diff --git a/src/deepsparse/sentence_transformers/README.md b/src/deepsparse/sentence_transformers/README.md index 39c843f553..306d51d13c 100644 --- a/src/deepsparse/sentence_transformers/README.md +++ b/src/deepsparse/sentence_transformers/README.md @@ -1,6 +1,8 @@ # DeepSparse SentenceTransformers +[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1sfN8zDK7MIyatiSIbt2xWh0i6GnaBnTR?usp=sharing) + ```python from deepsparse.sentence_transformers import SentenceTransformer ``` @@ -38,6 +40,18 @@ for sentence, embedding in zip(sentences, embeddings): print("") ``` +## Benchmarking Performance + +There is a `benchmark_encoding.py` script located in this directory that compares a standard model running in both SentenceTransformers and DeepSparse, with a sparsified model in DeepSparse. Here is an example run on an 8 core SPR CPU with the base model being `BAAI/bge-small-en-v1.5`: +```bash +python benchmark_encoding.py --base_model BAAI/bge-small-en-v1.5 --sparse_model zeroshot/bge-small-en-v1.5-quant + +[Standard SentenceTransformer] Encoded 100 sentences of length 700 in 10.42 seconds. +[DeepSparse] Encoded 100 sentences of length 700 in 4.04 seconds. +[DeepSparse Optimized] Encoded 100 sentences of length 700 in 1.82 seconds. +``` + + ## Accuracy Validation with MTEB DeepSparse's efficiency doesn't compromise its accuracy, thanks to testing with the Multilingual Text Embedding Benchmark (MTEB). This process validates the model's performance against standard tasks, ensuring its reliability. diff --git a/src/deepsparse/sentence_transformers/__init__.py b/src/deepsparse/sentence_transformers/__init__.py index 338a9f5dba..44c53314c5 100644 --- a/src/deepsparse/sentence_transformers/__init__.py +++ b/src/deepsparse/sentence_transformers/__init__.py @@ -33,4 +33,4 @@ ) -from .sentence_transformer import SentenceTransformer +from .sentence_transformer import DeepSparseSentenceTransformer, SentenceTransformer diff --git a/src/deepsparse/sentence_transformers/benchmark_encoding.py b/src/deepsparse/sentence_transformers/benchmark_encoding.py new file mode 100644 index 0000000000..a6ec9d5e8e --- /dev/null +++ b/src/deepsparse/sentence_transformers/benchmark_encoding.py @@ -0,0 +1,105 @@ +# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, +# software distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import argparse +import random +import string +import time + +import sentence_transformers +from deepsparse.sentence_transformers import DeepSparseSentenceTransformer + + +def generate_random_sentence(length=700): + # Generate a random sentence of a given length. + return "".join( + random.choices( + string.ascii_letters + + string.digits + + string.punctuation + + string.whitespace, + k=length, + ) + ) + + +def benchmark_model(model, sentences): + # Benchmark the encoding time for a model with a given list of sentences. + start_time = time.time() + _ = model.encode(sentences) + elapsed_time = time.time() - start_time + return elapsed_time + + +def main(args): + # Generate a list of random sentences + sentences = [ + generate_random_sentence(args.length) for _ in range(args.num_sentences) + ] + + # Load the models + standard_model = sentence_transformers.SentenceTransformer(args.base_model) + deepsparse_model = DeepSparseSentenceTransformer(args.base_model, export=True) + deepsparse_opt_model = DeepSparseSentenceTransformer(args.sparse_model) + + # Benchmark sentence_transformers + standard_time = benchmark_model(standard_model, sentences) + print( + f"[Standard SentenceTransformer] Encoded {args.num_sentences} sentences " + f"of length {args.length} in {standard_time:.2f} seconds." + ) + + # Benchmark deepsparse.sentence_transformers + deepsparse_time = benchmark_model(deepsparse_model, sentences) + print( + f"[DeepSparse] Encoded {args.num_sentences} sentences of length " + f"{args.length} in {deepsparse_time:.2f} seconds." + ) + + # Benchmark deepsparse.sentence_transformers + deepsparse_opt_time = benchmark_model(deepsparse_opt_model, sentences) + print( + f"[DeepSparse Optimized]Encoded {args.num_sentences} sentences of length " + f"{args.length} in {deepsparse_opt_time:.2f} seconds." + ) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser( + description="Benchmark Sentence Transformer Models." + ) + parser.add_argument( + "--base_model", + type=str, + default="BAAI/bge-small-en-v1.5", + help="Name of the standard model.", + ) + parser.add_argument( + "--sparse_model", + type=str, + default="zeroshot/bge-small-en-v1.5-quant", + help="Name of the sparse model.", + ) + parser.add_argument( + "--num_sentences", + type=int, + default=100, + help="Number of sentences to generate.", + ) + parser.add_argument( + "--length", type=int, default=700, help="Length of each sentence." + ) + args = parser.parse_args() + + main(args) diff --git a/src/deepsparse/sentence_transformers/sentence_transformer.py b/src/deepsparse/sentence_transformers/sentence_transformer.py index a12c27d9e3..9791b5be58 100644 --- a/src/deepsparse/sentence_transformers/sentence_transformer.py +++ b/src/deepsparse/sentence_transformers/sentence_transformer.py @@ -13,7 +13,7 @@ # limitations under the License. import logging -from typing import Dict, List, Tuple, Union +from typing import Dict, List, Optional, Tuple, Union import numpy as np from tqdm.autonotebook import trange @@ -28,7 +28,7 @@ DEFAULT_MODEL_NAME = "zeroshot/bge-small-en-v1.5-quant" -class SentenceTransformer: +class DeepSparseSentenceTransformer: """ Loads or creates a SentenceTransformer-compatible model that can be used to map text to embeddings. @@ -42,6 +42,8 @@ class SentenceTransformer: this should be set to 512 for most models. Any text that exceeds this token length will be truncated. :param use_auth_token: HuggingFace authentication token to download private models. + :param buckets: Create static buckets less than max_seq_length automaticly if True, + manually specified if a List of lengths are passed in, or fully dynamic if False """ def __init__( @@ -50,16 +52,51 @@ def __init__( export: bool = False, max_seq_length: int = 512, use_auth_token: Union[bool, str, None] = None, + buckets: Union[bool, List[int]] = True, ): - self.model_name_or_path = model_name_or_path - self.model = DeepSparseModelForFeatureExtraction.from_pretrained( - model_name_or_path, export=export, use_auth_token=use_auth_token - ) - self.model.compile(batch_size=0) self.tokenizer = get_preprocessor(model_name_or_path) - self._max_seq_length = max_seq_length + # TODO: support faster bulk execution with batch size > 1 + self._static_batch_size = 1 + + self.dyn_model = DeepSparseModelForFeatureExtraction.from_pretrained( + model_name_or_path, + export=export, + use_auth_token=use_auth_token, + ) + self.dyn_model.reshape(input_shapes="[0,0]") + self.dyn_model.compile(batch_size=0) + + if buckets: + # Initialize a model for each bucket + self.buckets = [int(self._max_seq_length / 4 * i) for i in range(1, 5)] + self.models = {} + for bucket in self.buckets: + self.models[ + bucket + ] = DeepSparseModelForFeatureExtraction.from_pretrained( + model_name_or_path, + export=export, + use_auth_token=use_auth_token, + ) + self.models[bucket].reshape( + input_shapes=f"[{self._static_batch_size},{bucket}]" + ) + self.models[bucket].compile(batch_size=self._static_batch_size) + else: + self.buckets = None + self.models = None + + def _select_bucket(self, seq_length: int) -> int: + """ + Selects the appropriate model based on the input sequence length. + """ + for bucket in self.buckets: + if seq_length <= bucket: + return bucket + # default to the maximum if seq_length exceeds all buckets + return self._max_seq_length def encode( self, @@ -124,7 +161,25 @@ def encode( sentences_batch = sentences_sorted[start_index : start_index + batch_size] model_inputs = self.tokenize(sentences_batch) - model_output = self.model(**model_inputs) + + if self.buckets and batch_size == 1: + # Use bucketing for batch size 1 + # Select the model based on the bucketing logic + # TODO: tokenize ahead of time and simply add padding + seq_length = len(model_inputs[0]) + selected_bucket = self._select_bucket(seq_length) + + # Tokenize using the selected bucket size + model_inputs = self.tokenize( + sentences_batch, target_length=selected_bucket + ) + model = self.models[selected_bucket] + else: + # Use dynamic shape + model = self.dyn_model + + # Run the inference + model_output = model(**model_inputs) out_features = {} out_features["sentence_embedding"] = self.mean_pooling( @@ -189,11 +244,31 @@ def _text_length(self, text: Union[List[int], List[List[int]]]) -> int: else: return sum([len(t) for t in text]) # Sum of length of individual strings - def tokenize(self, texts: Union[List[str], List[Dict], List[Tuple[str, str]]]): + def tokenize( + self, + texts: Union[List[str], List[Dict], List[Tuple[str, str]]], + target_length: Optional[int] = None, + ) -> List[torch.Tensor]: """ Tokenizes the texts """ - return self.tokenizer(texts, padding=True, truncation=True, return_tensors="pt") + if target_length: + # Make sure to pad the tokens to the specified length + return self.tokenizer( + texts, + max_length=target_length, + padding="max_length", + truncation=True, + return_tensors="pt", + ) + else: + # No padding needed + return self.tokenizer( + texts, + truncation=True, + max_length=self._max_seq_length, + return_tensors="pt", + ) def mean_pooling( self, model_output: torch.Tensor, attention_mask: torch.Tensor @@ -214,3 +289,7 @@ def mean_pooling( return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp( input_mask_expanded.sum(1), min=1e-9 ) + + +# for backwards compatibility +SentenceTransformer = DeepSparseSentenceTransformer