opening positions
#the whole part is very similar to London Breakout strategy
if i.hour==12 and i.minute==0:
sigup,siglo=float(0),float(0)
signals['cumsum']=signals['signals'].cumsum()
signals.at[i,'signals']=-signals['cumsum'][i:i]
#keep track of trigger levels
signals.at[i,'upper']=sigup
signals.at[i,'lower']=siglo
return signals
#plotting the positions
def plot(signals,intraday,column):
#we have to do a lil bit slicing to make sure we can see the plot clearly
#the only reason i go to -3 is that day we execute a trade
#give one hour before and after market trading hour for as x axis
date=pd.to_datetime(intraday['date']).iloc[-3]
signew=signals['%s-%s-%s 02:00:00'%(date.year,date.month,date.day):'%s-%s-%s 13:00:00'%(date.year,date.month,date.day)]
fig=plt.figure(figsize=(10,5))
ax=fig.add_subplot(111)
#mostly the same as other py files
#the only difference is to create an interval for signal generation
ax.plot(signew.index,signew[column],label=column)
ax.fill_between(signew.loc[signew['upper']!=0].index,signew['upper'][signew['upper']!=0],signew['lower'][signew['upper']!=0],alpha=0.2,color='#355c7d')
ax.plot(signew.loc[signew['signals']==1].index,signew[column][signew['signals']==1],lw=0,marker='^',markersize=10,c='g',label='LONG')
ax.plot(signew.loc[signew['signals']==-1].index,signew[column][signew['signals']==-1],lw=0,marker='v',markersize=10,c='r',label='SHORT')
#change legend text color
lgd=plt.legend(loc='best').get_texts()
for text in lgd:
text.set_color('#6C5B7B')
#add some captions
plt.text('%s-%s-%s 03:00:00'%(date.year,date.month,date.day),signew['upper']['%s-%s-%s 03:00:00'%(date.year,date.month,date.day)],'Upper Bound',color='#C06C84')
plt.text('%s-%s-%s 03:00:00'%(date.year,date.month,date.day),signew['lower']['%s-%s-%s 03:00:00'%(date.year,date.month,date.day)],'Lower Bound',color='#C06C84')
plt.ylabel(column)
plt.xlabel('Date')
plt.title('Dual Thrust')
plt.grid(True)
plt.show()
# In[4]:
def main():
#similar to London Breakout
#my raw data comes from the same website
# http://www.histdata.com/download-free-forex-data/?/excel/1-minute-bar-quotes
#just take the mid price of whatever currency pair you want
df=pd.read_csv('gbpusd.csv')
df.set_index(pd.to_datetime(df['date']),inplace=True)
#rg is the lags of days
#param is the parameter of trigger range, it should be smaller than one
#normally ppl use 0.5 to give long and short 50/50 chance to trigger
rg=5
param=0.5
#these three variables are for the frequency convertion from minute to intra daily
year=df.index[0].year
month=df.index[0].month
column='price'
intraday=min2day(df,column,year,month,rg)
signals=signal_generation(df,intraday,param,column,rg)
plot(signals,intraday,column)
#how to calculate stats could be found from my other code called Heikin-Ashi
# https://github.com/je-suis-tm/quant-trading/blob/master/heikin%20ashi%20backtest.py
if __name__ == '__main__':
main()