Skip to content

Latest commit

 

History

History
143 lines (122 loc) · 6.57 KB

README.md

File metadata and controls

143 lines (122 loc) · 6.57 KB

Code of Online Caching Networks with Adversarial Guarantees

Simulator of experiments presented in

Y. Li, T. Si Salem, G. Neglia, and S. Ioannidis, "Online Caching Networks with Adversarial Guarantees", ACM SIGMETRICS / IFIP PERFORMANCE 2022.

Please cite this paper if you intend to use this code for your research.

Usage

The following is an execution example:

python CacheNetwork.py  res/fixed-popularity \
                        --graph_type dtelekom \
                        --cache_type TBGRD \
                        --min_capacity 1 \
                        --max_capacity 5 \
                        --query_nodes 5 \
                        --catalog_size 50 \
                        --demand_size 200 \
                        --min_weight 0 \
                        --max_weight 100 \
                        --time 1000 \
                        --action_selector_eta 0.1 \
                        --frequency -1 \
                        --trace_location traces/fixed_popularity_catalog_50.pkl

Executing the above script evaluates the caching policy TBGRD under the fixed popularity trace, with the following simulation parameters:

  • select dtelekom network topology
  • select TBGRG caching policy
  • select from the set {1,...,5} the cache capacities
  • generate demands from 5 nodes in the network
  • set the catalog size to 50
  • generate 200 different demands
  • select from the interval [0,100] the edges weights
  • set the simulation time to 100 seconds
  • set the learning rate of the action selectorto 0.1
  • freeze the colors selected by TBGRD
  • load the fixed popularity trace

Synthetic Traces and Plotting Tools

The synthetic traces are available in the traces/ directory, and we also provide a jupyter notebook tweak_traces.ipynb to tweak the traces.

Fixed Popularity Changing Popularity Poisson Shot Noise

We provide the following plotting tools:

  • plot_sensitivity.py is used for sensitivity analysis, and corresponding plots are in sen_result/.
  • jupyer notebook plot_bars_uc.ipynb is used to plot bar plots under different configurations and plot the update costs.

The directory res/ contains precomputed results, and figs/ directory contains precomputed figures.

Dependencies

The dependencies are specified in the requirements.txt file.

Command-line arguments

Simulate a Network of Caches

positional arguments:
  outputfile            Output file

optional arguments:
  --max_capacity MAX_CAPACITY
                        Maximum capacity per cache (default: 6)
  --min_capacity MIN_CAPACITY
                        Minimum capacity per cache (default: 3)
  --max_weight MAX_WEIGHT
                        Maximum edge weight (default: 100.0)
  --min_weight MIN_WEIGHT
                        Minimum edge weight (default: 1.0)
  --max_rate MAX_RATE   Maximum demand rate (default: 1.0)
  --min_rate MIN_RATE   Minimum demand rate (default: 1.0)
  --time TIME           Total simulation duration (default: 5000.0)
  --warmup WARMUP       Warmup time until measurements start (default: 0.1)
  --catalog_size CATALOG_SIZE
                        Catalog size (default: 100)
  --demand_size DEMAND_SIZE
                        Demand size (default: 500)
  --demand_change_rate DEMAND_CHANGE_RATE
                        Demand change rate (default: 0.0)
  --demand_distribution {powerlaw,uniform}
                        Demand distribution (default: powerlaw)
  --powerlaw_exp POWERLAW_EXP
                        Power law exponent, used in demand distribution
                        (default: 1.2)
  --query_nodes QUERY_NODES
                        Number of nodes generating queries (default: 10)
  --graph_type {path,erdos_renyi,balanced_tree,hypercube,cicular_ladder,cycle,grid_2d,lollipop,expander,hypercube,star,barabasi_albert,watts_strogatz,regular,powerlaw_tree,small_world,geant,abilene,dtelekom,servicenetwork}
                        Graph type (default: erdos_renyi)
  --graph_size GRAPH_SIZE
                        Network size (default: 100)
  --graph_degree GRAPH_DEGREE
                        Degree. Used by balanced_tree, regular,
                        barabasi_albert, watts_strogatz (default: 4)
  --graph_p GRAPH_P     Probability, used in erdos_renyi, watts_strogatz
                        (default: 0.1)
  --random_seed RANDOM_SEED
                        Random seed (default: 123456789)
  --debug_level {INFO,DEBUG,WARNING,ERROR}
                        Debug Level (default: INFO)
  --cache_type {LRU,FIFO,LFU,RR,EWMAGRAD,LMIN,TBGRD}
                        Networked Cache type (default: LRU)
  --query_message_length QUERY_MESSAGE_LENGTH
                        Query message length (default: 0.0)
  --response_message_length RESPONSE_MESSAGE_LENGTH
                        Response message length (default: 0.0)
  --monitoring_rate MONITORING_RATE
                        Monitoring rate (default: 1.0)
  --interpolate INTERPOLATE
                        Interpolate past states, used by LMIN (default: False)
  --beta BETA           Beta used in EWMA (default: 1.0)
  --gamma GAMMA         Gamma used in LMIN (default: 0.1)
  --expon EXPON         Exponent used in LMIN (default: 0.5)
  --T T                 Shuffling period used in LMIN and TBGRD (default: 1)
  --colors COLORS       Number of colors used in TBGRD (default: 100)
  --frequency FREQUENCY
                        Frequency of color updates used in TBGRD. When set to
                        -1 there is no update (default: -1)
  --batch BATCH         Whether requests are batched in TBGRD (default: False)
  --samples SAMPLES     Number of samples to estimate expected cache gain
                        (default: 100)
  --trace_location TRACE_LOCATION
                        Generate demands from an external trace (default:
                        None)
  --action_selector_eta ACTION_SELECTOR_ETA
                        Learning rate used in TBGRD ActionSelectors (default:
                        0.005)
  --correlated_action_selectors CORRELATED_ACTION_SELECTORS
                        Enable correlated arms for action selectors (default:
                        False)
  --adversarial_setting ADVERSARIAL_SETTING
                        Run abilene in adversarial setting (default: False)