From bf51158da06e58b1189766bb137380a040ff5328 Mon Sep 17 00:00:00 2001 From: Michael Goin Date: Tue, 5 Nov 2024 16:02:32 -0500 Subject: [PATCH] [CI] Prune back the number of tests in tests/kernels/* (#9932) Signed-off-by: mgoin Signed-off-by: Tyler Michael Smith --- tests/kernels/test_activation.py | 2 +- tests/kernels/test_attention.py | 2 +- tests/kernels/test_awq_marlin.py | 16 ++++++----- tests/kernels/test_blocksparse_attention.py | 6 ++--- tests/kernels/test_cache.py | 2 +- tests/kernels/test_cutlass.py | 30 ++++++++++++++++----- tests/kernels/test_int8_quant.py | 7 +++-- tests/kernels/test_marlin_gemm.py | 2 +- tests/kernels/test_moe.py | 23 +++++++++------- tests/kernels/test_pos_encoding.py | 6 ++--- 10 files changed, 60 insertions(+), 36 deletions(-) diff --git a/tests/kernels/test_activation.py b/tests/kernels/test_activation.py index 057a11746014c..a84501f9c303f 100644 --- a/tests/kernels/test_activation.py +++ b/tests/kernels/test_activation.py @@ -14,7 +14,7 @@ DTYPES = [torch.half, torch.bfloat16, torch.float] NUM_TOKENS = [7, 83, 2048] # Arbitrary values for testing -D = [512, 4096, 5120, 13824] # Arbitrary values for testing +D = [512, 13824] # Arbitrary values for testing SEEDS = [0] CUDA_DEVICES = [ f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2) diff --git a/tests/kernels/test_attention.py b/tests/kernels/test_attention.py index 4ecd0fc1a21ad..3e3c0668198ad 100644 --- a/tests/kernels/test_attention.py +++ b/tests/kernels/test_attention.py @@ -33,7 +33,7 @@ # FlashAttention forward only supports head dimension at most 128 # https://github.com/ROCmSoftwarePlatform/flash-attention/blob/3d2b6f5d037782cc2c906909a46fb7e2e1b48b25/csrc/flash_attn_rocm/flash_api.cpp#L62 -HEAD_SIZES = [64, 80, 96, 112, 120, 128, 192, 256] +HEAD_SIZES = [64, 80, 120, 256] BLOCK_SIZES = [16, 32] USE_ALIBI = [False, True] diff --git a/tests/kernels/test_awq_marlin.py b/tests/kernels/test_awq_marlin.py index 59917dd2c58ad..238d6426bf099 100644 --- a/tests/kernels/test_awq_marlin.py +++ b/tests/kernels/test_awq_marlin.py @@ -14,13 +14,17 @@ awq_marlin_quantize) from vllm.scalar_type import scalar_types +NUM_EXPERTS = [8, 64] +TOP_KS = [2, 6] +GROUP_SIZES = [-1, 32, 128] -@pytest.mark.parametrize("m", [64, 512, 222, 33, 1]) -@pytest.mark.parametrize("n", [128, 2048, 256, 1024]) -@pytest.mark.parametrize("k", [128, 1024, 512]) -@pytest.mark.parametrize("e", [8, 64]) -@pytest.mark.parametrize("topk", [2, 6]) -@pytest.mark.parametrize("group_size", [-1, 32, 64, 128]) + +@pytest.mark.parametrize("m", [1, 33, 64, 222]) +@pytest.mark.parametrize("n", [128, 2048]) +@pytest.mark.parametrize("k", [128, 1024]) +@pytest.mark.parametrize("e", NUM_EXPERTS) +@pytest.mark.parametrize("topk", TOP_KS) +@pytest.mark.parametrize("group_size", GROUP_SIZES) @pytest.mark.skipif(not (ops.supports_moe_ops and hasattr(torch.ops._moe_C, "marlin_gemm_moe")), reason="Marlin is not supported on this GPU type.") diff --git a/tests/kernels/test_blocksparse_attention.py b/tests/kernels/test_blocksparse_attention.py index fb601852dd523..fad342d1b5923 100644 --- a/tests/kernels/test_blocksparse_attention.py +++ b/tests/kernels/test_blocksparse_attention.py @@ -25,10 +25,10 @@ DTYPES = [torch.half, torch.bfloat16] NUM_GEN_SEQS = [3] # Arbitrary values for testing NUM_PREFILL_SEQS = [3] # Arbitrary values for testing -NUM_HEADS = [(40, 40), (64, 8)] # Arbitrary values for testing +NUM_HEADS = [(40, 40)] # Arbitrary values for testing HEAD_SIZES = [64, 112] -BLOCK_SIZES = [16, 32] +BLOCK_SIZES = [16] USE_ALIBI = [False, True] KV_CACHE_DTYPE = ["auto", "fp8"] SEEDS = [0] @@ -37,7 +37,7 @@ BLOCKSPARSE_VERT_STRIDES = [8] BLOCKSPARSE_BLOCK_SIZES = [64] -BLOCKSPARSE_HEADS_SLIDINGS = [0, 2, -1] +BLOCKSPARSE_HEADS_SLIDINGS = [2, -1] BLOCKSPARSE_HOMO_HEADS = [True, False] diff --git a/tests/kernels/test_cache.py b/tests/kernels/test_cache.py index e2b4778b94b9e..40550ed51e2c7 100644 --- a/tests/kernels/test_cache.py +++ b/tests/kernels/test_cache.py @@ -13,7 +13,7 @@ NUM_TOKENS = [42] # Arbitrary values for testing NUM_LAYERS = [1] # Arbitrary values for testing NUM_HEADS = [8] # Arbitrary values for testing -HEAD_SIZES = [64, 80, 96, 112, 120, 128, 192, 256] +HEAD_SIZES = [64, 80, 120, 256] BLOCK_SIZES = [8, 16, 32] # Arbitrary values for testing diff --git a/tests/kernels/test_cutlass.py b/tests/kernels/test_cutlass.py index 993e67e827ea0..afe53797322f9 100644 --- a/tests/kernels/test_cutlass.py +++ b/tests/kernels/test_cutlass.py @@ -11,6 +11,28 @@ from vllm import _custom_ops as ops from vllm.platforms import current_platform +MNK_FACTORS = [ + (1, 256, 128), + (1, 16384, 1024), + (1, 24576, 496), + (16, 256, 496), + (16, 16384, 128), + (16, 24576, 4096), + (32, 8192, 4096), + (32, 16384, 4096), + (33, 1024, 1024), + (33, 8192, 128), + (64, 2048, 496), + (64, 16384, 1024), + (100, 8192, 496), + (128, 32768, 4096), + (256, 4096, 4096), + (512, 256, 1024), + (512, 8192, 4096), + (512, 16384, 128), + (512, 24576, 128), +] + CUDA_DEVICES = [ f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2) ] @@ -116,9 +138,7 @@ def cutlass_int8_gemm_helper(m: int, (out, a, b, scale_a, scale_b, bias)) -@pytest.mark.parametrize("m", [1, 16, 32, 64, 128, 256, 512, 222, 100, 33]) -@pytest.mark.parametrize("n", [2048, 4096, 8192, 16384, 24576, 256, 1024]) -@pytest.mark.parametrize("k", [128, 496, 1024]) +@pytest.mark.parametrize("m,n,k", MNK_FACTORS) @pytest.mark.parametrize("per_act_token", [True, False]) @pytest.mark.parametrize("per_out_ch", [True, False]) @pytest.mark.parametrize("use_bias", [True, False]) @@ -129,9 +149,7 @@ def test_cutlass_fp8_gemm(m: int, n: int, k: int, per_act_token: bool, cutlass_fp8_gemm_helper(m, n, k, per_act_token, per_out_ch, use_bias) -@pytest.mark.parametrize("m", [1, 16, 32, 64, 128, 256, 512, 222, 33, 1]) -@pytest.mark.parametrize("n", [2048, 8192, 16384, 256, 1024]) -@pytest.mark.parametrize("k", [128, 496, 1024]) +@pytest.mark.parametrize("m,n,k", MNK_FACTORS) @pytest.mark.parametrize("per_act_token", [True, False]) @pytest.mark.parametrize("per_out_ch", [True, False]) @pytest.mark.parametrize("use_bias", [True, False]) diff --git a/tests/kernels/test_int8_quant.py b/tests/kernels/test_int8_quant.py index 8db6a0d0d9fa4..12c578db0893c 100644 --- a/tests/kernels/test_int8_quant.py +++ b/tests/kernels/test_int8_quant.py @@ -7,11 +7,10 @@ from vllm.platforms import current_platform DTYPES = [torch.half, torch.bfloat16, torch.float] -HIDDEN_SIZES = [16, 67, 768, 2048, 5120, 5137, 8192, - 8193] # Arbitrary values for testing +HIDDEN_SIZES = [16, 67, 768, 5137, 8193] # Arbitrary values for testing NUM_TOKENS = [1, 7, 83, 4096] # Arbitrary values for testing SEEDS = [0] -SCALE = [0.1, 0.5, 0.8, 1.2, 2.1] +SCALE = [0.1, 2.1] def opcheck_int8_quant_static(output, input, scale, azp=None): @@ -132,7 +131,7 @@ def test_static_scaled_int8_quant(num_tokens: int, hidden_size: int, @pytest.mark.parametrize("hidden_size", HIDDEN_SIZES) @pytest.mark.parametrize("dtype", DTYPES) @pytest.mark.parametrize("seed", SEEDS) -@pytest.mark.parametrize("scale", SCALE[2:]) # Reduce test time +@pytest.mark.parametrize("scale", SCALE) @pytest.mark.parametrize("azp", [-255, 54]) @torch.inference_mode() def test_static_scaled_int8_azp_quant(num_tokens: int, hidden_size: int, diff --git a/tests/kernels/test_marlin_gemm.py b/tests/kernels/test_marlin_gemm.py index 5cfd4d6da7a86..b6dd68cc51a9f 100644 --- a/tests/kernels/test_marlin_gemm.py +++ b/tests/kernels/test_marlin_gemm.py @@ -35,7 +35,7 @@ USE_FP32_REDUCE_OPTS = [False, True] MARLIN_K_CHUNKS = [128] -MARLIN_N_CHUNKS = [64, 128, 256] +MARLIN_N_CHUNKS = [64, 256] MARLIN_24_K_CHUNKS = [128] MARLIN_24_N_CHUNKS = [512] diff --git a/tests/kernels/test_moe.py b/tests/kernels/test_moe.py index 19c3fc1e1fe3a..17428ebfc2e28 100644 --- a/tests/kernels/test_moe.py +++ b/tests/kernels/test_moe.py @@ -20,12 +20,15 @@ from vllm.platforms import current_platform from vllm.scalar_type import scalar_types +NUM_EXPERTS = [8, 64] +TOP_KS = [2, 6] -@pytest.mark.parametrize("m", [1024 * 128, 512, 222, 33, 1]) -@pytest.mark.parametrize("n", [2048, 256, 1024]) + +@pytest.mark.parametrize("m", [1, 33, 64, 222, 1024 * 128]) +@pytest.mark.parametrize("n", [128, 1024, 2048]) @pytest.mark.parametrize("k", [128, 511, 1024]) -@pytest.mark.parametrize("e", [8, 64]) -@pytest.mark.parametrize("topk", [2, 6]) +@pytest.mark.parametrize("e", NUM_EXPERTS) +@pytest.mark.parametrize("topk", TOP_KS) @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16]) def test_fused_moe( m: int, @@ -93,12 +96,12 @@ def test_mixtral_moe(dtype: torch.dtype): atol=mixtral_moe_tol[dtype]) -@pytest.mark.parametrize("m", [64, 512, 222, 33, 1]) -@pytest.mark.parametrize("n", [128, 2048, 256, 1024]) -@pytest.mark.parametrize("k", [128, 1024, 512]) -@pytest.mark.parametrize("e", [8, 64]) -@pytest.mark.parametrize("topk", [2, 6]) -@pytest.mark.parametrize("group_size", [-1, 32, 64, 128]) +@pytest.mark.parametrize("m", [1, 33, 64, 222]) +@pytest.mark.parametrize("n", [128, 2048]) +@pytest.mark.parametrize("k", [128, 1024]) +@pytest.mark.parametrize("e", NUM_EXPERTS) +@pytest.mark.parametrize("topk", TOP_KS) +@pytest.mark.parametrize("group_size", [-1, 32, 128]) @pytest.mark.parametrize("act_order", [True, False]) @pytest.mark.parametrize("num_bits", [4, 8]) @pytest.mark.parametrize("is_k_full", [True, False]) diff --git a/tests/kernels/test_pos_encoding.py b/tests/kernels/test_pos_encoding.py index b408559cc0b07..eee77c22ab81a 100644 --- a/tests/kernels/test_pos_encoding.py +++ b/tests/kernels/test_pos_encoding.py @@ -11,10 +11,10 @@ IS_NEOX_STYLE = [True, False] DTYPES = [torch.half, torch.bfloat16, torch.float] -HEAD_SIZES = [64, 80, 96, 112, 120, 128, 192, 256] +HEAD_SIZES = [64, 80, 112, 120, 256] ROTARY_DIMS = [None, 32] # None means rotary dim == head size -NUM_HEADS = [7, 17] # Arbitrary values for testing -BATCH_SIZES = [1, 5] # Arbitrary values for testing +NUM_HEADS = [17] # Arbitrary values for testing +BATCH_SIZES = [5] # Arbitrary values for testing SEQ_LENS = [11, 8192] # Arbitrary values for testing SEEDS = [0] CUDA_DEVICES = [