-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheqddm.py
672 lines (570 loc) · 30.3 KB
/
eqddm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
import numpy as np
import torch, torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
import os
import time
import matplotlib
#matplotlib.use('Agg')
import matplotlib.pyplot as plt
import pdb
from tqdm.notebook import tqdm
import emlp.nn.pytorch as enn
from emlp.reps import T as Te, V
from emlp.groups import O2eR3
from emlp.nn import uniform_rep
G = O2eR3()
def FC(shape = None, init = None):
if init is None:
K = shape[-2]
init = [torch.rand(shape) * 2 - 1]
shape_bias = shape.copy()
shape_bias[-2] = 1
init.append(torch.rand(shape_bias) * 2 - 1)
else:
K = init[0].shape[-2]
fc = nn.Parameter(init[0] * np.sqrt(1/K))
fc_bias = nn.Parameter(init[1] * np.sqrt(1/K))
return fc, fc_bias
class GatedTransition(nn.Module):
"""
Parameterizes the gaussian latent transition probability p(z_t | z_{t-1}, s_t)
"""
def __init__(self, z_dim, transition_dim, S, L):
super(GatedTransition, self).__init__()
# nonlinear z transition
transition_dim = 5*z_dim
rep_in = uniform_rep(z_dim, G)
rep_mid = uniform_rep(transition_dim, G)
rep_out = uniform_rep(z_dim, G) + (z_dim*V**0)(G)
self.linears1 = nn.ModuleList([nn.ModuleList([nn.Sequential(enn.EMLPBlock(rep_in, rep_mid),
enn.EMLPBlock(rep_mid, rep_mid))
for _ in range(L)])
for _ in range(S)])
self.linears2 = nn.ModuleList([nn.Sequential(enn.EMLPBlock(rep_mid, rep_mid),
enn.Linear(rep_mid, rep_out))
for _ in range(S)])
def forward(self, z_t_1):
"""
Given the latent z_{t-1} corresponding to the time
step t-1, we return the mean and scale vectors that parameterize the
(diagonal) gaussian distribution p(z_t | z_{t-1})
z is L * Batch * z_dim
"""
L, N, z_dim = z_t_1.shape
S = len(self.linears1)
z_params = torch.empty((S, N, 2*z_dim), dtype=torch.float, device = z_t_1.device)
for s in range(S):
z_param = 0
for l in range(L):
z_param = z_param + self.linears1[s][l](z_t_1[l])
z_params[s] = self.linears2[s](z_param/L)
# compute the 'proposed mean'
z_loc = z_params[..., :z_dim]
# compute the scale used to sample z_t
z_scale = z_params[..., z_dim:]
# return loc, scale which can be fed into Normal: S * Batch * z_dim
return z_loc, z_scale
class StateTransition(nn.Module):
"""
Parameterizes the categorical latent transition probability p(s_t |s_{t-1})
"""
def __init__(self, S, factor_dim):
super(StateTransition, self).__init__()
# linear s transition
self.fc_s = nn.Linear(S, S)
if factor_dim:
#rep_in = rep_mid = uniform_rep(factor_dim, G)
rep_in = uniform_rep(factor_dim, G)
rep_mid = uniform_rep(3*factor_dim, G)
rep_out = (S*V**0)(G)
self.fc_z = nn.Sequential(enn.EMLPBlock(rep_in, rep_mid),
enn.EMLPBlock(rep_mid, rep_mid),
enn.Linear(rep_mid, rep_out))
# initialize the activation used in the transition
self.softmax = nn.Softmax(dim = -1)
def forward(self, s_t_1, z_t_1):
"""
Given the latent s_{t-1}, we return the probabilities
that parameterize the cateorical distribution p(s_t | s_{t-1})
"""
if z_t_1 is None:
s_t = self.softmax(self.fc_s(s_t_1))
else:
s_t = self.softmax(self.fc_z(z_t_1))
return s_t
class Emission(nn.Module):
def __init__(self, factor_dim, D, factorization):
super(Emission, self).__init__()
rep_in = uniform_rep(factor_dim, G)
rep_mid = uniform_rep(2*factor_dim, G)
rep_out = ((D//3)*V)(G)
if not factorization:
self.fc = nn.Sequential(enn.EMLPBlock(rep_in, rep_mid),
enn.EMLPBlock(rep_mid, rep_mid),
enn.EMLPBlock(rep_mid, rep_mid),
enn.Linear(rep_mid, rep_out))
else:
self.fc = enn.Linear(rep_in, rep_out)
def forward(self, z_t):
y_t = self.fc(z_t)
return y_t
class Combiner(nn.Module):
"""
Parameterizes q(z_t | z_{t-1}, x_{t:T}), which is the basic building block
of the guide (i.e. the variational distribution). The dependence on x_{t:T} is
through the hidden state of the RNN (see the pytorch module `rnn` below)
"""
def __init__(self, z_dim, rnn_dim, L):
super(Combiner, self).__init__()
# initialize the linear transformations used in the neural network
self.fc1_z, self.fc1_z_bias = FC([L, z_dim, rnn_dim])
self.fc2_z = nn.Linear(rnn_dim, z_dim)
self.fc21_z = nn.Linear(z_dim, z_dim)
self.fc3_z = nn.Linear(rnn_dim, z_dim)
self.fc31_z = nn.Linear(z_dim, z_dim)
# initialize the non-linearities used in the neural network
self.tanh = nn.PReLU()
def forward(self, z_t_1, h_rnn):
"""
Given the latent z at at a particular time step t-1 as well as the hidden
state of the RNN h(x_{t:T}) we return the mean and scale vectors that
parameterize the (diagonal) gaussian distribution q(z_t | z_{t-1}, y_{t:T})
"""
# combine the rnn hidden state with a transformed version of z_t_1
h = torch.matmul(z_t_1, self.fc1_z) + self.fc1_z_bias
h_combined = 0.5 * (self.tanh(h).mean(dim = 0) + self.tanh(h_rnn))
# use the combined hidden state to compute the mean used to sample z_t
loc = self.tanh(self.fc2_z(h_combined))
loc = self.fc21_z(loc)
# use the combined hidden state to compute the scale used to sample z_t
scale = self.tanh(self.fc3_z(h_combined))
scale = self.fc31_z(scale)
# return loc, scale which can be fed into Normal
return loc, scale
class LSTM_obs(nn.Module):
def __init__(self, D, rnn_dim, factor_dim, S):
super(LSTM_obs, self).__init__()
self.S = S
self.rnn = nn.LSTM(D, rnn_dim, 2, batch_first=False,
bidirectional=False)
self.fc1_rnn = nn.Linear(rnn_dim, rnn_dim)
self.fc2_rnn = nn.Linear(rnn_dim, rnn_dim)
self.fc3_rnn = nn.Linear(rnn_dim, factor_dim*2)
if S:
self.fc1_rnn_s = nn.Linear(rnn_dim, rnn_dim)
self.fc2_rnn_s = nn.Linear(rnn_dim, rnn_dim)
self.fc3_rnn_s = nn.Linear(rnn_dim, S)
self.relu = nn.PReLU()
def forward(self, x):
rnn_output, _= self.rnn(x)
z = self.relu(self.fc1_rnn(rnn_output))
z = self.relu(self.fc2_rnn(z))
z = self.fc3_rnn(z)
s = None
if self.S:
s = self.relu(self.fc1_rnn_s(rnn_output))
s = self.relu(self.fc2_rnn_s(s))
s = self.fc3_rnn_s(s).permute(1,0,2)
return z, s
class EqDDM(nn.Module):
"""
This PyTorch Module encapsulates the model as well as the
variational distribution for the EqDDM
"""
def __init__(self, D, factor_dim, L, S, transition_dim=None,
VI = {'rnn_dim': None, 'combine': False, 'S': False}, recurrent = False,
recursive_state = False,
factorization = True, lr = 1e-2, batch_size = 20):
super().__init__()
self.D, self.factor_dim, self.L, self.S = D, factor_dim, L, S
transition_dim = [transition_dim if transition_dim is not None else factor_dim][0]
self.VI, self.recurrent, self.recursive_state = VI, recurrent, recursive_state
# instantiate pytorch modules used in the model and guide below
self.trans = GatedTransition(factor_dim, transition_dim, S, len(L))
self.strans = StateTransition(S, [factor_dim if recurrent else 0][0])
if VI['rnn_dim'] is not None:
self.lstm_obs = LSTM_obs(D, VI['rnn_dim'], factor_dim, [S if VI['S'] else 0][0])
if VI['combine']:
self.combiner = Combiner(factor_dim, factor_dim*2, len(L))
self.p_s_0 = nn.Parameter(torch.ones(1, S))
self.z_0_mu = nn.Parameter(torch.rand(max(L), 1, factor_dim)- 1/2)
self.z_0_sig = nn.Parameter((torch.ones(max(L), 1, factor_dim) / 2 * 0.15 * 5).log())
#self.q_F_loc_mu = nn.Parameter(torch.rand(1, factor_dim, D)- 1/2)
self.emission = Emission(factor_dim, D, factorization)
self.mean, self.std, self.grad = 0, 1, True
self.lr, self.batch_size = lr, batch_size
def fit(self, data, epoch_num = 500):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print('Using device:', device)
if self.grad:
data_st_cat = np.concatenate(data, axis = 0)
self.mean = data_st_cat[~np.isnan(data_st_cat)].mean()
self.std = data_st_cat[~np.isnan(data_st_cat)].std()
dataa_train = [(data[i] - self.mean)/self.std for i in range(len(data))]
# set parameters
n_data = len(dataa_train)
lens = [len(i) for i in dataa_train]
#form data for training
training_set_part = [(torch.FloatTensor(y),torch.LongTensor([i])) for i, y in enumerate(dataa_train)]
# initialize model
for p in self.parameters(): #turn gradients on/off
p.requires_grad = self.grad
eqddm = self.EqDDM_(self, n_data, lens).to(device)
optim_eqddm = optim.Adam(eqddm.parameters(), lr = self.lr)
# number of parameters
total_params = sum(p.numel() for p in eqddm.parameters())
learnable_params = sum(p.numel() for p in eqddm.parameters() if p.requires_grad)
print('Total Number of Parameters: %d' % total_params)
print('Learnable Parameters: %d' %learnable_params)
params = {'batch_size': self.batch_size,
'shuffle': True,
'num_workers': 0}
train_loader = DataLoader(training_set_part, **params)
for i in tqdm(range(epoch_num)):
#time_start = time.time()
loss_value = 0.0
for batch_indx, batch_data in enumerate(train_loader):
# update EqDDM
mini_batch, mini_batch_idxs = batch_data
mini_batch_idxs = mini_batch_idxs.reshape(-1)
mini_batch = mini_batch.to(device)
mini_batch_idxs = mini_batch_idxs.to(device)
y_hat,\
q_s_0, p_s_0,\
q_s_t, p_s_t,\
q_z_0_mus, q_z_0_sigs,\
z_0_mu, z_0_sig,\
q_z_mus, q_z_sigs,\
p_z_mu, p_z_sig\
= eqddm.forward(mini_batch, mini_batch_idxs)
# set gradients to zero in each iteration
optim_eqddm.zero_grad()
# computing loss
idxs_nonnan = ~torch.isnan(mini_batch)
annealing_factor = 0.001
loss_eqddm = ELBO_Loss(mini_batch[idxs_nonnan],
y_hat[idxs_nonnan],
q_s_0, p_s_0,
q_s_t[:, max(self.L):], p_s_t[:, max(self.L):],
q_z_0_mus, q_z_0_sigs,
z_0_mu, z_0_sig,
q_z_mus[:, max(self.L):], q_z_sigs[:, max(self.L):],
p_z_mu[:,:, max(self.L):], p_z_sig[:,:, max(self.L):],
annealing_factor)
# back propagation
loss_eqddm.backward()
# update parameters
optim_eqddm.step()
# accumulate loss
loss_value += loss_eqddm.item()
#time_end = time.time()
#print('elapsed time (min) : %0.1f' % ((time_end-time_start)/60))
if (i % 50 == 0) or (i == epoch_num - 1):
NRMSE = eqddm.report_stats(data)
epoch = i + 1
print('ELBO_Loss: %0.4f, Epoch %d: {NRMSE_recv : %0.2f, NRMSE_pred : %0.2f}'
% (loss_value / len(train_loader.dataset),
epoch, NRMSE['NRMSE_recv'], NRMSE['NRMSE_pred']),
end="\r", flush=True)
#torch.save(eqddm.state_dict(), PATH_EqDDM)
return eqddm
def infer(self, data, epoch_num = 500):
self.grad = False
if self.VI['rnn_dim'] is not None:
epoch_num = 1
eqddm = self.fit(data, epoch_num)
self.grad = True
return eqddm
class EqDDM_(nn.Module):
def __init__(self, eqddm, n_data, lens):
super().__init__()
self.eqddm = eqddm
self.lens = lens
T = max(lens) # use maximum T to conveniently support varying length
self.softmax = nn.Softmax(dim = -1)
self.q_s = nn.Parameter(torch.ones(n_data, T, eqddm.S) / eqddm.S, requires_grad=False)
self.q_s_0 = nn.Parameter(torch.ones(n_data, eqddm.S))
self.q_z_0_mu = nn.Parameter(torch.rand(n_data, max(eqddm.L), eqddm.factor_dim)- 1/2)
self.q_z_0_sig = nn.Parameter((torch.ones(n_data, max(eqddm.L), eqddm.factor_dim) / 2 * 0.1).log())
self.q_z_mu = nn.Parameter(torch.rand(n_data, T, eqddm.factor_dim)- 1/2)
self.q_z_sig = nn.Parameter((torch.ones(n_data, T, eqddm.factor_dim) / 2 * 0.1).log())
if eqddm.VI['rnn_dim'] is not None:
self.q_z_mu.requires_grad, self.q_z_sig.requires_grad = False, False
def Reparam(self, mu_latent, sigma_latent):
eps = mu_latent.data.new(mu_latent.size()).normal_()
return eps.mul(sigma_latent.exp()).add_(mu_latent)
# the model p(y|w,F)p(w|z)p(z_t|z_{t-1},u_{t-1})p(z_0|c)p(c)p(F|z_F)p(z_F)
def forward(self, mini_batch, mini_batch_idxs):
# z_values = (data_points, time_points + max(L), z_dim)
# F_loc_values = (factor_dim, D)
N = mini_batch.size(0)
T_b = mini_batch.size(1)
z_dim = self.q_z_0_mu.size(-1)
q_z_0_mus = self.q_z_0_mu[mini_batch_idxs] #batch*L*z_dim
q_z_0_sigs = self.q_z_0_sig[mini_batch_idxs] #batch*L*z_dim
z_0_values = self.Reparam(q_z_0_mus, q_z_0_sigs)
if self.eqddm.VI['rnn_dim'] is not None:
y_filled = self.eqddm.emission(self.q_z_mu[mini_batch_idxs, :T_b])
idxs_nans = torch.isnan(mini_batch)
obs = torch.zeros_like(mini_batch)
obs[~idxs_nans] = mini_batch[~idxs_nans] * 1.0
obs[idxs_nans] = y_filled[idxs_nans].data * 1.0
rnn_output, q_s_t = self.eqddm.lstm_obs(obs.permute(1,0,2))
if self.eqddm.VI['combine']:
q_z_mus = torch.Tensor([]).reshape(N, 0, z_dim).to(rnn_output.device)
q_z_sigs = torch.Tensor([]).reshape(N, 0, z_dim).to(rnn_output.device)
z_values = z_0_values.clone()
z_prev = z_values.permute(1,0,2)[-np.array(self.eqddm.L)]
for i in range(T_b):
loc, scale = self.eqddm.combiner(z_prev, rnn_output[i])
z_val = self.Reparam(loc, scale)
z_values = torch.cat((z_values,z_val.unsqueeze(1)), dim=1)
z_prev = z_values.permute(1,0,2)[-np.array(self.eqddm.L)]
q_z_mus = torch.cat((q_z_mus,loc.unsqueeze(1)), dim=1)
q_z_sigs = torch.cat((q_z_sigs,scale.unsqueeze(1)), dim=1)
else:
q_z_mus = rnn_output.permute(1,0,2)[:,:,:z_dim] #batch*T*z_dim
q_z_sigs = rnn_output.permute(1,0,2)[:,:,z_dim:] #batch*T*z_dim
z_t_values = self.Reparam(q_z_mus, q_z_sigs)
z_values = torch.cat((z_0_values, z_t_values), dim = 1)
self.q_z_mu[mini_batch_idxs, :T_b] = q_z_mus.detach()
self.q_z_sig[mini_batch_idxs, :T_b] = q_z_sigs.detach()
else:
q_z_mus = self.q_z_mu[mini_batch_idxs, :T_b] #batch*T*z_dim
q_z_sigs = self.q_z_sig[mini_batch_idxs, :T_b] #batch*T*z_dim
z_t_values = self.Reparam(q_z_mus, q_z_sigs)
z_values = torch.cat((z_0_values, z_t_values), dim = 1)
# p(z_t|z_{t-1},u{t-1}, s_t) = Normal(z_loc, z_scale)
z_t_1 = torch.Tensor([]).reshape(0, N * T_b, z_dim).to(z_values.device)
for lag in self.eqddm.L:
z_t_1 = torch.cat((z_t_1,
z_values[:, max(self.eqddm.L)-lag:-lag].reshape(1, -1, z_dim)),
dim = 0)
p_z_mu, p_z_sig = self.eqddm.trans(z_t_1)
p_z_mu = p_z_mu.view(self.eqddm.S, N, T_b, -1)
p_z_sig = p_z_sig.view(self.eqddm.S, N, T_b, -1)
# compute q(s_0)
p_s_0 = self.softmax(self.eqddm.p_s_0)
q_s_0 = self.softmax(self.q_s_0[mini_batch_idxs])
# compute q(s_t) = p(s_t|z_t) = p(z_t|z_{t-1},s_t)p(s_t|s_{t-1})
if not self.eqddm.VI['S']:
q_s_t = self.q_s[mini_batch_idxs, :T_b]
else:
#krnl = 5
#q_s_t = torch.cat((q_s_t, q_s_t[:,-1:].repeat(1, krnl-1, 1)), 1).unfold(1, krnl, 1).mean(-1)
q_s_t = self.softmax(q_s_t)
q_s = torch.cat((q_s_0.unsqueeze(1), q_s_t), dim=1)
p_s_t = self.eqddm.strans(q_s[:,:-1],
[z_values[:,max(self.eqddm.L)-1:-1]
if self.eqddm.recurrent else None][0])
z_t_vals = z_values[:, max(self.eqddm.L):] # batch*T_b*z_dim
# p(y|z,F) = Normal(z*F, sigma)
y_hat = self.eqddm.emission(z_values[:, max(self.eqddm.L):]) # S*N*T*D
# compute q(s_t)
if not self.eqddm.VI['S']:
if not self.eqddm.recursive_state:
q_s_t = (p_s_t.permute(2, 0, 1)+1e-4).log()\
-1/2*((z_t_vals - p_z_mu)\
/(p_z_sig.exp()+1e-4)).pow(2).sum(dim = -1)\
-p_z_sig.sum(dim = -1) # n*T*K, S*n*T*K = S*n*T
#krnl = 5
q_s_t = q_s_t.permute(1, 2, 0)
#q_s_t = torch.cat((q_s_t, q_s_t[:,-1:].repeat(1, krnl-1, 1)), 1).unfold(1, krnl, 1).mean(-1)
q_s_t = self.softmax(q_s_t)
else:
# compute q(s_t) = p(s_t|z_t) = p(z_t|z_{t-1},s_t)p(s_t|s_{t-1})
p_s_t = torch.Tensor([]).reshape(N, 0, self.eqddm.S)
q_s_t = torch.Tensor([]).reshape(N, 0, self.eqddm.S)
s_t_1 = q_s_0.clone()
for i in range(T_b):
# p(s_t|s_{t-1})
p_s = self.eqddm.strans(s_t_1,
[z_values[:,i+max(self.eqddm.L)-1]
if self.eqddm.recurrent else None][0]) # batch*S
p_s_t = torch.cat((p_s_t, p_s.unsqueeze(1)), dim = 1)
z_t_vals = z_values[:, i + max(self.eqddm.L)] # batch*z_dim
# compute q(s_t)
q_s = (p_s.permute(1, 0)+1e-4).log()\
-1/2*((z_t_vals - p_z_mu[:,:,i])\
/(p_z_sig[:,:,i].exp()+1e-4)).pow(2).sum(dim = -1)\
-p_z_sig[:,:,i].sum(dim = -1)
s_t_1 = self.softmax(q_s.permute(1, 0))
q_s_t = torch.cat((q_s_t, s_t_1.unsqueeze(1)), dim = 1)
self.q_s[mini_batch_idxs, :T_b] = q_s_t.detach()
if self.eqddm.S == 1:
q_s_t = torch.ones(N, T_b, 1).to(y_hat.device)
q_z_0_mus.unsqueeze_(2)
q_z_0_sigs.unsqueeze_(2)
return y_hat,\
q_s_0, p_s_0,\
q_s_t, p_s_t,\
q_z_0_mus, q_z_0_sigs,\
self.eqddm.z_0_mu, self.eqddm.z_0_sig,\
q_z_mus, q_z_sigs,\
p_z_mu, p_z_sig
def report_stats(self, data):
y_recv = self.eqddm.emission(self.q_z_mu).detach().cpu().numpy()*self.eqddm.std + self.eqddm.mean
y_pred , _, _ = self.short_predict()
NRMSE = [compute_NRMSE(data, y_recv), compute_NRMSE(data, y_pred)]
NRMSE = dict(zip(['NRMSE_recv','NRMSE_pred'], NRMSE))
return NRMSE
def short_predict(self, s=None):
N, T_b, z_dim = self.q_z_mu.shape
# p(z_t|z_{t-1}, s_t) = Normal(z_loc, z_scale)
z_t_1 = torch.Tensor([]).reshape(0, N * (T_b-max(self.eqddm.L)), z_dim).to(self.q_z_mu.device)
for lag in self.eqddm.L:
z_t_1 = torch.cat((z_t_1,
self.q_z_mu[:, max(self.eqddm.L)-lag:-lag].reshape(1, -1, z_dim)),
dim = 0)
p_z_mu, p_z_sig = self.eqddm.trans(z_t_1)
p_z_mu = p_z_mu.view(self.eqddm.S, N, T_b-max(self.eqddm.L), -1)
p_z_sig = p_z_sig.view(self.eqddm.S, N, T_b-max(self.eqddm.L), -1)
if s is not None:
p_z_mu = p_z_mu[[s]]
p_z_sig = p_z_sig[[s]]
p_s_t = self.eqddm.strans(self.q_s[:,max(self.eqddm.L)-1:-1],
[self.q_z_mu[:,max(self.eqddm.L)-1:-1]
if self.eqddm.recurrent else None][0])
z_val_p = torch.cat(((self.q_z_mu+self.q_z_sig.exp())[:,:max(self.eqddm.L)],
(p_s_t.permute(2,0,1).unsqueeze(-1) * (p_z_mu+p_z_sig.exp())).sum(dim=0)), dim=1)
z_val_n = torch.cat(((self.q_z_mu-self.q_z_sig.exp())[:,:max(self.eqddm.L)],
(p_s_t.permute(2,0,1).unsqueeze(-1) * (p_z_mu-p_z_sig.exp())).sum(dim=0)), dim=1)
z_val = torch.cat((self.q_z_mu[:,:max(self.eqddm.L)],
(p_s_t.permute(2,0,1).unsqueeze(-1) * p_z_mu).sum(dim=0)), dim=1)
y_pred_n = self.eqddm.emission(z_val_n).detach().cpu().numpy()*self.eqddm.std+self.eqddm.mean
y_pred_n = [j[:self.lens[i]] for i, j in enumerate(y_pred_n)]
y_pred_p = self.eqddm.emission(z_val_p).detach().cpu().numpy()*self.eqddm.std+self.eqddm.mean
y_pred_p = [j[:self.lens[i]] for i, j in enumerate(y_pred_p)]
y_pred = self.eqddm.emission(z_val).detach().cpu().numpy()*self.eqddm.std+self.eqddm.mean
y_pred = [j[:self.lens[i]] for i, j in enumerate(y_pred)]
return y_pred, y_pred_n, y_pred_p
def long_predict(self, steps, s = None):
z_values = z_values_p = z_values_n = self.q_z_mu[:,-max(self.eqddm.L):]
z_t_1 = z_values.permute(1,0,2)[-np.array(self.eqddm.L)]
z_t_1_s = z_values.permute(1,0,2)[-1]
s_vals = self.q_s[:,-max(self.eqddm.L):]
s_t_1 = self.q_s[:, -1]
for i in range(steps):
p_z_mu, p_z_sig = self.eqddm.trans(z_t_1) # S*N*z_dim
p_s = self.eqddm.strans(s_t_1,
[z_t_1_s if self.eqddm.recurrent else None][0]) # N * S
if s is not None:
z_val = p_z_mu[s]
z_val_p = p_z_mu[s]+p_z_sig[s].exp()
z_val_n = p_z_mu[s]-p_z_sig[s].exp()
else:
z_val = (p_s.permute(1,0).unsqueeze(-1) * p_z_mu).sum(0)
z_val_p = (p_s.permute(1,0).unsqueeze(-1) * (p_z_mu+p_z_sig.exp())).sum(0)
z_val_n = (p_s.permute(1,0).unsqueeze(-1) * (p_z_mu-p_z_sig.exp())).sum(0)
z_values = torch.cat((z_values, z_val.unsqueeze(1)), dim = 1)
z_values_p = torch.cat((z_values_p, z_val_p.unsqueeze(1)), dim = 1)
z_values_n = torch.cat((z_values_n, z_val_n.unsqueeze(1)), dim = 1)
z_t_1 = z_values.permute(1,0,2)[-np.array(self.eqddm.L)]
z_t_1_s = z_values.permute(1,0,2)[-1]
s_vals = torch.cat((s_vals, p_s.unsqueeze(1)), dim = 1)
s_t_1 = p_s * 1.0
y_pred_n = self.eqddm.emission(z_values_n[:, max(self.eqddm.L):]).detach().cpu().numpy()*self.eqddm.std+self.eqddm.mean
y_pred_n = [j[:self.lens[i]] for i, j in enumerate(y_pred_n)]
y_pred_p = self.eqddm.emission(z_values_p[:, max(self.eqddm.L):]).detach().cpu().numpy()*self.eqddm.std+self.eqddm.mean
y_pred_p = [j[:self.lens[i]] for i, j in enumerate(y_pred_p)]
y_pred = self.eqddm.emission(z_values[:, max(self.eqddm.L):]).detach().cpu().numpy()*self.eqddm.std+self.eqddm.mean
y_pred = [j[:self.lens[i]] for i, j in enumerate(y_pred)]
return y_pred, y_pred_n, y_pred_p
def plot_predict(self, data, steps = None, path = './plots/'):
if not os.path.exists(path):
os.makedirs(path)
if steps is None:
y_pred, y_pred_n, y_pred_p = self.short_predict()
else:
y_pred, y_pred_n, y_pred_p = self.long_predict(steps)
for j in range(0 , len(y_pred), max(len(y_pred)//4, 1)):
idx_locs = [i for i in range(0, self.eqddm.D, max(self.eqddm.D//5, 1))]
fig = plt.figure(figsize=(10,7/3*len(idx_locs)))
for i, idx_loc in enumerate(idx_locs):
ax = fig.add_subplot(len(idx_locs),1,i+1)
ax.plot(data[j][:,idx_loc], label = "Actual")
y_preds_p = y_pred_p[j][:, idx_loc]
y_preds_n = y_pred_n[j][:,idx_loc]
y_preds = y_pred[j][:, idx_loc]
ax.plot(y_preds, 'r-.', label = "Predicted", alpha = 0.8)
ax.fill_between(np.arange(len(y_preds)), y_preds_n, y_preds_p, color = 'red', alpha=0.1)
ax.legend(framealpha = 0, fontsize=13)
ax.set_ylabel('loc #%d' %idx_loc, fontsize=13)
ax.set_xlabel('Time', fontsize=13)
plt.tight_layout()
plt.show()
fig.savefig(path + "prediction_%d.png" %j, bbox_inches='tight')
plt.close()
def plot_states(self, index = None, k_smooth = None, path = './plots/'):
if not os.path.exists(path):
os.makedirs(path)
import seaborn as sns
sns.set_style("white")
sns.set_context("talk")
color_names = ["windows blue","red","amber","faded green","dusty purple",
"orange","clay","pink","greyish","mint","cyan",
"steel blue","forest green","pastel purple",
"salmon","dark brown","fuchsia","crimson",
"chocolate","lime"]
colors = sns.xkcd_palette(color_names)
from matplotlib.colors import ListedColormap
cmap_limited = ListedColormap(colors[:self.eqddm.S])
s_vals = self.q_s.argmax(-1).detach().cpu().numpy().astype('float')
if index is None:
idxs = [i for i in range(0, len(s_vals), max(len(s_vals)//10,1))]
else:
idxs = [index]
for idx in idxs:
s_vals[idx, self.lens[idx]:] = np.nan
if k_smooth is not None:
from scipy.signal import medfilt
s_vals = medfilt(s_vals, [1, k_smooth])
fig = plt.figure()
ax = fig.add_subplot(111)
ax.imshow(s_vals[idxs], aspect='auto', cmap=cmap_limited)
ax.set_yticks([])
ax.tick_params(axis='both', which='major', labelsize=21)
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.set_xlabel('Time', fontsize=21)
ax.set_ylabel('Sample', fontsize=21)
plt.show()
fig.savefig(path+'States.png', bbox_inches='tight')
def KLD_Gaussian(q_mu, q_sigma, p_mu, p_sigma):
# 1/2 [log|Σ2|/|Σ1| −d + tr{Σ2^-1 Σ1} + (μ2−μ1)^T Σ2^-1 (μ2−μ1)]
KLD = 1/2 * ( 2 * (p_sigma - q_sigma)
- 1
+ ((q_sigma.exp())/(p_sigma.exp()+1e-6)).pow(2)
+ ( (p_mu - q_mu) / (p_sigma.exp()+1e-6) ).pow(2) )
return KLD.sum(dim = -1)
def KLD_Cat(q, p):
# sum (q log (q/p) )
KLD = q * ((q+1e-4) / (p+1e-4)).log()
return KLD.sum(dim = -1)
def ELBO_Loss(mini_batch, y_hat,\
q_s_0, p_s_0,\
q_s_t, p_s_t,\
q_z_0_mus, q_z_0_sigs,\
z_0_mu, z_0_sig,\
q_z_mus, q_z_sigs,\
p_z_mu, p_z_sig,\
annealing_factor = 1):
# y_hat: N*T*D, mini_batch = N*T*D
rec_loss = (y_hat - mini_batch).pow(2).sum()
KL_s_0 = KLD_Cat(q_s_0.mean(dim=0), p_s_0).sum()
KL_s_t = KLD_Cat(q_s_t, p_s_t).sum()
KL_z_0 = KLD_Gaussian(q_z_0_mus, q_z_0_sigs,
z_0_mu, z_0_sig).sum()
KL_z = (q_s_t.permute(2,0,1) *
KLD_Gaussian(q_z_mus, q_z_sigs,
p_z_mu, p_z_sig)).sum()
return rec_loss +annealing_factor * (KL_s_0 + KL_s_t
+ KL_z_0 + KL_z)
def compute_NRMSE(y, y_hat):
idxs = [(len(i), ~np.isnan(i)) for i in y]
RMSE = [np.power(y[i][idxs[i][1]] - y_hat[i][:idxs[i][0]][idxs[i][1]],2) for i in range(len(y))]
RMSE = np.sqrt(sum([i.sum() for i in RMSE])/sum([len(i) for i in RMSE]))
power = [y[i][idxs[i][1]]**2 for i in range(len(y))]
NRMSE = RMSE/np.sqrt(sum([i.sum() for i in power])/sum([len(i) for i in power]))*100
return NRMSE