-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict_url.py
83 lines (69 loc) · 3.24 KB
/
predict_url.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import sys
import traceback
import torch
import torch.utils.data
from torch import nn
import torchvision
from torchvision import transforms
from utils.utils import image_loader_url
def main(args):
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
transformation = transforms.Compose([
transforms.Resize((224, 224)),
#transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,])
'''
transformation = transforms.Compose([
transforms.Resize(224),
transforms.ToTensor(),
normalize,])
'''
classes = torch.load(args.checkpoint)['classes']
model = torchvision.models.__dict__[args.model](pretrained=False)
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, len(classes))
model = nn.DataParallel(model, device_ids=args.device)
model.cuda()
model.load_state_dict(torch.load(args.checkpoint)['model'])
model.eval()
count = 0
for url in sys.stdin:
count += 1
try:
url = url.strip()
image_tensor = image_loader_url(url, transformation)
image_tensor = image_tensor.float().unsqueeze_(0)
input = image_tensor.cuda()
output = model(input)
index = output.data.cpu().numpy().argmax()
label = classes[index]
if label in ['hentai', 'sexy', 'porn']:
print('{}\t{}\t{}'.format(url, classes[index], count))
sys.stdout.flush()
except:
traceback.print_exc()
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description='PyTorch Classification Training')
parser.add_argument('--test-path', default='/data/user/yangfg/experiment/nsfw/data/online-image', help='dataset')
parser.add_argument('--model', default='resnet101', help='model')
parser.add_argument('--device', default=[0,1,2,3], help='device')
parser.add_argument('-b', '--batch-size', default=32, type=int)
parser.add_argument('--epochs', default=90, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('-j', '--workers', default=16, type=int, metavar='N',
help='number of data loading workers (default: 16)')
parser.add_argument('--lr', default=0.1, type=float, help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('--lr-step-size', default=30, type=int, help='decrease lr every step-size epochs')
parser.add_argument('--lr-gamma', default=0.1, type=float, help='decrease lr by a factor of lr-gamma')
parser.add_argument('--print-freq', default=10, type=int, help='print frequency')
parser.add_argument('--checkpoint', default='./checkpoint/101_without_data_aug/model_4_400.pth', help='checkpoint')
args = parser.parse_args()
print(args)
main(args)