-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbaye's classifier.cpp
137 lines (96 loc) · 4.08 KB
/
baye's classifier.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
#include<opencv2/core/core.hpp>
#include<opencv2/highgui/highgui.hpp>
#include<opencv2/imgcodecs/imgcodecs.hpp>
#include<opencv2/imgproc/imgproc.hpp>
#include<opencv2/ml/ml.hpp>
#include<vector>
#include<iostream>
#define nclass1 11
#define nclass2 13
//#define nclass3 13
#define nentry (nclass1+nclass2)
using namespace cv;
using namespace std;
static Ptr<ml::TrainData>
prepare_train_data(const Mat& data, const Mat& reponse, int n_trainsample) {
Mat sample_idx = Mat::zeros(data.rows,1,CV_8UC1);
Mat train_sample = sample_idx.colRange(0, n_trainsample);
train_sample.setTo(Scalar::all(1));
//Convert an array data type to TrainData
int nvars = data.cols;
Mat var_type(nvars, 1, 1, CV_8U);
var_type.setTo(Scalar::all(ml::VAR_ORDERED)); //this may not be used in my program
var_type.at<char>(nvars) = ml::VAR_CATEGORICAL;
return ml::TrainData::create(data, ml::ROW_SAMPLE, reponse, noArray(), sample_idx, noArray(), var_type);
//the above statement is creating data from in memory array ;
//@param 1 should CV_32F TYPE,@param 2 ml_sampletypes,@param3 if the response is a scalar the data will be saved as a
// single row or single column the type of data must be CV_32F OR CV_32S in the first case the data will be ordered by default
// in the later case the data will be categorical.
}
int main() {
Mat image, image_bin, image_color;
vector<vector<Point>> mycontour;
int i = 0, myclass, k = 0;
double perimeter, area;
char* numberof_class[2] = { "screw","bolt" }; //im my program there will be three classes
char * inputimage[2] = { "Clase1.jpg","Clase2.jpg" };
Ptr<ml::NormalBayesClassifier> mybayes = ml::NormalBayesClassifier::create();
Mat train_data(nentry, 2, CV_32FC1);
Mat response_data(nentry, 1, CV_32FC1);
Mat test_data(nentry, 2, CV_32FC1);
Mat test_data_2(1, 2, CV_32FC1);
for (myclass = 0; myclass < 2; myclass++) {
image = imread(inputimage[myclass]);
if (!image.data) {
cout << "image is empty" << endl;
exit(1);
}
image_bin = (image.size(), CV_8UC1, 1);
cvtColor(image,image,CV_BGR2GRAY);
threshold ( image, image_bin, 130, 255, CV_THRESH_BINARY);
namedWindow("image_bin", 1);
imshow("image_bin", image_bin);
findContours(image_bin, mycontour, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_NONE);
cout << "the total number of" << numberof_class[myclass] << "contour size" << mycontour.size() << endl;// here i may have to apply the loop to output like c
// the above will give the total number of parts.
for (size_t idx=0; idx < mycontour.size();idx++) {// loop to fill the data with the parameters perimeter area
area = contourArea(mycontour[idx],false);
perimeter = arcLength(mycontour[idx], 1);
train_data.at<float>(k,0) = perimeter;
train_data.at<float>(k, 1)=area;
response_data.at<float>(k) =myclass ;
k++;
//cout << "area s " << area << endl;
}
cvWaitKey(0);
}
int ntrain_samples = (int)(nentry);
Ptr<ml::TrainData> tdata=prepare_train_data(train_data,response_data,ntrain_samples);
mybayes->train(tdata);
//proof
char inputimage2[] = "Clasif.jpg" ;
Mat imageclasify = imread(inputimage2, 1);
image_bin = Mat(imageclasify.size(),8,1);
threshold(imageclasify, image_bin, 130, 255, CV_THRESH_BINARY);
image_color = Mat(imageclasify.size(),CV_8UC1,3);
cvtColor(imageclasify, image_color, CV_GRAY2BGR);
imshow("IMAGE_COLOR",image_color);
findContours(image,image_color,CV_RETR_EXTERNAL,CHAIN_APPROX_NONE);
cout << "contour size" << mycontour.size() << endl;
Mat clasif(mycontour.size(),1,CV_32FC1);
for (size_t idx = 0; idx < mycontour.size(); idx++) {
area = contourArea(mycontour[idx],false);
perimeter = arcLength(mycontour.size(), 1);
test_data_2.at<float>(0, 0) = perimeter;
test_data_2.at<float>(0, 1) = area;
clasif.at<float>(idx) = mybayes->predict(test_data_2);
cvtColor(image, image_color, CV_BGR2GRAY);
Scalar color_rojo(0, 25, 0);
drawContours(image_color,mycontour,idx,color_rojo,2);
imshow("image_color",image_color);
cout << "number of classes" << numberof_class[(int)clasif.at<float>(idx)] << endl;
waitKey(0);
}
return 0;
}
// in my program i may need to use erode or dilation