-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathHorodeckiState.m
80 lines (72 loc) · 2.87 KB
/
HorodeckiState.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
%% HORODECKISTATE Produces a Horodecki state
% This function has one required input argument:
% A: a real parameter in [0,1]
%
% HORO_STATE = HorodeckiState(A) returns the 3x3 bound entangled
% Horodecki state described in [1].
%
% This function has one optional input argument:
% DIM (default is [3,3], but can be either [3,3] or [2,4])
%
% HORO_STATE = HorodeckiState(A,DIM) returns the Horodecki state in
% either (3 \otimes 3)-dimensional space, or (2 \otimes 4)-dimensional
% space, depending on the dimensions in the 1-by-2 vector DIM.
%
% The Horodecki state was introduced in [1] which serves as an example in
% C^3 \otimes C^3 or C^2 \otimes C^4 of an entangled state that is
% positive under partial transpose (PPT). The state is PPT for all
% a \in [0,1], and separable only for a = 0 or a = 1.
%
% Note: Refer to [2] (specifically equations (1) and (2)) for more
% information on this state and its properties. The 3x3 Horodecki state
% is defined explicitly in Section 4.1 of [1] and the 2x4 Horodecki state
% is defined explicitly in Section 4.2 of [1].
%
% References:
% [1] P. Horodecki. Separability criterion and inseparable mixed states
% with positive partial transposition. E-print:
% arXiv:quant-ph/9703004, 1997.
%
% [2] K. Chruscinski. On the symmetry of the seminal Horodecki state.
% E-print: arXiv:1009.4385 [quant-ph], 2010.
%
% URL: http://www.qetlab.com/HorodeckiState
% requires: opt_args.m
% authors: Vincent Russo ([email protected])
% Nathaniel Johnston ([email protected])
% package: QETLAB
% last updated: December 15, 2014
function horo_state = HorodeckiState( a, varargin )
% set optional argument defaults: dim = [3,3]
[dim] = opt_args({ [3,3] },varargin{:});
if a < 0 || a > 1
error('HorodeckiState:InvalidA','Argument A must be in the interval [0,1].');
end
if isequal(dim(:),[3;3])
N_a = 1/(8*a+1);
b = (1+a)/2;
c = sqrt(1-a^2)/2;
horo_state = N_a * [ a 0 0 0 a 0 0 0 a;
0 a 0 0 0 0 0 0 0;
0 0 a 0 0 0 0 0 0;
0 0 0 a 0 0 0 0 0;
a 0 0 0 a 0 0 0 a;
0 0 0 0 0 a 0 0 0;
0 0 0 0 0 0 b 0 c;
0 0 0 0 0 0 0 a 0;
a 0 0 0 a 0 c 0 b ];
elseif isequal(dim(:),[2;4])
N_a = 1/(7*a+1);
b = (1+a)/2;
c = sqrt(1-a^2)/2;
horo_state = N_a * [ a 0 0 0 0 a 0 0;
0 a 0 0 0 0 a 0;
0 0 a 0 0 0 0 a;
0 0 0 a 0 0 0 0;
0 0 0 0 b 0 0 c;
a 0 0 0 0 a 0 0;
0 a 0 0 0 0 a 0;
0 0 a 0 c 0 0 b ];
else
error('HorodeckiState:InvalidDim','DIM must be one of [3,3] or [2,4].');
end