-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathPermuteSystems.m
103 lines (92 loc) · 4 KB
/
PermuteSystems.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
%% PERMUTESYSTEMS Permutes subsystems within a state or operator
% This function has two required arguments:
% X: the vector or matrix
% PERM: a permutation vector
%
% PX = PermuteSystems(X,PERM) permutes the order of the subsystems
% of the vector or matrix X according to the permutation vector PERM,
% where each subsystem is assumed to have equal dimension
%
% This function has three optional arguments:
% DIM (default has all subsystems of equal dimension)
% ROW_ONLY (default 0)
% INV_PERM (default 0)
%
% PX = PermuteSystems(X,PERM,DIM,ROW_ONLY,INV_PERM) permutes the order of
% the subsystems of the vector or matrix X according to the permutation
% vector PERM, where the dimensions of the subsystems are given by the
% vector DIM. If X is non-square and not a vector, different row and
% column dimensions can be specified by putting the row dimensions in the
% first row of DIM and the column dimensions in the second row of DIM.
% If ROW_ONLY is set to 1, then only the rows of X are permuted, but not
% the columns -- this is equivalent tomultiplying X on the left by the
% corresponding permutation operator, but not on the right. If ROW_ONLY
% is set to 1 then DIM only needs to contain the row dimensions of the
% subsystems, even if X is not square. If INV_PERM equals 1 then the
% inverse permutation of PERM is applied instead of PERM itself.
%
% URL: http://www.qetlab.com/PermuteSystems
% requires: opt_args.m
% author: Nathaniel Johnston ([email protected]) and Mateus Araújo
% package: QETLAB
% last updated: September 16, 2022
function PX = PermuteSystems(X,perm,varargin)
if all(perm == 1:length(perm)) %do nothing if trivial permutation is requested
PX = X;
return
end
dX = size(X);
is_vec = (min(dX) == 1);
num_sys = length(perm);
if(is_vec)
vec_orien = 3 - find(dX == 1, 1); % 1 if column vector, 2 if row vector
end
% set optional argument defaults: dim=round(lX^(1/num_sys)), row_only=0, inv_perm=0
[dim,row_only,inv_perm] = opt_args({ [round(dX(1)^(1/num_sys))*ones(1,num_sys); round(dX(2)^(1/num_sys))*ones(1,num_sys)], 0, 0 },varargin{:});
% allow the user to enter a vector for dim if X is square
if(min(size(dim)) == 1)
dim_tmp = dim(:)'; % force dim to be a row vector
if(is_vec)
dim = ones(2,length(dim));
dim(vec_orien,:) = dim_tmp;
else
dim = [dim_tmp;dim_tmp];
end
end
prod_dimR = prod(dim(1,:));
prod_dimC = prod(dim(2,:));
% Do some basic input checking.
if length(dim) ~= num_sys
error('PermuteSystems:InvalidPerm','length(PERM) must equal length(DIM).')
elseif ~all(sort(perm) == 1:num_sys)
error('PermuteSystems:InvalidPerm','PERM must be a permutation vector.')
elseif(dX(1) ~= prod_dimR || (~row_only && dX(2) ~= prod_dimC))
error('PermuteSystems:InvalidDim','The dimensions specified in DIM do not agree with the size of X.')
end
% Permuting systems for pure states is easy enough, so just make the vector
% full and then perform the permutation (new-ish versions of MATLAB don't
% like sparse multidimensional arrays).
if(is_vec)
if(inv_perm)
PX = reshape(ipermute(reshape(full(X),dim(vec_orien,end:-1:1)),num_sys+1-perm(end:-1:1)),dX);
else
PX = reshape(permute(reshape(full(X),dim(vec_orien,end:-1:1)),num_sys+1-perm(end:-1:1)),dX);
end
% Preserve the sparsity of X.
if(issparse(X))
PX = sparse(PX);
end
return
end
% If X is not a pure state, it's slightly trickier... do *not* just use the
% same pure state trick with repeated indices though, since that has an
% intermediate step of making the matrix a multidimensional array, which
% you can't do with sparse matrices in new-ish version of MATLAB. The trick
% used here reduces the problem to the pure state version of the problem in
% another way that plays nicely with both full and sparse matrices
row_perm = PermuteSystems(1:dX(1),perm,dim(1,:),0,inv_perm);
PX = X(row_perm,:);
if ~row_only
col_perm = PermuteSystems(1:dX(2),perm,dim(2,:),0,inv_perm);
PX = PX(:,col_perm);
end