forked from HorizonRobotics/alf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptimizers.py
293 lines (253 loc) · 11.8 KB
/
optimizers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
# Copyright (c) 2020 Horizon Robotics and ALF Contributors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import numpy as np
import torch
from typing import Callable
import alf
from alf.utils import common
from alf.utils import tensor_utils
from . import adam_tf, adamw
def _rbf_func(x):
r"""
Compute the rbf kernel and its gradient w.r.t. first entry
:math:`K(x, x), \nabla_x K(x, x)`, for computing ``svgd``_grad.
Args:
x (Tensor): set of N particles, shape (N x D), where D is the
dimenseion of each particle
Returns:
:math:`K(x, x)` (Tensor): the RBF kernel of shape (N x N)
:math:`\nabla_x K(x, x)` (Tensor): the derivative of RBF kernel of shape (N x N x D)
"""
N, D = x.shape
diff = x.unsqueeze(1) - x.unsqueeze(0) # [N, N, D]
dist_sq = torch.sum(diff**2, -1) # [N, N]
h, _ = torch.median(dist_sq.view(-1), dim=0)
if h == 0.:
h = torch.ones_like(h)
else:
h = h / max(np.log(N), 1.)
kappa = torch.exp(-dist_sq / h) # [N, N]
kappa_grad = -2 * kappa.unsqueeze(-1) * diff / h # [N, N, D]
return kappa, kappa_grad
def _score_func(x, alpha=1e-5):
r"""
Compute the stein estimator of the score function
:math:`\nabla\log q = -(K + \alpha I)^{-1}\nabla K`,
for computing ``gfsf``_grad.
Args:
x (Tensor): set of N particles, shape (N x D), where D is the
dimenseion of each particle
alpha (float): weight of regularization for inverse kernel
this parameter turns out to be crucial for convergence.
Returns:
:math:`\nabla\log q` (Tensor): the score function of shape (N x D)
"""
N, D = x.shape
diff = x.unsqueeze(1) - x.unsqueeze(0) # [N, N, D]
dist_sq = torch.sum(diff**2, -1) # [N, N]
h, _ = torch.median(dist_sq.view(-1), dim=0)
if h == 0.:
h = torch.ones_like(h)
else:
h = h / max(np.log(N), 1.)
kappa = torch.exp(-dist_sq / h) # [N, N]
kappa_inv = torch.inverse(kappa + alpha * torch.eye(N)) # [N, N]
kappa_grad = -2 * kappa.unsqueeze(-1) * diff / h # [N, N, D]
kappa_grad = kappa_grad.sum(0) # [N, D]
return -kappa_inv @ kappa_grad
def wrap_optimizer(cls):
"""A helper function to construct torch optimizers with
params as [{'params': []}]. After construction, new parameter
groups can be added by using the add_param_group() method.
This wrapper also clips gradients first before calling ``step()``.
"""
NewClsName = cls.__name__ + "_"
NewCls = type(NewClsName, (cls, ), {})
NewCls.counter = 0
@common.add_method(NewCls)
def __init__(self,
*,
gradient_clipping=None,
clip_by_global_norm=False,
parvi=None,
repulsive_weight=1.,
name=None,
**kwargs):
"""
Args:
gradient_clipping (float): If not None, serve as a positive threshold
clip_by_global_norm (bool): If True, use `tensor_utils.clip_by_global_norm`
to clip gradient. If False, use `tensor_utils.clip_by_norms` for
each grad.
parvi (string): if not ``None``, paramters with attribute
``ensemble_group`` will be updated by particle-based vi algorithm
specified by ``parvi``, options are [``svgd``, ``gfsf``],
* Stein Variational Gradient Descent (SVGD)
Liu, Qiang, and Dilin Wang. "Stein Variational Gradient Descent:
A General Purpose Bayesian Inference Algorithm." NIPS. 2016.
* Wasserstein Gradient Flow with Smoothed Functions (GFSF)
Liu, Chang, et al. "Understanding and accelerating particle-based
variational inference." ICML. 2019.
To work with the ``parvi`` option, the parameters added to the
optimizer (by ``add_param_group``) should have an (int) attribute
``ensemble_group``. See ``FCBatchEnsemble`` as an example.
repulsive_weight (float): the weight of the repulsive gradient term
for parameters with attribute ``ensemble_group``.
name (str): the name displayed when summarizing the gradient norm. If
None, then a global name in the format of "class_name_i" will be
created, where "i" is the global optimizer id.
kwargs: arguments passed to the constructor of the underline torch
optimizer. If ``lr`` is given and it is a ``Callable``, it is
treated as a learning rate scheduler and will be called everytime
when ``step()`` is called to get the latest learning rate.
Available schedulers are in ``alf.utils.schedulers``.
"""
self._lr_scheduler = None
if "lr" in kwargs:
lr = kwargs["lr"]
if isinstance(lr, Callable):
self._lr_scheduler = lr
kwargs["lr"] = float(lr())
super(NewCls, self).__init__([{'params': []}], **kwargs)
self._gradient_clipping = gradient_clipping
self._clip_by_global_norm = clip_by_global_norm
self._parvi = parvi
if parvi is not None:
assert parvi in ['svgd', 'gfsf'
], ("parvi method %s is not supported." % (parvi))
self._repulsive_weight = repulsive_weight
self.name = name
if name is None:
self.name = NewClsName + str(NewCls.counter)
NewCls.counter += 1
@common.add_method(NewCls)
def step(self, closure=None):
"""This function first clips the gradients if needed, then call the
parent's ``step()`` function.
"""
if self._lr_scheduler is not None:
lr = float(self._lr_scheduler())
for param_group in self.param_groups:
param_group['lr'] = lr
if self._gradient_clipping is not None:
params = []
for param_group in self.param_groups:
params.extend(param_group["params"])
grads = alf.nest.map_structure(lambda p: p.grad, params)
if self._clip_by_global_norm:
_, global_norm = tensor_utils.clip_by_global_norm(
grads, self._gradient_clipping, in_place=True)
if alf.summary.should_record_summaries():
alf.summary.scalar("global_grad_norm/%s" % self.name,
global_norm)
else:
tensor_utils.clip_by_norms(
grads, self._gradient_clipping, in_place=True)
if self._parvi is not None:
self._parvi_step()
super(NewCls, self).step(closure=closure)
@common.add_method(NewCls)
def _parvi_step(self):
for param_group in self.param_groups:
if "parvi_grad" in param_group:
params = param_group['params']
batch_size = params[0].shape[0]
params_tensor = torch.cat(
[p.view(batch_size, -1) for p in params],
dim=-1) # [N, D], D=dim(params)
if self._parvi == 'svgd':
# [N, N], [N, N, D]
kappa, kappa_grad = _rbf_func(params_tensor)
grads_tensor = torch.cat(
[p.grad.view(batch_size, -1) for p in params],
dim=-1).detach() # [N, D]
kernel_logp = torch.matmul(kappa,
grads_tensor) / batch_size
svgd_grad = torch.split(
kernel_logp -
self._repulsive_weight * kappa_grad.mean(0),
[p.nelement() // batch_size for p in params],
dim=-1)
for i in range(len(params)):
grad = params[i].grad.view(batch_size, -1)
grad.copy_(svgd_grad[i])
else:
logq_grad = _score_func(params_tensor) # [N, D]
gfsf_grad = torch.split(
logq_grad,
[p.nelement() // batch_size for p in params],
dim=-1)
for i in range(len(params)):
grad = params[i].grad.view(batch_size, -1)
grad.add_(self._repulsive_weight * gfsf_grad[i])
@common.add_method(NewCls)
def add_param_group(self, param_group):
"""This function first splits the input param_group into multiple
param_groups according to their ``ensemble_group`` attributes, then
calls the parent's ``add_param_group()`` function to add each of
them to the optimizer.
"""
assert isinstance(param_group, dict), "param_group must be a dict"
params = param_group["params"]
if isinstance(params, torch.Tensor):
param_group['params'] = [params]
elif isinstance(params, set):
raise TypeError('Please use a list instead.')
else:
param_group['params'] = list(params)
len_params = len(param_group['params'])
std_param_group = []
ensemble_param_groups = [[] for i in range(len_params)]
group_batch_sizes = [0] * len_params
for param in param_group['params']:
if not isinstance(param, torch.Tensor):
raise TypeError("optimizer can only optimize Tensors, "
"but one of the params is " +
torch.typename(param))
if hasattr(param, 'ensemble_group'):
assert isinstance(
param.ensemble_group,
int), ("ensemble_group attribute mis-specified.")
ensemble_group_id = param.ensemble_group
if group_batch_sizes[ensemble_group_id] == 0:
group_batch_sizes[ensemble_group_id] = param.shape[0]
else:
assert param.shape[0] == group_batch_sizes[
ensemble_group_id], (
"batch_size of params does not match that of the "
"ensemble param_group %d." % (ensemble_group_id))
ensemble_param_groups[ensemble_group_id].append(param)
else:
std_param_group.append(param)
if len(alf.nest.flatten(ensemble_param_groups)) > 0:
if len(std_param_group) > 0:
super(NewCls, self).add_param_group({
'params': std_param_group
})
for ensemble_param_group in ensemble_param_groups:
if len(ensemble_param_group) > 0:
super(NewCls, self).add_param_group({
'params': ensemble_param_group,
'parvi_grad': True
})
else:
super(NewCls, self).add_param_group(param_group)
return NewCls
Adam = alf.configurable('Adam')(wrap_optimizer(torch.optim.Adam))
# TODO: uncomment this after removing `adamw.py`
#AdamW = alf.configurable('AdamW')(wrap_optimizer(torch.optim.AdamW))
AdamW = alf.configurable('AdamW')(wrap_optimizer(adamw.AdamW))
SGD = alf.configurable('SGD')(wrap_optimizer(torch.optim.SGD))
AdamTF = alf.configurable('AdamTF')(wrap_optimizer(adam_tf.AdamTF))