forked from defund/coppersmith
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexamples.sage
66 lines (60 loc) · 1.74 KB
/
examples.sage
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
load('coppersmith.sage')
def univariate():
print('Univariate')
bounds = (floor(N^.3),)
roots = tuple(randrange(bound) for bound in bounds)
R = Integers(N)
P.<x> = PolynomialRing(R)
monomials = [x, x^2, x^3]
f = sum(randrange(N)*monomial for monomial in monomials)
f -= f(*roots)
print(small_roots(f, bounds, m=7))
def bivariate():
print('Bivariate')
bounds = (floor(N^.15), floor(N^.15))
roots = tuple(randrange(bound) for bound in bounds)
R = Integers(N)
P.<x, y> = PolynomialRing(R)
monomials = [x, y, x*y, x^2]
f = sum(randrange(N)*monomial for monomial in monomials)
f -= f(*roots)
print(small_roots(f, bounds))
def trivariate():
print('Trivariate')
bounds = (floor(N^.12), floor(N^.12), floor(N^.12))
roots = tuple(randrange(bound) for bound in bounds)
R = Integers(N)
P.<x, y, z> = PolynomialRing(R)
monomials = [x, y, x*y, x*z, y*z]
f = sum(randrange(N)*monomial for monomial in monomials)
f -= f(*roots)
print(small_roots(f, bounds))
def boneh_durfee():
print('Boneh Durfee')
bounds = (floor(N^.25), 2^1024)
d = random_prime(bounds[0])
e = inverse_mod(d, (p-1)*(q-1))
roots = (e*d//((p-1)*(q-1)), (p+q)//2)
R = Integers(e)
P.<k, s> = PolynomialRing(R)
f = 2*k*((N+1)//2 - s) + 1
print(small_roots(f, bounds, m=3, d=4))
def approximate_factor():
print('Approximate factor')
bounds = (floor(N^.05), floor(N^.05))
roots = tuple(randrange(bound) for bound in bounds)
R = Integers(N)
P = PolynomialRing(R, len(bounds), 'x')
f = sum(randrange(2^128)*x for x in P.gens())
f += p - f(*roots)
print(small_roots(f, bounds, m=2, d=4))
if __name__ == '__main__':
print('Generating primes')
p = random_prime(2^1024)
q = random_prime(2^1024)
N = p*q
univariate()
bivariate()
trivariate()
boneh_durfee()
approximate_factor()